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Abstract
A dynamic treatment regime is a list of rules for how the level of treatment will be tailored through
time to an individual’s changing severity. In general, individuals who receive the highest level of
treatment are the individuals with the greatest severity and need for treatment. Thus there is planned
selection of the treatment dose. In addition to the planned selection mandated by the treatment rules,
the use of staff judgment results in unplanned selection of the treatment level. Given observational
longitudinal data or data in which there is unplanned selection, of the treatment level, the
methodology proposed here allows the estimation of a mean response to a dynamic treatment regime
under the assumption of sequential randomization.
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1. INTRODUCTION
Dynamic treatment regimes are individually tailored treatments that provide treatment to
individuals only when and if they need the treatment and adjust the level of treatment to the
individual’s need. In a dynamic regime rules for how the treatment level and type should vary
with time are specified prior to the beginning of treatment; these rules are based on time varying
measurements of subject-specific need for treatment. Dynamic treatment regimes are
potentially attractive to public policy makers because they treat only subjects who show need
for treatment, freeing public and private funds for more intensive treatment of the needy.

The goal of this paper is to provide methodology for estimation of the marginal mean response
to a dynamic treatment regime when the data is observational. We employ a structural model
in that it is a model for the marginal mean of counterfactual or potential responses.

This work is motivated by the Fast Track prevention program. This is an ongoing randomized
trial of a complex preventive intervention versus control. The intervention was designed to
prevent the emergence of and reduce the level of conduct disorders and drug use in children
at risk due to elevated behavior problems (Bierman et al., 1996; CPPRG, 1999ab; McMahon
et al., 1996). Part of the intervention involved implementation of a dynamic treatment regime
designed to improve family functioning. At the end of each semester, beginning with the spring
semester of first grade, the family counselor filled out a 6 item “home visiting process measure,”
describing the quality of parenting and family functioning. Based on the home visiting process
measure total score, home visiting assignments for the next semester were made. A simplified
version is as follows. A score of 17 or greater corresponded to 4 home visits, a score from 9
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to 16 corresponded to 8 home visits and a score of 8 or below corresponded to 16 home visits
during the following semester. Thus the rule for assigning dose was

where St is an assessment of severity, the home visiting process measure score, at the end of
the tth semester, with low values indicating greater severity. Staff were told that in exceptional
cases they might need to deviate from the rule for assigning home visiting level; in practice,
staff assignments deviated from the rule for approximately 50% of the intervention children.
In Section 6, our goal is to estimate what the marginal effect of the above dynamic treatment
regime would have been, had staff followed the rules exactly. We demonstrate that by
identifying the intervention group (with home visiting assignments as implemented) as an
observational study, one can use the methods developed here to achieve this goal.

Dynamic treatment regimes are routinely assigned to subjects participating in randomized
medical trials when there is danger of serious side-effects necessitating cessation of treatment
or when the optimal dosage at a given time should depend on the subjects clinical status or
laboratory values. For example, in the active treatment arm of the Systolic Hypertension in the
Elderly Program randomized trial (Cooperative Research Group, 1988; Borhani et al., 1991),
subjects were assigned to a dynamic treatment regime that was intended to minimize the amount
of medication required to maintain a subject’s systolic blood pressure (SBP) at or below a pre-
determined goal. The treatment schedule was quite complex. Initially, all treated subjects were
assigned the same dosage of anti-hypertensive medication; at eight weeks, subjects whose SBP
exceeded the goal had their dosage doubled; at sixteen weeks, subjects whose SBP still
exceeded the goal had a second anti-hypertensive added. At twenty-four weeks, a subject whose
SBP continued to exceed the goal had their dose of the second anti-hypertensive doubled. The
treatment schedule specified that subjects with evidence of severe clinical or laboratory toxicity
would first have their dose of anti-hypertensive medications reduced; if the toxicity persisted,
they would be switched to an alternate medication. As in the Fast Track program, this dynamic
treatment is used to tailor the dosage to the subject. Furthermore the use of rules for reducing
dosage or switching medications due to side effects is a useful aid in reducing unexplained
noncompliance. Indeed subjects whose medication is switched in, accordance with the rules
are compliers.

In this paper we consider methodology for estimation of the mean response to both nonrandom
and random dynamic treatment regimes when the available data is observational. In a
nonrandom dynamic treatment regime, the rules specifying the treatment level, as outputs of
present need, are nonrandom. Both the Fast Track program and the Systolic Hypertension in
the Elderly Program use nonrandom dynamic treatment regimes. In a random dynamic
treatment regime, the time-specific treatment level is drawn from a conditional probability
distribution depending only on the present need. In Section 3 we provide quantitative
definitions of these two types of dynamic treatment regimes. The modeling of responses to
dynamic treatment regimes based on observational data has received very little statistical
attention outside of a series of papers by Robins (1986, 1989, 1993, 1997). In these papers Robins
considers the use of nested structural models to estimate a variety of conditional treatment
effect parameters in the distribution of the potential response. Also Robins (1993) discusses
estimating parameters in the response to a nonrandom dynamic treatment regime by censoring
the subject at the first time the subject’s treatment differs from the treatment as specified by
the dynamic regime.

In Section 2 we review the underlying causal theory based on counterfactual or potential
outcomes. Next in section 3 we discuss the assumption of sequential randomization along with
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the definitions of nonrandom and random dynamic treatment regimes. Section 4 uses the work
in the previous sections to precisely specify the estimand in terms of the observational data
distribution. We provide an estimating function in Section 5 and then in the last section we
return to the Fast Track example.

2. POTENTIAL OUTCOMES
We use counterfactual or potential outcome models to quantify the desired treatment effect
and to state assumptions. Neyman (1935) introduced counterfactual outcomes to analyze the
causal effect of time-independent treatments in randomized studies. Rubin (1978) explicated
Neyman’s ideas and extended Neyman’s work to the analysis of causal effects of time-
independent treatments from observational data. Robins (1986, 1987) proposed a formal theory
of causal inference that extended both Neyman’s and Rubin’s work to assess the direct and
indirect effects of time varying treatments from experimental and observational longitudinal
studies. We use these works to first specify our observations in a unified way regardless of the
manner in which treatment is selected/assigned.

Suppose that the treatment lasts for K intervals; during this time period intermediate outcomes
may be measured and at the end of the K intervals a response is measured. We denote the
treatment regime/vector across the K intervals by āK = (a1, a2, …, aK); at is the level of treatment
in the tth interval. In general we use a bar over a variable to denote that variable and all past
values of the same variable, so āt = (a1, …,at). Let K be the collection of all possible treatment
vectors. Corresponding to each fixed value of the treatment vector, āK we conceptualize a
potential (counterfactual) response denoted by Y(āK). This statement implicitly assumes that
there is no need to index Y by others’ treatment or by the mechanism by which the treatment
was selected; this is the Stable Unit Treatment Assumption (SUTVA, see Rubin, 1986). That
is, first we assume that the treatment is defined so that the treatment selection mechanism does
not alter the subject’s potential responses; for example, it does not matter why the subject was
treated (e.g., whether the subject is randomly assigned the treatment or whether the subject’s
parent solicited the treatment), the entirety of the subject’s intermediate potential outcomes
and the potential responses are the same. In the time varying treatment setting this is the
consistency assumption of Robins (1997). And second we assume that treatment of a subject
does not influence any of the outcomes of any other subject (Cox, 1958); indeed we will make
the stronger assumption that the observations on the sample of subjects are independent draws
from one distribution. These assumptions allow us to conceptualize a single potential outcome/
response corresponding to each possible āK ∈ K and thus permit a well-defined, simple
notation for an intermediate outcome and final response (see Robins, 1986 and for time-
independent treatment, Rubin, 1986; Angrist, Imbens and Rubin, 1996).

SUTVA may well be violated in the Fast Track data. In addition to the home visiting, the Fast
Track intervention included “friendship groups” in which small numbers of the intervention
children were brought together in order to improve social skills. Thus in close friendships, the
effect of home visiting on one child may affect the friend’s response. Alternately whether or
not a dominant child is receiving home visits may alter the dynamics of the friendship groups
and thus alter other children’s response to treatment. We do not deal with these complications
here as an appropriate generalization of the proposed methodology would distract from the
main points of this paper.

Capital letters are used to denote random variables. Treatment selection/assignment is allowed
to be stochastic and are denoted by the random vector, ĀK. So ĀK takes values in K. Denote
the time t (t > 0) variables by Lt = (St, Vt) where St is the severity vector and Vt is a vector of
auxiliary information. In general both Vt and St may be summaries of information that are
available prior to and at time t. (St, Vt) is an intermediate outcome of treatment. Denote the
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initial, time 0, variables by L0 = (Z, S0, V0) where Z consists of variables defining interesting
subpopulations and S0, V0 have the same interpretation as above. Corresponding to each
treatment vector, āK, SUTVA implies that the intermediate outcome at time t can be written
unambiguously as (St(āt), Vt(āt)) and the potential response as Y(āK).

In both randomized and observational studies, the observed data is the pretreatment information
plus the potential outcomes corresponding to the treatment pattern ĀK. Assuming SUTVA we
may write the data in a unified way regardless of the manner in which treatment is selected/
assigned. A subject’s potential outcomes, that is the “complete” severity and response data is
Osr = {Z, S0, S1(a1), …, SK−1 (āK−1), Y(āK); āK ∈ K} and the complete auxiliary data is
Oaux = {V0, V1(a1), …, VK−1(āK−1); āK ∈ K}. In a given experiment or observational study
we observe only a subset of the subject’s outcomes plus the treatment pattern, X = {Z, S0, V0,
A1, S1(A1), V1(A1), A2, …, SK−1 (ĀK−1), VK−1 (ĀK−1), AK, Y(ĀK)}. Additionally in randomized
studies we also have data on the treatment regime to which a study subject was assigned in
addition, to the observed data, X. In the following we use either Y or Y(ĀK) to denote the
observable response, either St or St(Āt) to denote the observable severity at time t and either
Vt or Vt(Āt) to denote the observable auxiliary variables at time t.

3. DYNAMIC REGIMES AND SEQUENTIAL RANDOMIZATION
In a dynamic treatment regime, the rule for treatment assignment in each of the K intervals
may be random or nonrandom; in either case the rule depends only on prior severity. If the
rules are nonrandom, denote the regime by the K vector, d̄K = (d1, …, dK); at time t, treatment
assignment is, At = dt(St−1). (The Fast Track example uses nonrandom rules.) If the rules are
random (stochastic), the treatment regime is characterized, by a K vector of stochastic rules or
equivalently treatment assignment probabilities, say p̄K = (p1, …,pK); at time t, treatment
assignment is drawn from the conditional distribution, pt(·|St−1). We shall denote by Pp̄K, the
distribution of (Osr, Oaux, ĀK) had the entire study population been subjected to the dynamic
regime p̄K. The associated expectation is denoted by Ep̄K. Note that a nonrandom dynamic
treatment regime, d̄K, is just a special case of a random dynamic treatment regime with pt(a|
St−1) degenerate at the point, a = dt(St−1). Henceforth, we do not, except where necessary,
distinguish in our notation between random and nonrandom dynamic treatment regimes.

Dynamic treatment regimes should not be confused with nondynamic treatment regimes. In a
nondynamic treatment regime, the variation in treatment level across time and subjects is
specified prior to treatment onset. In other words, a nondynamic treatment regime is a special
case of a dynamic treatment regime in which the treatment assignments do not vary by post-
treatment observations (i.e. the rule, dt is not a function of post-treatment information in St−1
and is at most a function of pretreatment variables, L0). Concrete examples of nondynamic
treatment regimes are “assign 16 home visits in every semester following kindergarten,” or
“assign 16 home visits in the first semester following kindergarten and 8 home visits in each
semester thereafter.” Regression analyses which model the mean of Y(āK) as āK varies are
regression analyses comparing different nondynamic treatment regimes, each corresponding
to a different treatment pattern, āK. For an example of this type of analysis see Robins et al.
(1998) and Hernán et al. (1998).

Denote the distribution of (Osr, Oaux, ĀK) in our observational study by Pobs and the expectation
with respect to this distribution by Eobs. Note that the marginal distribution of the complete
data (Osr, Oaux) is the same for both distributions, Pp̄K and Pobs. Only the marginal/conditional
distribution of the treatment (ĀK) varies between our observational distribution and the
distribution Pp̄K. Thus we denote the marginal distribution of (Osr,Oaux) by P without a
subscript and expectation with respect to this marginal distribution by E without a subscript.
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If the study population follows the dynamic treatment regime, p̄K, then At is conditionally
independent of the potential outcomes, (Osr, Oaux), conditional on St−1. However in our
observational study, At may not be conditionally independent of the potential outcomes, (Osr,
Oaux), conditional on St−1, because there may be unmeasured “confounders” that determine
treatment and are associated with the potential outcomes. In general, assumptions, in addition
to SUTVA, about this distributional relationship (based on substantive knowledge) must be
used to identify causal effects and thus permit causal inference (for discussion, see section 11,
of Robins, 1997). In this paper we assume:

Sequential Randomization
For each t = 1, …, K, At is independent of Osr given {L0, A1, L1 A2, …, Lt−1}.

That is, the auxiliary data, the V’s, are sufficiently rich so the observational distribution satisfies
the above sequential randomization. This means that within levels of L0, A1, L1, A2, …, Lt−1,
we assume that the subjects with different levels of treatment do not vary systematically by
the potential severity measures or responses. See Robins (1997) for further discussion of
sequential randomization.

We have chosen to assume sequential randomization of the treatment level, ĀK with respect to
Osr only and not with respect to both (Osr, Oaux). There are two reasons for this. First there are
practical, real-life examples in which sequential randomization of ĀK with respect to Osr may
be plausible but sequential randomization of ĀK with respect to Oaux is clearly untrue (see
example 1 of Robins, 1987). The second reason is more philosophical. If a time varying
correlate of both treatment level selection and response becomes available and the above
sequential randomization assumption is more plausible when the V’s include this time varying
covariate, then we would like to include this covariate in the V’s without having to make the
additional assumption that the treatment levels are sequentially randomized with respect to this
covariate as well.

4. THE ESTIMAND
The sequential randomization assumption is used only to identify the parameter of interest
(e.g., a treatment regime effect) in terms of the observational distribution. The identification
is achieved by the following lemma. Suppose we are given a vector of treatment rules, p̄K. We
wish to estimate parameters in Pp̄K distribution using data from the observational data, the
Pobs distribution. Let πt(·|āt−1,l̄t−1) represent the conditional probability mass function of At
given Āt−1 = āt−1, = L ̄t−1 = l̄t−1 in the observational distribution. Define

and

for any j ≤ K.
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Lemma 4.1
Assume that the observational distribution, Pobs satisfies the sequential randomization
assumption. If

(4.1)

then the distribution of (Y, S̄K−1, ĀK, Z) under Pp̄K is absolutely continuous with respect to the
distribution of (Y, S̄K−1, ĀK, Z) under Pobs and a version of the Radon-Nikodym derivative is

(4.2)

Proof—Below we repeatedly use the notation, Y == Y(ĀK), Lt == (St, Vt) and Lt == Lt(Āt). Let
U be a Borel set. We have that

Continuing in this fashion, eliminating the indicator variables concerning Aj and accumulating
the conditional expectations concerning the πj(aj|L ̄j−1(āj−1),āj−1) we arrive at,

(4.3)

where B1 is formed from repeated conditional expectations and can be defined iteratively
beginning with,

and then for each j ≤ K − 1

and for j = 1 as,
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Since the distribution of Osr is the same under both Pp̄K and Pobs distributions, (4.3) can also
be written with Ep̄K in place of Eobs. But then the sum over āK can be taken inside the
expectation to yield

Since B1 can be expressed as repeated expectations of a probability (bK) which is nessarily
bounded above by one, (4.1) implies that B1(Osr,ĀK) = 1 a.e. Thus we have absolute continuity
and (4.2) is the Radon-Nikodym derivative of Pp̄K with respect to Pobs.

An intuitive interpretation of the lemma’s assumption (4.1) is that, “Any treatment pattern that
can result in the implementation of the dynamic treatment regime, p̄k, must also have a positive
probability of occuring in the observational study.” This assumption is emininently sensible
since if a particular treatment pattern cannot occur in the observational study, then inference
involving the response to this treatment pattern requires further knowledge/assumptions.

From a statistical perspective there are two important consequences of the fact that (4.2) is a
Radon-Nikodym derivative. Recall that the goal of this paper is estimate, using observational
data, the mean response that would have been observed had, contrary to fact, the entire study
population followed a particular dynamic regime. Thus the estimand is

and this estimand can be expressed in terms of the observational distribution. Or writing the
right hand side in terms of conditional densities, Ep̄K[Y|Z = z] =

(4.4)

where fY,fK,…,f0 denote conditional densities for the observational distribution. The
conditional density of Y given ĀK,L ̄K−1 is fY and the conditional density of Lt given Āt−1,L ̄t−1
is ft. Thus the conditional mean is a function of the observational distribution via the conditional
densities fY and fK−1, …,f0. This is Robins (1986) G-computation formula.

The second consequence of the fact that (4.2) is a Radon-Nikodym derivative is that given any
Pp̄K -unbiased estimating equation for parameters in the distribution, Pp̄K we can weight this
estimating equation by the Radon-Nikodym derivative and thereby produce an unbiased
estimating equation distribution for the same parameters but now using data from the
observational study, the Pobs distribution. Suppose for the moment that π̄K is known. Let μ(β,
Z) be a parameterization of Ep̄K[Y|Z] where β is an unknown vector parameter and μ is a known
function. Given data from Pp̄K, a simple estimating function for β, might be based on μ ̇(β, Z)
(Y − μ(β, Z)) where μ ̇(β, Z) is the derivative of μ with respect to β. Given data from the Pobs
distribution, we weight to produce the unbiased estimating function,

(4.5)
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where for a function g, ℙng(X) is defined as the average of g over the observational sample

.

Note that the denominator of Wp̄K is informally “the probability of having the treatment pattern
one did indeed have” in the observational study. Robins (1998) introduced the idea of weighting
estimating functions by the inverse of this probability in order to estimate parameters of
marginal structural models and direct effect structural models for time varying treatments.
Robins refers to such estimators as inverse probability of treatment weighted estimators.

In the special case in which p̄K represents a nonrandom dynamic treatment regime, an alternate
strategy is to use the inverse probability of censoring weighted estimators as considered by
Robins and Rotnitzky (1992) and Rotnitzky and Robins (1995). Instead of modeling the
treatment selection given past information, they model the adherence/non-adherence to the
treatment regime given past information. Subjects are censored when their treatment first
deviates from the dynamic treatment regime; these subjects receive a weight of zero. Subjects
whose treatment patterns match the dynamic treatment regime receive a weight which is the
product of the modelled adherence probabilities. Note that in this paper, for each t, we could
separate the selection probability, πt(at|āt−1,l̄t−1) into the product of the probability of
adherence/non-adherence to the treatment regime given Āt−1 = āt−1, L ̄t−1 = l̄t−1 times the
probability of At = at given adherence or non-adherence to the treatment regime and Āt−1 =
āt−1, L ̄t−1 = l̄t−1.

We may view μ(β, Z) as a parameterization of (4.4). If the observational distribution satisfies
sequential randomization then μ(β,Z) = Ep̄K [Y|Z] and β can be interpreted as a parameter from
the Pp̄K distribution. If sequential randomization does not hold, then we only have that the
estimation procedure will, under general conditions, result in a valid estimator of (4.4). The
sequential randomization assumption allows us to intrepret this estimand as the mean response
to the regime p̄K.

5. ESTIMATION
Our goal is to conduct inference concerning the mean response to a dynamic treatment regime,
possibly conditional on pretreatment variables. Assuming SUTVA, sequential randomization
and (4.1), (4.4) can be interpreted as the mean response to a dynamic treatment regime,
conditional on Z. We separate this interpretation from the estimation. In this section we consider
a parameterization of (4.4) denoted by μ(β, Z). In order to estimate β we no longer need SUTVA,
sequential randomization or (4.1); indeed we no longer need to assume the existnec of potential
outcomes. However we assume regularity conditions for the asymptotic theory and that

(5.1)

This is easily shown to be a consequence of (4.1); however, (5.1) makes no reference to
potential outcomes.

Note that μ(β, Z) is a function of the conditional densities fY and fk−1, …, f0. On-the other hand,
the likelihood of the observational data can be written as a product of conditional densities:

(5.2)
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where πt(·|āt−1, l̄t−1) represents the conditional probability mass function of At given Āt−1 =
āt−1, L ̄t−1 = l̄t−1 in the observational distribution. Thus the estimand, (4.4), depends only on the
first term in the likelihood. The second term in the likelihood concerns only the treatment
selection probabilities (π̄K). An optimal estimating function (one resulting in an efficient
estimator of β) will be orthogonal to the score functions for the treatment selection probabilities
(Bickel et al., 1993). This means we have the potential to improve estimators based on (4.5)
by replacing (4.5) by itself minus its projection on the score functions for the treatment selection
probabilities (Robins, 1999). Recall the observed data for one person is denoted by X. Given
an estimating function, say U(X,β), the projection of U on the score functions of the treatment

selection probabilities is given by 
(Robins, 1999).

Setting U (X, β) equal to Wp̄K (ĀK, L ̄K)μ ̇(β, Z) (Y − μ(β, Z)), we get after algebraic simplification
that

(5.3)

where Wp̄t (āt, l̄t−1) represents  and

(5.4)

for t = 1,…, K − 1. If the parameterization of μ(β, Z) is saturated then the right hand side of
(5.3) is the efficient influence function for β. See the appendix for proofs.

Note that whereas the treatment selection probabilities for the Pp̄K are known - they are p̄K-in
our observational study the treatment selection probabilities, π̄K, are unknown and thus must
be estimated from the observational data. Additionally we will need to estimate {gt(āt,l̄t−1), t
= 1,…,K}. Given a parametrization of the treatment selection probabilities, say πt(at|āt−1,
l̄t−1; αw), t = 1,…,K with parameter, αw, we can use maximum likelihood based on (5.2) to
estimate αw. We maximize,

(5.5)

to get α̂w and then by substitution the vector,{π̂t, t = 1,…,K}. Next we parameterize {gt(āt,
l̄t−1), t = 1,…,K} with the vector parameter, αg and denote the parameterization by {gt(āt,
l̄t−1: αg), t = 1,…,K}. A variety of methods may be used to estimate αg; we use the following
estimating equation, i.e., solve,
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(5.6)

to get α̂g.

To use (5.3) for estimation of β, we substitute estimators of the parameters, αw and αg in the
weights and in the gt’s and set,

(5.7)

to 0 and solve for β.

Under regularity conditions, the following two properties hold.

1. First assuming the parameterization of μ is correct, and if the parameterization of
π̄K OR {gt(āt, l̄t−1), t = 1,…,K} is correct, the resulting estimator of β is consistent and
asymptotically normal.

2. The asymptotic variance of β̂ can be estimated by a sandwich estimator. Define Σ̂ =

where for vector V, V⊗2 = VVT, Sβ(X; α̂w, α̂g,β) is the estimating function for β (formula
(5.7) is ℙnSβ), Sw(X; αw) is the score function for αw (the derivative of (5.5) with
respect to αw is ℙnSw(X;αw)) , Îw is the observed information matrix for αw (minus the
Hessian of (5.5)), Sg(X;αg) is the estimating function for αg (formula (5.6) is ℙnSg),

Îg is minus the derivative of (5.6) with respect to αg,  and

. Also define B̂ = ℙnμ ̇(β,Z)μ ̇(β,Z)T. Then a consistent
estimator of the asymptotic variance of β̂ is given by B̂−1Σ ̂B̂−1.

See the appendix for proofs of these results.

Consistent Parameterization of g1,…, gK
The relationships among the g1,…, gK are highly constrained. Thus it is difficult to formulate
parameterizations of g1,…,gK which are consistent with one another. For example, it must be
possible for the parameterization of gK and gK−1 to satisfy
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where pK is specified by the treatment regime and fK−1 is the unspecified conditional density
of LK−1 given (ĀK−1, L ̄K−2). Or equivalently, given a parametrization of gK; and gK−1 there
must be at least some conditional density fK−1 for which the above display is true. See the data
example for a consistent parametrization. Also see Robins and Wasserman (1997) and
Scharfstein et al. (1999) for similar problems with consistent parametrization.

Double Robustness
Instead of using (5.7) to estimate β, we could use (4.5) with estimated weights. Consistency
of the resulting β̂ would require that π̄K is correctly parameterized. Alternately we could base
estimation of β on the formula in (4.4). Note that (4.4) can be written in terms of the gt’s as

(5.8)

As noted previously, this is the G-computation formula of Robins (1986). Thus to directly
estimate β using (4.4) we may estimate the gt’s in order to arrive at an estimate of g1 and then
solve

(5.9)

We can only expect the resulting β̂ to be a consistent estimator of β if we have correctly
parameterized the gt’s.

The primary advantage of (5.7) over (5.9) and over the use of (4.5) is that the use of (5.7) to
estimate μ leads to a consistent estimator if either the gt’s or πt’s are parameterized correctly
(see (1) above). This is the “double robustness” property; see Scharfstein et al. (1999) and
Robins et al. (2000) for further discussion. Furthermore note that the first term in (5.7) is (4.5)
with estimated weights and the t = 1 summand in the last term is (5.9). Thus (5.7) combines
both the direct estimation method and the weighted estimation method (4.5) so as to achieve
consistency even when only the gt’s or only the πt’s are parameterized correctly.

6. EXAMPLE
The Fast Track trial is a longitudinal, multi-site, multi-cohort trial of a preventive intervention
versus a control. For the purposes of this illustration we use a subset of the children for whom
data was available at the time of the analysis; this is 579 high risk children of which 202 are
in the intervention group. This is not a representative subset; furthermore the variables used in
the analysis were selected for illustrative purposes only. A more complete analysis is
forthcoming. We consider two endpoints, specifically chosen to illustrate the diversity of
results that can follow from the proposed analyses. Both endpoints are from end of grade 3
teacher evaluations. The first endpoint is a teacher rating of school behavior problems. The
second endpoint is a teacher rating of behavior change over the course of grade 3. This second
rating assesses improvement across the year in social and emotional adjustment.

Beginning in the fall of grade 2, a nonrandom dynamic treatment regime for home visiting was
planned as part of the intervention. The home visits were designed to improve parental
functioning. The time intervals are fall and spring of grade 2 and 3 (K = 4). The severity for
semester t is St, the total score on the home visiting process measure; St is a measure, taking
values in the interval [1,24], evaluating the quality of family functioning. High values indicate
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better functioning. The treatment rule is: if assigned to control, there is no assignment of home
visiting by staff; if assigned to treatment the staff should follow the treatment rule,

in assigning home visiting level. Thus, if a child is in the intervention group and the total on
the home visiting process measure from the end of grade 1, S0, is less than 8, staff were to
assign 16 home visits for the fall of grade 2 and so on. This means that At ∈ {4,8,16}.

Our primary goal is an evaluation of the average effect of the nonrandom dynamic treatment
regime on the two endpoints. This regime corresponds to degenerate treatment selection
probabilities, i.e.,

for t = 1, 2, 3, 4.

Staff were told that in exceptional cases they might need to deviate from the rule for
recommending home visiting level; in practice, staff recommendations deviated from the rule
on 22% of the 202 * 4 occasions. The staff recommended more home visits than the rule on
15% of the occasions and on 7% of the occasions the staff recommended fewer home visits.
In all, 104 intervention children (52%) have treatment recommendation patterns that coincide
with the rule for all 4 time periods. The staff did not/could not deviate from the rule for the
control children as no home visiting assignments were made for the control children. Because
the staff deviated from the rule(for the intervention children), we treat the group of intervention
children as an observational sample in which the home visiting recommendations may have
been influenced by severity (St−1) in ways varying from the rule and indeed, the
recommendations may have been influenced by measures other than severity. The Fast Track
research team collected a vast amount of information relating to why staff recommended
intervention levels. For the purposes of this example, we will use past recommended
intervention level, the home visiting process measure and site and cohort indicators to model
the distribution of home visiting recommendations (these will be included in the L’s). Also
included in the L’s are time-varying predictors of the two endpoints (Recall that these variables
are chosen for illustrative purposes; they do not encompass the full set of variables that might
be used in a substantive treatment). See Table 1 for a description of L.

We assume that sequential randomization holds; that is we assume that within any cross-
stratification of {L0, A1 L1, A2, …, Lt−1} the staff treatment recommendation, At, is not
predictive of the array of potential outcomes, Osr. For example, this means that (within a cross-
stratification) children recommended 16 home visits do not have a higher chance of high values
of {Y(a1, a2, a3, a4), at = 4, 8, 16, t = 1, 2, 3, 4} than children recommended 4 home visits. It
also means that (within a cross-stratification) children recommended 16 home visits do not
have higher chance of high values of Y(16, 16, 16, 16) – Y(4, 4, 4, 4) than children recommended
4 home visits.

To implement (5.7) we first estimate the weights, Wp̄4. Since the staff were not to and did not
assign any intervention to control children, the weights for the control children are equal to
one. Note that the numerator of Wp̄4 is one for an intervention child whose treatment
recommendations coincide with the treatment rule and zero otherwise. This means that of the
202 intervention children, 98 (202–104) will have Wp̄4 = 0 and thus the first term in (5.7) will
be zero for these children. This makes sense because without further (smoothness) assumptions
the responses from the 98 children whose treatment recommendations are inconsistent with
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the regime are not informative of responses to the treatment regime. This issue is discussed in
further detail below. To estimate the denominator of the weight, we fit a proportional odds
model to the staff home visiting recommendations. For each time t, we fit, via maximum
likelihood,

where αw = {αw,t01, αw,t02, αw,1, t = 1, 2, 3, 4} and ZZ(L ̄t−1, Āt−1) is a vector summary of past
Information. See Table 2 for the estimates of αw. Note that in all four time periods, a low home
visiting process measure score is predictive of higher staff home visiting recommendation; also
in the last three time periods, a past high staff home visiting recommendation is predictive of
a higher staff home visiting recommendations. Additionally there are some minor differences
in home visiting recommendations by cohort and site. Since there were only 4 intervals and
the sample size was not low we choose to fit separate models for the home visiting
recommendations in each interval; alternately we could have fit one model with possibly time
varying intercepts and regression coefficients to all 4 intervals simultaneously (see Hernán et
al. for an example, 1998a).

To implement (5.7) we must also estimate αg. We model g1 through g4 by linear models:

where XX(L ̄t−1) is a summary vector of past information and estimate αg = {αg0, αg1} by solving
(5.6). Note that we assume that the gt are functionally independent of the past assigned home
visiting levels (Āt). It is easy to check that this assumption plus the linearity of gt imply that
the parameterizations of g1,…, gK will be consistent with one another. In this example the
assumption that the gt are functionally independent of the past assigned home visiting levels
is plausible. Preliminary analyses (not shown) found that given past measures of L, both the
most recent assigned home visiting levels and the average level of past home visiting were not
predictive in the gt’s. This may not be surprising since the composition of children with a high
past level of home visiting is strongly skewed toward children with higher severity whereas
the composition of the children with a lower past level of home visiting is skewed toward
children with low severity. Indeed if home visiting is effective, one could expect that within
levels of past L, higher severity children will be similar to lower severity children after both
groups receive their respective treatments. The estimates of αg are given in Table 3.

For each response, we model the mean response to the treatment regime, p̄4 by

where treatment is an indicator with the value one for the intervention children and when grade3
teacher rating of school behavior problems is the response, grade 1 teacher rating of school
behavior problems SBP1 is included in the regression. When the teacher rating of behavior
change over the course of grade 3 is the response, SBP1 is not included. See Table 4, h = 1,
for estimates of β2. As a comparison we include the results of an “intent to treat” analysis (ITT),
this is a simple linear regression of the response on treatment (and possibly pretreatment
covariates). The ITT analysis does not adjust for the level of staff deviance from the rules of
the treatment regime. In contrast the analysis of the dynamic treatment regime yields an
estimate of the mean treatment effect in the setting in which staff follow the treatment regime
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rules in assigning home visiting. In Table 4a, we see that for the response, school behavior
problems, both, the ITT treatment effect and the treatment effect for the treatment regime (h
= 1) are highly significant. But the estimated treatment effect in the scenario in which the staff
follow the rules is nearly twice as large as the ITT treatment effect. Recall that (see Table 2)
in addition to the home visiting process measure, past treatment recommendation, site and
cohort were predictive of the treatment recommendation probabilities (π̄4) in the observational
data. The dynamic regime d̄4 forces uniformity across past treatment recommendation, site and
cohort in making present treatment recommendations. It is unclear whether the increased
treatment effect is due to this forced uniformity and/or due to using the home visiting measure
only as prescribed by the regime rule. This is discussed further below. In contrast, in Table 4b,
we see that while there is a significant ITT treatment effect on behavior change, there is no
treatment effect for the treatment regime (h = 1). In this case it appears that staff judgment in
deviating from the rules has enhanced the treatment effect. Similarly to before it is unclear
whether the decreased treatment effect is due to forced uniformity across site and cohort in
assigning treatment and/or due to ignoring past level of assigned treatment in making future
recommendations and/or due to using the home visiting measure only as prescribed by the
regime rule.

Recall that 98 of the 202 intervention children have Wp̄4 = 0. These children’s responses enter
(5.7) only through the estimated gt’s. In order to better utilize these responses and also obtain
a better understanding of the reasons for the difference in treatment effects between the regime
and the ITT analyses, we examine a small variety of random dynamic treatment regimes,
denoted by p̄4,h, h ∈ {0, .2, .4,…, 1}. pt,h(a|st−1) will be the probability of recommending home
visiting level a at time t when the home visiting measure is equal to st−1. For each t ∈ {1, 2,
3, 4}, set pt,h equal to a mixture of the indicator, I{a = dt(st−1)} and qt(a|st−1);

where qt is a conditional probability mass function for treatment selection given severity,
st−1. We choose qt to approximate the observational distribution of treatment recommendation
at time t given only the home visiting process measure. All of these random dynamic regimes
do not allow site, cohort and past home visiting recommendations to influence present home
visiting recommendation. Note that h = 1 corresponds to originally planned treatment regime.
The random dynamic treatment regime, {p1,h, p2,h, p3,h, p4,h} corresponds to drawing a
Bernoulli random variable with success probability equal to h at each time t; if the Bernoulli
outcome is one then set At equal to dt(St−1), otherwise draw At from the probability mass
function, qt(a|St−1;γ).

Of course, the observational distribution of treatment recommendations given only the home
visiting process measure is unknown and must be approximated. We estimate this
approximation. To construct qt, t = 1, 2, 3, 4, at each time we fit, via maximum likelihood, the
following proportional odds model to the data:

where γ = {γt01, γt02 γt1, γt2, t = 1, 2, 3, 4}. The estimated values of γ are given in Table 5. We
use qt(·|St−1; γ̂) to form the pt,h (·|St−1; γ̂) when h < 1.

Note that because the proportional odds model, qt is not a saturated model, the models for the
qt and πt will not be consistent with one another. However we only view qt as an approximation
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to the observational distribution of treatment recommendation given severity. Also note that
the pt,h (·|St−1; γ̂) are used to form the numerator of the weights and as before the πt(·|L ̄t−1,
Āt−1; α̂w) are used to form the denominator of the weights. For each value of h and each of the
two responses, we use (5.6) to construct estimators of αg, but for h < 1, pt is replaced by pt,h
(·|St−1; γ̂). The estimates of γ are omitted. The model for the mean treatment response is as
before; Table 4 contains the results. The formula for the estimated standard errors changes
since the numerator of the weights is now estimated. See the appendix for the appropriate
formula. Consider the results for h = 0 in Table 4. These results are essentially equivalent to
the ITT results. Recall that for h = 0, the dynamic treatment regime corresponds to drawing
At from the probability mass function, qt (a|St−1; γ). Thus even though there was systematic
variation from the treatment assignment rule, systematic variation that can be accounted for
by past home visiting recommendation and site and cohort differences, this systematic variation
does not appear to alter the mean response. Rather we see that as the random dynamic treatment
regime approaches (h approaches 1) the original dynamic treatment regime, the mean effect
changes. This indicates that the change in mean effect from the ITT analysis to the original
dynamic treatment regime analysis is due to only using the home visiting measure as prescribed
by the regime rule.

Clearly a more complete analysis of the Fast Track data is needed to investigate these
substantive issues. As stated previously, the two responses were chosen specifically to illustrate
the diversity of thought-provoking results that can be obtained by these types of analyses.
Certainly one should give careful thought to which responses are of primary interest; variations
in the dynamic treatment regime may differentially impact different responses.

7. DISCUSSION
This methodology provides a way to evaluate the effects of dynamic treatment regimes using
observational data. It should be extended in a variety of ways. First the interpretation of the
results depends heavily on the assumption of sequential randomization. It is difficult to believe
that this assumption really holds in the observational setting. Thus an extension of the
sensitivity analyses of Robins et al. (1999a) and Scharfstein et al. (1999) to this setting is
needed. A second needed extension is to allow for missing severity measures. There are two
ways to allow for missing severity measures. First, if one can expect severity measures to be
occasionally missing in practice, then it makes sense to extend the dynamic regime rules to
include rules for assignment when severity is missing. On the other hand if one wishes to make
inference for a rule that does not allow for missing severity measures, yet one’s observational
data includes individuals with missing severity measures then the methodology provided here
must be adapted. One possibility is by weighting as described in Hernán et al. (1998). A. third
extension would be to grouped data. Many intervention/prevention studies take place in a
school based setting and thus grouped data dominates. Lastly more systematic work is needed
on how to formulate/evaluate dynamic treatment rules, and in particular the evaluation and
detection of which posttreatment conditions (such as the development of side effects or the
occurrence of family crises) may negate or enhance the effect of treatment.
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APPENDIX
Throughout we assume (5.1). Denote the true value of β by β0. In the following it is useful to
note two alternate ways to rewrite (5.3). The first emphasizes the correct specification of π̄K:
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(8.1)

Note that if π̄K is correctly specified then the second term above has mean zero even if the
gt’s are incorrectly specified and/or β ≠ β0. The second way to rewrite (5.3) emphasizes the
correct estimation of the gt’s:

(8.2)

Note that if the gt’s are correctly specified then the first two terms have expectation zero even
if π̄K is incorrectly specified and/or β ≠ β0.

Lemma 8.1
Formula (5.3) is orthogonal to, or equivalently, uncorrelated with the score functions for the
treatment assignment probabilities, π̄K, thus (5.3) is Wp̄K (ĀK, L ̄K)μ ̇(β, Z) (Y −μ(β, Z)) minus
its projection on the score functions for the treatment assignment probabilities.

Proof
First note that all score functions for the π̄K belong to the linear span of

for each possible treatment level, a and t ∈ {1,…, K} and for Ut(Āt−1, L ̄t−1) for t ∈ {1,…,K}
arbitrary bounded functions. Thus we need only show that (5.3) or equivalently (8.1) is
orthogonal to each of these functions. Note that Bj(a,Āj, L ̄j−1) is orthogonal to the terms with
t ≠ j in the sum in (8.1). The covariance between Bj(a, Āj, Lj−1) and (8.1) is thus

(8.3)

(8.4)

Since given Āj−1, L ̄j−1, Bj (a,Āj, L ̄j−1) has mean zero, the second term (8.4) reduces to
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But this is the negative of the first term (8.3) (repeatedly take conditional expectations and use
(5.1)).

Lemma 8.2
If the parameterization of μ(β, Z) is saturated and g1, …,gK are nonparametric then (5.3) is
the efficient influence function for β.

Proof
Because of the factorization, (5.2) of the likelihood and the fact that the functional μ(β, Z) does

not depend on the factor , the efficient influence function is the same in
the model for which π̄K is completely unknown as in the model where π̄K is a known function
up to a parameter, αw (Robins et al., 1994; Robins and Ritov, 1997). However when μ(β, Z) is
saturated, the model with π̄K completely unknown is a nonparametric model for the observed
data. Bickel et al. (1993) show that there is only one influence function for any nonparametric
model, which therefore must necessarily be the efficient influence function. Thus if we find
an influence function of the model in which π̄K completely unknown, this will be the efficient
influence function for this nonparametric model and also be the efficient influence function
for the model in which π̄K is parameterized. Now when π̄K is completely known, U(X,β,p̄K) =
Wp̄K (ĀK, L ̄K)μ ̇(β, Z)(Y − μ(β, Z)) is an unbiased estimating function for β regardless of the
distribution of Y − μ. It follows that U(X,β) minus its projection on all scores for π̄K (as given
in (5.3)) is orthogonal to the nuisance tangent space for the nonparametric models. Furthermore
(5.3) is an influence function (the expectation of its derivative with respect to β is −1). Thus
(5.3) is the efficient influence function when π̄K is parameterized.

Assume:

1. There exists a finite vector  such that  where ℙnSw(X;αw) is the
derivative with respect to αw of (5.5) and there exists a finite vector,  such that

 where ℙnSg(X;αg) is given in (5.6). μ(β0, Z) is equal to (4.4); that
is, the parameterization of (4.4) in terms of β is correct. If π̄K is correctly parameterized
then put , the true parameter in the observational distribution. Similarly if
{g1,…,gK} are correctly parameterized then , the true parameter in the
observational distribution.

2. Let Θ be neighborhood of . The class of functions

is a Glivenko-Cantelli class. (For vector V, V⊗2 = VVT.)
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3.
Assume that  is invertible at  is
invertible at  and assume that B = Eobsμ ̇(β0, Z) μ ̇(β0, Z)T is invertible.

Lemma 8.3
Suppose that either π̄K or the gt’s are correctly parameterized. Assuming 1) through 3), there
exists a sequence of β̂ solutions to (5.7) for which  converges in distribution to a
multivariate normal with mean zero and var-covariance matrix, B−1ΣB−1 where

where  and .
Furthermore B̂−1Σ ̂B̂−1 is a consistent estimator of B−1ΣB−1.

Proof
Suppose that . Then as noted in the discussion concerning (8.1) we have that

This is zero since μ(β0, Z) is equal to (4.4). Alternately suppose that . Then as noted in
the discussion concerning (8.2) we have that

As before this is zero since μ(β0, Z) is equal to (4.4) (recall that (4.4) can be written as in (5.8)).

Proofs that there exists a consistent sequence of solutions,  and a

consistent sequence of solutions,  are very similar and use
assumptions 1), 2) and 3) along with lemma 2 of Aitchison and Silvey (1958). Next using
existence of consistent α̂w and α̂g and again using Aitchison and Silvey’s lemma 2 along with

assumptions 1),2), 3) and 5) one can show there exist a consistence solution, . These
proofs are omitted.

To prove asymptotic normality use Taylor series arguments, along with the Glivenko-Cantelli
property in 2) and the invertibility in 3), to deduce that

and that
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Next a Taylor series yields,

Note from the previous discussion, the first term in the above expansion has mean zero. Next
apply the Gliveriko-Cantelli property in 2), along with the invertibility in 3) to yield,

To show that B̂−1 Σ ̂B̂−1 converges in probability to B−1 ΣB−1, we may use the asymptotic
normality result along with 2) and 3).

Given a parametrization of p̄K in terms of the parameter, γ, define

Define

and

And define,

Define
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where , and

. Similarly let Σ̂* = ℙnÛ(X)⊗2 where

and , and

.

(1′) There exists a finite vector  such that  and there exists a finite
vector,  such that . There exists a finite vector γ* such that
Pobs(Snum(X;γ*)) = 0 and also a finite vector  for which 

Suppose there exists a finite vector,  such that . If π̄K is
correctly parameterized then put , the true parameter in the observational
distribution. Similarly if {g1,…,gK} are correctly parameterized then , the true
parameter in the observational distribution.

The parameter αw is estimated as before. Calculate γ̂ by solving 0 = ℙnSnum (X;γ). Calculate
α̂g by solving 0 = ℙnSg(X;γ̂,αg). Lastly estimate β* by solving 0 = ℙnSβ(X;α̂w,α̂g,γ̂,β) for β̂.

(2′) Let Θ be neighborhood of . The class of functions

is a Glivenko-Cantelli class. (For vector V, V⊗2 = VVT.)
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(3′)
Assume that  is invertible at  is

invertible at  is invertible at γ = γ* and assume that
 is invertible.

Lemma 8.4
Suppose that either π̄K or the gt’s are correctly parameterized. Assuming 1′) through 3′), there
exists a sequence of β̂ solutions to (5.7) for which  converges in distribution to a
multivariate normal with mean zero and var-covariance matrix, B−1Σ* B−1 where Σ* = Eobs
(U(X)⊗2.

Furthermore B̂−1Σ ̂*B̂−1 is a consistent estimator of B−1Σ*B−1.

Proof
The proof is similar to that of the previous lemma and is omitted.
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Table 1

Variables used in Example

Variable Collected During

Suspected Abuse1 Kindergarten

Race1 Kindergarten

School Behavior Problems1 End of Grade 1

School Behavior Problems2 End of Grade 3

School Behavior Change2 End of Grade 3

Home Visiting Process Measure3 End of Every Semester

Home Visiting Assignment4 Beginning of Every Semester

Academic Performance1 End of Grades 1 and 2

Social Skills1 Average for Grades 1 and 2

Site (4 Sites)1 Kindergarten

Cohort (2 Cohorts)1 Kindergarten

1
Auxiliary Covariates (V0 or Vt).

2
Response (Y).

3
Severity (St).

4
Treatment Level (At).
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Table 2

Table 2a: Model for Home Visiting Assignment Probabilities

Fall Grade 2

Covariate Estimate Stderr

Intercept 1 −1.45 0.36

Intercept 2 1.40 0.35

Cohort 1 −0.58 0.29

Site 1 −0.58 0.42

Site 2 −0.24 0.43

Site 3 0.42 0.36

HVPM161 2.22 0.75

HVPM41 −2.58 0.31

Table 2b: Model for Home Visiting Assignment Probabilities

Spring Grade 2

Covariate Estimate Stderr

Intercept 1 −2.61 0.47

Intercept 2 1.10 0.40

Cohort 1 −0.51 0.33

Site 1 1.64 0.49

Site 2 0.01 0.56

Site 3 1.76 0.45

HVPM161 3.04 0.96

HVPM41 −2.36 0.38

Past High Home
Visiting Assignment2 2.18 .60

Past Low Home
Visiting Assignment2 −1.55 0.39

Table 2c: Model for Home Visiting Assignment Probabilities

Fall Grade 3

Covariate Estimate Stderr

Intercept 1 −3.19 0.69

Intercept 2 3.00 0.60

Cohort 1 −0.58 0.38

Site 1 −1.26 0.55

Site 2 −0.75 0.62
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Table 2c: Model for Home Visiting Assignment Probabilities

Fall Grade 3

Covariate Estimate Stderr

Site 3 1.23 0.48

HVPM161 0.19 1.08

HVPM41 −3.65 0.68

Past High Home
Visiting Assignment2 2.98 .68

Past Low Home
Visiting Assignment2 −1.31 0.41

Table 2d: Model for Home Visiting Assignment Probabilities

Spring Grade 3

Covariate Estimate Stderr

Intercept 1 −3.95 1.09

Intercept 2 3.35 0.61

Cohort 1 −0.89 0.43

Site 1 −0.82 0.55

Site 2 −0.56 0.63

Site 3 1.18 0.54

HVPM161 4.67 1.61

HVPM41 −2.75 0.47

Past High Home
Visiting Assignment2 5.94 1.61

Past Low Home
Visiting Assignment2 −2.53 0.43

1
HVPM16 is 1 only if the home visiting process measure is ≤ 8; otherwise it is zero. HVPM4 is 1 only if the home visiting process measure is ≥ 17;

otherwise it is zero.

1
HVPM16 is 1 only if the home visiting process measure is ≤ 8; otherwise it is zero. HVPM4 is 1 only if the home visiting process measure is ≥ 17;

otherwise it is 0.

2
Past High Home Visiting Assignment if 1 if home visiting assignment in fall of 2nd Grade is 16; otherwise it is 0. Past Low Home Visiting Assignment

is 1 if home visiting assignment in fall of 2nd grade is 4; otherwise it is 0.

1
HVPM16 is 1 only if the home visiting process measure is ≤ 8; otherwise it is zero. HVPM4 is 1 only if the home visiting process measure is ≥ 17;

otherwise it is 0.

2
Past High Home Visiting Assignment if 1 if home visiting assignment in spring of 2nd Grade is 16; otherwise it is 0. Past Low Home Visiting

Assignment is 1 if home visiting assignment in spring of 2nd grade is 4; otherwise it is 0.

1
HVPM16 is 1 only if the home visiting process measure is ≤ 8; otherwise it is zero. HVPM4 is 1 only if the home visiting process measure is ≥ 17;

otherwise it is 0.

2
Past High Home Visiting Assignment if 1 if home visiting assignment in fall of 3rd Grade is 16; otherwise it is 0. Past Low Home Visiting Assignment

is 1 if home visiting assignment in fall of 3rd grade is 4; otherwise it is 0.

J Am Stat Assoc. Author manuscript; available in PMC 2009 December 16.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Murphy et al. Page 26

Table 3

Table 3a: Model for g1 through g4

School Behavior Problems

Covariate Estimate1 Stderr

Intercept 0.30 0.21

Cohort 1 −0.28 0.10

Site 1 0.43 0.14

Site 2 0.48 0.15

Site 3 0.45 0.12

Suspected Abuse 0.20 0.06

School Behavior
Problems-Grade 1 0.26 0.06

Most Recent Academic
Performance Score 0.09 0.03

Most Recent Social
Skills Score 0.16 0.05

Table 3b: Model for g1 through g4

School Behavior Change

Covariate Estimate1 Stderr

Intercept −0.93 0.34

Site 1 −0.62 0.19

Site 2 −0.44 0.18

Site 3 −0.15 0.19

Suspected Abuse −0.06 0.10

School Behavior
Problems-Grade 1 0.18 0.10

Most Recent Academic
Performance Score 0.05 0.03

Most Recent Social
Skills Score −0.15 0.07

1
All variables are coded so that high values indicate poorer functioning.

1
All variables are coded so that high values indicate poorer functioning.
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Table 4

Table 4a: Estimated Treatment Effect on School Behavior Problems1

h Estimated Treatment Effect2 Stderr

ITT3 −0.23 0.07

0 −0.21 0.08

.2 −0.24 0.08

.4 −0.28 0.08

.6 −0.31 0.08

.8 −0.35 0.08

1 −0.40 0.09

Table 4b: Estimated Treatment Effect on School Behavior Change1

h Estimated Treatment Effect2 Stderr

ITT3 −0.33 0.09

0 −0.39 0.10

.2 −0.38 0.10

.4 −0.36 0.10

.6 −0.32 0.10

.8 −0.27 0.11

1 −0.19 0.13

1
The estimated intercepts and the regression coefficients of grade 1 school behavior problems score are omitted.

2
High Values on the school behavior problems response indicate behavior problems at school.

3
Results of a simple linear regression of response on treatment and grade 1 social health profile; all weights are equal to 1.

1
The estimated intercepts are omitted.

2
Low Values on the School Behavior Change indicate improvement across the year in social and emotional adjustment.

3
Results of a simple linear regression of response on treatment; all weights are equal to 1.
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Table 5

Table 5a: Model for Numerator of the Weights

Fall Grade 2 Spring Grade 2

Covariate Estimate Stderr* Estimate Stderr1

Intercept 1 −1.69 0.23 −1.55 0.25

Intercept 2 1.06 0.20 1.27 0.24

HVPM162 2.43 1.03 2.67 0.82

HVPM42 −2.61 0.34 −2.69 0.34

Table 5b: Model for Numerator of the Weights

Fall Grade 3 Spring Grade 3

Covariate Estimate Stderr* Estimate Stderr*

Intercept 1 −2.57 0.42 −2.87 0.45

Intercept 2 1.71 0.32 1.28 0.26

HVPM16** 1.95 1.22 3.79 0.93

HVPM4** −3.00 0.36 −2.43 0.34

1
This model is used to approximate the distribution of treatment assignment given the home visiting process measure, thus robust standard errors are

provided.

2
HVPM16 is 1 only if the home visiting process measure is ≤ 8; otherwise it is zero. HVPM4 is 1 only if the home visiting process measure is ≥ 17;

otherwise it is zero.

*
This model is used to approximate the distribution of treatment assignment given the home visiting process measure, thus robust standard errors are

provided.

**
HVPM16 is 1 only if the home visiting process measure is ≤ 8; otherwise it is zero. HVPM4 is 1 only if the home visiting process measure is ≥ 17;

otherwise it is zero.
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