Structural similarity of bovine lung prostaglandin F synthase to lens ε -crystallin of the European common frog

(recombinant DNA/DNA sequence/liver aldehyde reductase/lactate dehydrogenase)

Kikuko Watanabe*, Yutaka Fujii*, Kazuhisa Nakayama[†], Hiroaki Ohkubo[†], Seiki Kuramitsu[‡], Hiroyuki Kagamiyama[‡], Shigetada Nakanishi[†], and Osamu Hayaishi^{*§}

*Hayaishi Bioinformation Transfer Project, Kyoto Laboratory, Research Development Corporation of Japan, Nishioji-Hachijo, Minami-ku, Kyoto 601, Japan; †Institute for Immunology, Kyoto University Faculty of Medicine, Kyoto 606, Japan; and [‡]Department of Medical Chemistry, Osaka Medical College, Takatsuki 569, Japan

Contributed by Osamu Hayaishi, September 8, 1987

ABSTRACT Cloned cDNA sequences specific for prostaglandin F (PGF) synthase have been isolated from a cDNA library of bovine lung mRNA sequences. Nucleotide-sequence analyses of cloned cDNA inserts have revealed that PGF synthase consists of a 969-base pair open reading frame coding for a 323-amino acid polypeptide with a M_r of 36,666. The sequence analysis indicates that bovine lung PGF synthase shows 62% identical plus conservative substitutions compared with human liver aldehyde reductase [Wermuth, B., Omar, A., Forster, A., Francesco, C., Wolf, M., Wartburg, J. P., Bullock, B. & Gabbay, K. H. (1987) in Enzymology and Molecular Biology of Carbonyl Metabolism: Aldehyde Dehydrogenase, Aldo-Keto Reductase, and Alcohol Dehydrogenase, eds. Weiner, H. & Flynn, T. G. (Liss, New York), pp. 297-307], which is similar to PGF synthase in molecular weight and substrate specificity. However, comparison of the amino acid sequence of PGF synthase with the National Biomedical Research Foundation protein data base reveals that the sequences of 225 amino acids from C termini of ε -crystallin of the European common frog (Rana temporaria) [Tomarev, S. I., Zinovieva, R. D., Dolgilevich, S. M., Luchin, S. V., Krayev, A. S., Skryabin, K. G. & Gause, G. G. (1984) FEBS Lett. 171, 297-302] and of PGF synthase show 77% identical and conservative substitutions without deletions/additions. The result suggests that European common frog lens ε -crystallin is identical to bovine lung PGF synthase.

In 1981 we found an enzyme that catalyzed the reduction of prostaglandin D₂ (PGD₂) to prostaglandin F₂ (PGF₂) in rat lung (1), and we purified the enzyme prostaglandin F (PGF) synthase from bovine lung to apparent homogeneity (2). The purified enzyme was a monomeric protein with a M_r of 30,500; the enzyme showed a broad substrate specificity and reduced not only PGD₂, but also PGH₂ and other carbonyl compounds. The enzyme catalyzed the reduction of PGH₂ to PGF_{2a} and that of PGD₂ to (5Z,13E)-(15S)-9a,11β,15trihydroxyprosta-5,13-dien-l-oic acid (9a,11β-PGF₂), which is a stereoisomer of PGF_{2a} (3), at different active sites on the same molecule (2, 4, 5). As an initial step to study the primary structure and molecular mechanism of the enzyme, we isolated a cDNA sequence encoding PGF synthase.

We now report the cDNA sequence encoding the entire bovine lung PGF synthase[¶] and the deduced 323-amino acid sequence. The amino acid sequences of PGF synthase and human liver aldehyde reductase (alcohol: NADP⁺ oxidoreductase, EC 1.1.1.2) (6) show 39% identical and 23% conservative substitutions. However, by comparison of the amino acid sequence of PGF synthase with the National Biomedical Research Foundation protein data base, sequences of PGF synthase and European common frog (*Rana temporaria*) lens ε -crystallin show 58% identical and 19% conservative substitutions.

MATERIALS AND METHODS

Peptide Purification and Sequencing. S-carboxymethylation of PGF synthase was done as described (7). A portion of the carboxymethylated preparation was further citraconylated by the method of Habeeb and Atassi (8). Tryptic digestion of the chemically modified preparations of PGF synthase was done in 50 mM Tris·HCl, pH 8.5, with 5% (wt/wt) trypsin at 37°C for 24 hr. Peptides were purified by HPLC on a Cosmosil 5- μ m C₁₈ column (0.46 × 15 cm, Nakarai Chemical, Kyoto, Japan). Chromatography was done using a linear gradient of 0–60% acetonitrile in 0.1% trifluoroacetic acid at 40°C with a flow rate of 1 ml/min for 8 hr. Absorbance was recorded at 210 nm. The obtained peptides were further characterized by amino acid analysis (9) and by automated Edman degradation with an Applied Biosystems (Foster City, CA) gas-phase sequencer.

Cloning Procedures. Total RNA was extracted from a bovine lung as described (10), and poly(A)-containing RNA was isolated by subjecting the total RNA extracted to oligo(dT)-cellulose chromatography (11). A cDNA library was constructed by the method of Watson and Jackson (12). *Escherichia coli* MC 1061 or HB 101 was used for transformation as described (13), and ampicillin-resistant transformants were screened at 42°C with a mixture of 16 synthetic oligonucleotides I (Fig. 1) and at 38°C with a mixture of 16 synthetic oligonucleotides II (Fig. 1), described in *Results*. Further details of the cloning procedures have been described (14). All cloning procedures were conducted in accordance with the guidelines for research involving recombinant DNA molecules issued by the Ministry of Education, Science and Culture of Japan.

Analytical Procedures. Restriction endonucleases were obtained from Takara Shuzo (Kyoto, Japan), New England Biolabs, and Bethesda Research Laboratories and were used under the conditions described by the suppliers. 5'-End-labeling of a mixture of oligonucleotides and restriction fragments was done as described (15). DNA fragment was labeled by the method of Feinberg and Vogelstein with the use of $[\alpha^{-32}P]dCTP$ (16). DNA sequence analysis was done by

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "*advertisement*" in accordance with 18 U.S.C. \$1734 solely to indicate this fact.

Abbreviations: PG, prostaglandin; 9α ,11 β -PGF₂ (11-epi-PGF_{2 α}), (5Z,13E)-(15S)- 9α ,11 β ,15-trihydroxyprosta-5,13-dien-l-oic acid; PGF synthase, prostaglandin F synthase; nt, nucleotide.

[§]To whom reprint requests should be addressed at: Osaka Medical College, 2-7 Daigakumachi, Takatsuki 569, Japan.

[¶]The sequence reported in this paper is being deposited in the EMBL/GenBank data base (Bolt, Beranek, and Newman Laboratories, Cambridge, MA, and Eur. Mol. Biol. Lab., Heidelberg) (accession no. J03570).

Amino	acid sequence	I	Lys	Glu	Asn	Met	Gln \	/al
	mRNA		5'-AAG	gag	aau	AUG	ca _g a (U GUA-3' G
	Oligonucleotide	I	3'-TT ^T C	ст <mark>т</mark>	тт _g	TAC	GT _C	CA -5'
Amino	acid sequence	II	Pro	Glu	Asp	Met	Lys	
	mRNA		U 5'-cc _A G	gag	ga <mark>u</mark>	AUG	aag-3	ı
	Oligonucleotide	II	A 3'-GG ^G C	ст <mark>т</mark>	ст <mark>А</mark>	TAC	TT -5	ı

FIG. 1. Two synthetic oligonucleotides. As hybridization probes, two mixtures of oligonucleotides were synthesized according to the cDNA sequences predicted from hexapeptide I and pentapeptide II sequences (excluding the third nucleotide residue of the sixth valine codon and that of the fifth lysine codon, respectively) present in PGF synthase.

the procedure of Maxam and Gilbert (17) and the method of Messing (18), according to the strategy indicated in Fig. 2. RNA blot hybridization analysis was done according to the procedure of Alwine *et al.* (19); poly(A)-containing RNA isolated from bovine lung was denatured with 1 M glyoxal/50% dimethyl sulfoxide (20), electrophoresed on a 1.5% agarose gel, and transferred to a nylon membrane. The hybridization probe was labeled by the method described above.

Sequence Comparison. The amino acid sequence deduced from the cDNA sequence was subjected to the National Biomedical Research Foundation protein data base.^{II} For sequence comparison, conservative substitutions were defined as pairs of residues belonging to one of the following groups: serine, threonine, proline, alanine, and glycine; asparagine, aspartic acid, glutamic acid, and glutamine; histidine, arginine, and lysine; methionine, isoleucine, leucine, and valine; phenylalanine, tyrosine, and tryptophan (21). The degree of sequence identity described in the text was determined by counting a continuous stretch of gaps as one substitution regardless of its length.

Protein Identification Resource (1987) Protein Sequence Database (Natl. Biomed. Res. Found., Washington, DC), Release 12.

RESULTS

Partial Amino Acid Sequence. To design an oligonucleotide suitable for screening a PGF synthase-specific cDNA library, tryptic peptides were prepared from carboxymethylated PGF synthase. Purified fractions isolated by HPLC were subjected to sequence analysis. From the tryptic octadecapeptide $1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ 13$ Ile Lys-Glu-Asn-Met-Gln-Val-Phe-Asp-Phe-Glu-Leu-Thr- $14 \ 15 \ 16 \ 17 \ 18$ Pro-Glu-Asp-Met-Lys, 17-mer oligonucleotides (Fig. 1 I) coding for amino acid residues 2–7 and 14-mer oligonucleotides (Fig. 1 II) coding for amino acid residues 14–18 in the peptide were deduced.

We also analyzed the amino acid sequence of the Nterminal portion of the PGF synthase. However, several cycles of automated Edman degradation released no amino acid at any step, indicating that the N terminus was blocked. Among the purified tryptic peptides, a tripeptide with an amino acid composition of aspartic acid, proline, and lysine was resistant to Edman degradation. Therefore, this peptide must be from the N-terminal portion of the protein. Lysine was likely to be the C-terminal residue of the peptide as judged by trypsin specificity. To determine the sequence of aspartic acid and proline, we treated the peptide with 70% formic acid at room temperature for 2 days because the Asp-Pro bond is known to be cleaved by the acid treatment, and the Pro-Asp bond is not cleaved (22). Two steps of Edman degradation of acid-treated peptide yielded proline in step 1 followed by lysine in step 2. These results indicate the N-terminal sequence of Asp-Pro-Lys, in which the Nterminal aspartic acid is masked.

Isolation of cDNA Clones. Our approach for isolating the cloned cDNA sequences specific for PGF synthase was to screen a library of cDNA clones by hybridization with two mixtures of oligonucleotides complementary to all possible coding sequences for two portions of the amino acid sequence of the protein, as shown in Fig. 1. One hybridizationpositive clone, which hybridized with both oligonucleotide probes, was isolated from about 40,000 transformants. This clone, pPF13, was subjected to nucleotide-sequence analysis and found to contain cDNA sequence corresponding to four tryptic peptides (amino acid residues 217-236, 259-263, 277-294, and 311-323) (Fig. 3). Because clone pPF13 did not encode the N-terminal amino acid sequence of Asp-Pro-Lys of the enzyme determined above, we constructed the cDNA library using the mixture of oligonucleotides I (Fig. 1 I, and Fig. 2) described above as a primer. As hybridization probe, we used the complete cDNA insert of pPF13. Five hybridization-positive clones were isolated from about 80,000

FIG. 2. Sequence strategy for cDNA. The map displays only the relevant restriction endonuclease sites, which are identified by numbers indicating the 5'-terminal nucleotide generated by cleavage (for nucleotide numbers, see Fig. 3). Sequence corresponding to the coding region is indicated by the open box. Sequences of synthetic oligonucleotides used for specific primer of reverse transcription are indicated by small solid boxes directly beneath the restriction map. Direction and extent of the sequence determinations are shown by horizontal arrows.

20

13

5'CAA	ACA -1	Met AUG 1	<u>Asp</u> GAU	<u>Pro</u> CCC	<u>Lys</u> AAA	Ser AGU	G1n CAG	Arg AGG 20	Val GUG	<u>Lys</u> AAG	Leu CUU	<u>Asn</u> AAU	Asp GAU	<u>Gly</u> GGC	His CAC 40	Phe UUC	<u>Ile</u> AUU	<u>Pro</u> CCU	Val GUC	<u>Leu</u> CUG	<u>G1y</u> GGA 60	Phe UUU	<u>G1y</u> GGA	<u>Thr</u> ACC	<u>Tyr</u> UAU	<u>Ala</u> GCA	P <u>ro</u> CCU	GIU GAG 80
<u>Glu Val</u> GAG GUU	30 Pro CCU	<u>Lys</u> AAG	<u>Ser</u> AGU	<u>Glu</u> GAA	<u>Ala</u> GCC	<u>Leu</u> CUG	Glu GAG	Ala GCC	Thr ACC	Lys AAA	40 Phe UUU 120	Ala GCU	Ile AUA	Glu GAG	Val GUU	G1y GGG	Phe UUC	Arg CGC 140	<u>His</u> CAU	Y <u>al</u> GUG	50 <u>Asp</u> GAC	<u>Ser</u> AGU	<u>Ala</u> GCU	<u>His</u> CAU 1	Leu UUG .60	<u>Tyr</u> UAU	<u>Gln</u> CAA	<u>Asn</u> AAU
<u>Glu Glu</u> GAG GAG	60 <u>G1n</u> CAG 180	<u>Val</u> GUU	<u>Gly</u> GGC	<u>Gln</u> CAG	Ala GCC	<u>Ile</u> AUU	<u>Arq</u> CGA	<u>Ser</u> AGC 200	<u>Lys</u> AAG	<u>Ile</u> AUU	70 <u>Ala</u> GCA	<u>Asp</u> GAU	<u>G1y</u> GGC	<u>Thr</u> ACU	<u>Va1</u> GUG 220	<u>Lys</u> AAG	<u>Arq</u> AGA	Glu GAA	Asp GAC	Ile AUA	80 Phe UUC 240	Tyr UAC	Thr ACU	Ser UCA	Lys AAG	Leu CUU	Trp UGG	Cys UGC 260
Asn Ser AAU UCC	90 Leu CUU	Gln CAA	Pro CCA	Glu GAG	Leu UUG 280	Val GUC	Arg CGA	Pro CCA	Ala GCC	Leu UUG	100 Glu GAA 300	Lys AAG	Ser UCA	Leu UUG	Gln CAA	Asn AAU	Leu CUU	Gln CAA 320	Leu CUG	Asp GAC	110 Tyr UAU	Val GUC	Asp GAU	Leu CUC	Tyr UAU 340	Ile AUU	Ile AUU	His CAU
Ser Pro UCU CCA	120 Val GUG 36	Ser UCU D	Leu CUG	Lys AAG	Pro CCA	Gly GGG	Asn AAU	Lys AAA 380	Phe UUU	Val GUU	130 Pro CCA	Lys AAA	Asp GAU	Glu GAA	Ser AGU 400	G1y GGA	Lys AAA	<u>Leu</u> CUG	<u>Ile</u> AUA	<u>Phe</u> UUU	140 <u>Asp</u> GAC 420	<u>Ser</u> UCG	<u>Val</u> GUG	Asp GAU	Leu CUC	<u>Cys</u> UGU	<u>His</u> CAC	<u>Thr</u> ACG 440
<u>Trp Glu</u> UGG GAG	150 <u>Ala</u> GCC	Leu CUG	<u>G1u</u> GAG	<u>Lys</u> AAG	Cys UGU 460	Lys AAG	Asp GAC	Ala GCA	Gly GGG	Leu CUG	160 Thr ACC 480	Lys AAG	Ser UCC	Ile AUU	GLy GGG	Val GUG	Ser UCC	Asn AAC 500	Phe UUC	Asn AAC	170 His CAC	Lys AAG	Gln CAG	Leu CUG	G1u GAG 520	Lys AAG	Ile AUC	Leu CUG
Asn Lys AAC AAG	180 Pro CCG 54	Gly GGG 0	Leu CUC	Lys AAG	Tyr UAC	Lys AAG	Pro CCC	Val GUC 560	Cys UGC	Asn AAC	190 Gln CAG	Val GUG	Glu GAA	Cys UGU	His CAC 580	Pro CCU	Tyr UAC	Leu CUC	Asn AAC	Gln CAG	200 Ser AGC 60	Lys AAA 0	Leu CUG	Leu UUA	Glu GAG	Phe UUC	Cys UGC	Lys AAG 620
Ser His UCA CAU	210 Asp GAU	Ile AUU	Val GUC	Leu CUA	Va1 GUU 640	Ala GCU	Tyr UAU	<u>Ala</u> GCU	<u>Ala</u> GCU	Leu CUG	220 <u>G1y</u> GGA 66	<u>Ala</u> GCC O	<u>Gln</u> CAA	Leu CUA	Leu UUG	Ser UCA	<u>G1u</u> GAA	Trp UGG 680	Val GUG	Asn AAC	230 <u>Ser</u> UCA	Asn AAC	Asn AAC	Pro CCC	<u>Va1</u> GUU 700	Leu CUC	Leu UUG	Glu GAG
Asp Pro GAC CCG	240 Va1 GUU 72	Leu CUU 0	Cys UGU	Ala GCC	Ile AUU	Ala GCC	Lys AAA	Lys AAG 740	His CAC	Lys AAG	250 Gln CAA	Thr ACC	Pro CCA	Ala GCU	Leu CUG 760	Val GUU	Ala GCC	Leu CUU	Arg CGC	<u>Tyr</u> UAC	260 <u>G1n</u> CAG 78	<u>Val</u> GUA D	<u>Gln</u> CAA	<u>Arq</u> CGU	Gly GGA	Val GUU	Val GUG	Va1 GUU 800
Leu Ala CUG GCC	270 Lys AAG	Ser AGU	Phe UUC	Asn AAC	Lys AAG 820	Lys AAG	Arg AGG	<u>11e</u> AUC	<u>Lys</u> AAA	<u>Glu</u> GAG	280 <u>Asn</u> AAU 84	<u>Met</u> AUG	<u>Gln</u> CAG	<u>Val</u> GUG	Phe UUU	<u>Asp</u> GAC	Phe UUU	<u>G1u</u> GAA 860	Leu CUG	<u>Thr</u> ACU	290 <u>Pro</u> CCG	<u>Glu</u> GAA	<u>Asp</u> GAU	<u>Met</u> AUG	<u>Lys</u> AAA B80	Ala GCA	Ile AUC	Asp GAU
Gly Leu GGC CUC	300 Asn AAU 90	Arg CGU O	Asn AAU	Ile AUA	Arg AGA	Tyr UAC	Tyr UAU	Asp GAU 920	Phe UUU	Gln CAA	310 Lys AAG	<u>Gly</u> GGU	<u>Ile</u> AUU	Gly GGU	<u>His</u> CAC 940	Pro CCU	<u>Glu</u> GAG	Tyr UAC	Pro CCA	Phe UUU	320 <u>Ser</u> UCU 96	<u>Glu</u> GAA 0	<u>Glu</u> GAA	Tyr UAU	UAA	CUG	GGUG/ 9:	AGCU 80
GUCCACC	AUGG	CUUC 1	UACC	UGAA	CGUC	UGCU	UCUA 1	666CI	JACG	AAGA	GCGU	GUCU/ 1	AUACI	JUGG	UGGA	GGUG	UUUA 1	AAAG	AAGU	GCCU	GAAC	UUUU 1	5444 080	gauu	GUUU	UUCU	UUAA. 1	
UCUUUAU	GAAA	UAAC	CAAG 1120	AUUU)	CAAA	UAUG	GGUA	CUAGI 1140	JUUU	UCCU	ÁACA	AAAU	AAUU 1160	UGAA	AAAU	AAAA	GGGA	AAAG 1180	AUAG)	AAAA	UAAA	gaua.	ACUU 1200	GGUU D	AACU	UACU	U	

10

FIG. 3. Primary structure of bovine lung PGF synthase mRNA. The nucleotide sequence of mRNA was deduced from that of the cDNA inserts in clones pPF13, pPF131, and pPF41. Nucleotide residues are numbered in the 5' to 3' direction beginning with the first residue of the AUG triplet that codes for the initiation methionine. Nucleotides on the 5' side of residue 1 are indicated by negative numbers. The predicted amino acid sequence of PGF synthase is displayed above the nucleotide sequence. Underlined amino acids completely matched the amino acids of PGF synthase identified by peptide analysis of the chemically modified fractions of the enzyme as described.

transformants. Clone pPF131, which carried the largest cDNA insert of the five, was chosen for further analysis. Sequence analysis showed that pPF131 contained a poly(A) tail at the 3'-end of its insert. This result can be explained by assuming that the thymine-rich sequence of oligonucleotides I served as a primer for reverse transcriptase reactions from adenine-rich sequences in the mRNA, such as poly(A) tail. Because this clone did not contain the initiation codon ATG, we constructed the cDNA library using a synthetic oligonucleotide complementary to nucleotide residues 410-424 as a primer (Fig. 2). By using the Bgl I (residue 107)-Pvu II (residue 517) fragment from pPF131 as a hybridization probe, 84 positive clones were isolated from 50,000 transformants. Twelve of them were analyzed with several restriction endonucleases, either individually or in pairs. Clone pPF41, which carried the largest cDNA insert among them, was subjected to nucleotide-sequence analysis and was shown to contain the initiation codon ATG. The initiation methionine codon was assigned from the amino

acid sequence (Asp-Pro-Lys) of the tryptic peptide, of which the amino acid terminus was blocked.

Nucleotide Sequence Analysis. Sequences of the above three representative cDNA clones were determined to verify absolute fidelity of the cDNA sequence as a copy of the mRNA. Fig. 2 shows the restriction map and sequenceanalysis strategy. The complete nucleotide sequence is shown in Fig. 3; the entire sequence was obtained from both the message and complementary strand, and agreement between nucleotide sequences obtained from overlapping areas was complete. The insert contained 1220 nucleotides (nt)—the length of the poly(A) tail was not included in this determination. The cDNA inserts contained 6 nt in the 5' noncoding region, 969 nt in the coding region that were followed by the termination codon UAA, and 245 nt in the 3' untranslated region preceding the poly(A) tail. The hexanucleotide 5' AAUAAA 3', which could function as a signal for poly(A) addition or RNA processing (23), was found in position 22 and 43 nt upstream from the poly(A) tail in the 3' untranslated region.

Predicted Amino Acid Sequence of PGF Synthase. The amino acid sequence deduced from nucleotide-sequence analyses is shown in Fig. 3. PGF synthase contains 323 amino acids, and the calculated M_r is 36,666. The M_r of the mature protein is 36,517 excluding the initiation methionine. As shown in Fig. 3, nine tryptic peptides (amino acid residues, 2-4, 8-35, 48-66, 67-76, 137-153, 217-236, 259-263, 277-294, and 311-323) completely matched those of PGF synthase identified by peptide analysis of the purified enzyme. Furthermore, the amino acid composition of the purified enzyme nearly matched with that deduced from cDNA sequence (data not shown). E. coli harboring the complete sequence constructed from pPF41 and pPF131 showed PGF synthase enzyme activity (data not shown). All these results support the authenticity of the amino acid sequence deduced from the cloned cDNA sequence.

Similarity of PGF Synthase with Human Liver Aldehyde Reductase and European Common Frog Lens E-Crystallin. PGF synthase shows a broad substrate specificity and catalyzes the reduction of carbonyl compounds as well as of prostaglandins (2). On the other hand, human liver aldehyde reductase (24) catalyzes the reduction of aldehyde compounds-e.g., 4-nitrobenzaldehyde and 4-carboxybenzaldehyde, which were substrates for PGF synthase. Furthermore, the M_r of the aldehyde reductase was $\approx 36,000$ and similar to that of PGF synthase. Wermuth et al. (6) recently reported the amino acid sequence of human liver aldehvde reductase. The amino acid sequence of PGF synthase showed 39% identical and 23% conservative substitutions with deletions/ additions to that of human liver aldehyde reductase (Fig. 4). The amino acid sequence of European common frog lens ε-crystallin has been determined concerning 225 amino acids from the C terminus (25). Its sequence shows 58% identity with that from the C terminus of PGF synthase without deletions/additions, and the similarity between the two sequences increases to 77% when amino acids are compared on the basis of conservative substitutions (Fig. 4). Fig. 4 shows that part of the amino acid sequence (residues

FIG. 5. Blot hybridization analysis of PGF synthase. A band was obtained with 10 μ g of poly(A)⁺ RNA from bovine lung; the probe used was *Dde* I (residue 90)–*Ban* III (residue 888) fragment. Size markers at left and right are bovine ribosomal RNA (indicated by S value), and the *HinfI* cleavage products of pBR322 DNA (indicated in nt), respectively.

176–199) of PGF synthase was identical to that of ε -crystallin except for one amino acid.

Identification and Size Determination of PGF Synthase mRNA by Blot Hybridization Analysis. Fig. 5 shows the result of blot hybridization analysis of bovine lung mRNA using the *Dde* I (residue 90)–*Ban* III (residue 888) fragment as a probe. From its migration in a denaturing gel system, the sequence of PGF synthase mRNA from bovine lung is estimated to be 1400 nt. Therefore, assuming a length for the poly(A) tail of $\approx 100-150$ nt, the insert cDNA sequence of 1220 nt extends nearly the full length of the mRNA.

DISCUSSION

We isolated a cDNA sequence encoding PGF synthase of bovine lung and determined its primary structure. The calculated M_r of PGF synthase deduced from the cloned cDNA sequence was 36,517, excluding the initiation methionine. However, this value is 16% larger than the M_r of 30,500 for the purified enzyme reported earlier (2). *E. coli* containing

		-				-	-	-		
	10	20	30	40	50	6 0	70	80	90	100
AR	AASCVLLHTGOK	MPLIGLGTW	KSEPGOVKAAN	/KYALSV : 1:1:1	GYRHIDCAAI	YGNEPĖIGEAL	KEDVGPGKAV	PREELFVTSK	LWNTKHHPED	VEPALR 1 111
PS	MDPKSQRVKLNDGHF	IPVLGFGTY	APEEVPKSEAI	LEATKFAIEV	GFRHVDSAHL	YQNEEQVGQAI	RSKIADG-TV	KREDIFYTSK	LWCNSLQPEL	VRPALE
EC										LE
	110	120	130	140	150	160	170	180	190	200
AR	KTLADLQLEYLDLYL	MHWPYAFER	GDNPFPKNADO : :	GTICYDSTHY	KETWKALEAL	VAKGLVQALGL	SNFNSROIDE)ILSVÅSVF	PAVLOVECHP	YLAQN
PS	KSLQNLQLDYVDLYI : :: : : ::	IHSPVSLKP	GNKFVPKDES(:	GKLIFDSVDL	CHTWEALEKO	KDAGLTKSIGV	/SNFNHKQLE) :: :	(ILNKPGLKYK	PVCNQVECHP	YLNQS 1111
EC	RSLRDVGMDYLDLFL	MHWPVSLKP	SGASDPSDKDI	KPFIYDNVDL	CATWEALEAR	RKDAGLVRSLG	SNFNRRQLE	RILNKPGLKY	PVCNQVECHV	YLNQN
	210	220	230	240	250	260	270	280	290	300
AR	ELIAHCQARGLEVTA	Y-PLĠSS-D	RAWRDPDEPV	LLEEPVVLAL	AEKYGRSPAC)ILLRWÖVORK\ : :	/ICIPKSITP : ::	SRILONIKVFI	OFTFSPEEMKQ	LNALN
PS	KLLEFCKSHDIVLVA	YAALGAQLL	SEWVNSNNPV : :	LLEDPVLCAI	AKKHKQTPAI	_VALRYQVQRG\ : : : : : :	/VVLAKSFNKI :	<pre>KRIKENMQVFU (RIKENMQVFU) () () () () () () () () () () () () (</pre>	FELTPEDMKA	IDGLN
EC	KLHSYCKSKDIVLVT	YSVLGSHRD	RNWVDLSLPV	LLDDPILNKV	AAKYNRTSAI	EIAMRFILQKG	[VVLAKSFTP/	ARIKQNLGVF	FELKPEDMKS	LESLD
	310	320								
AR	KNWRYIVPMLTVDGK	RVPRDAGHP	LYPFNDPY							
PS	RNIRYYDFOKGIGHF	PEYPFSEEY								
EC	RNLHYGPFREVKQHF	EYPFHDEY								

FIG. 4. Comparison of PGF synthase (PS) with human liver aldehyde reductase (AR) and European common frog lens ε -crystallin (EC). Amino acid sequences are described with the standard single-letter notation for amino acid residues. Amino acid residues are numbered according to PGF synthase. Bars and colons between the sequences indicate exact matches and conservative substitutions, respectively.

the complete sequence of PGF synthase expressed PGF synthase enzyme activity, and the expressed protein in *E. coli* comigrated with the purified enzyme on NaDodSO₄/ polyacrylamide gel (data not shown). Furthermore, the purified enzyme contained both N- and C-terminal regions deduced from cDNA sequence (Fig. 3). These results suggest that the correct M_r of bovine lung PGF synthase is 36,517.

PGF synthase is similar to aldehyde reductase in molecular weight and substrate specificity. The similarity in the amino acid sequence between PGF synthase and human liver aldehyde reductase (6) was 62% (Fig. 4). However, deletions/additions were seen between the two sequences, suggesting that PGF synthase is similar, but not exactly identical, to human liver aldehyde reductase. PGF synthase and aldehyde reductase belong to a group of aldo-keto reductases in terms of substrate specificity. Possibly the amino acid sequences for the active sites of these enzymes show similarity, and a group of aldo-keto reductases may form a gene family.

Crystallins, the principal component of the lens, have been regarded simply as soluble, structural proteins, Recently, Wistow and Piatigorsky reported that the major taxonspecific crystallins of vertebrates and invertebrates are either enzymes, or closely related to enzymes (26). *e*-Crystallin of avian and crocodilian lenses is identical to lactate dehydrogenase (27), and δ -crystallin is closely related to arginosuccinate lyase, τ -crystallin is related to enolase, and S_{in}crystallin is related to glutathione S-transferase (26). Comparison of the amino acid sequence of PGF synthase with the National Biomedical Research Foundation protein data base^{||} revealed no significant similarity with sequences of chicken lactate dehydrogenase A (28), chicken and pig lactate dehydrogenase B (29), yeast arginosuccinate lyase (30), yeast enolase (31), or rat glutathione S-transferase (32) but revealed 77% similarity with that of European common frog lens ε -crystallin (Fig. 4) (25). These results suggest that PGF synthase is not related to these former enzymes and that ε -crystallin of European common frog lens is different from ε -crystallin of avian and crocodilian lenses, which is identical to lactate dehydrogenase (27).

The ε -crystallin of European common frog is one structural protein of lens (25). The sequence of ε -crystallin is 889 nt without its poly(A) tail and contains an open reading frame of 675 nt; this length accounts for about three-fourths of the total mRNA length from the 3'-nucleotide terminus (25). The amino acid sequences of PGF synthase and European common frog ε -crystallin are highly similar in 225 amino acids from the C terminus without deletions/additions. Considering that the M_r of European common frog ε -crystallin is \approx 35,000, the N-terminal region of the amino acid sequence of ε -crystallin may also be similar to PGF synthase, and ε -crystallin of European common frog lens may be identical to PGF synthase. These results raise the interesting possibilities that ε -crystallin of European common frog has PGF synthase activity, besides being the structural protein of lens, and that prostaglandins play some biological role(s) in the lens.

We are grateful to Drs. H. Hayashi and S. Ito for their constructive comments. This investigation was supported in part by research grants from the Ministry of Education, Science and Culture of Japan, and the Japan Foundation for Applied Enzymology.

1. Watanabe, K., Shimizu, T. & Hayaishi, O. (1981) Biochem. Int. 2, 603-610.

- Watanabe, K., Yoshida, R., Shimizu, T. & Hayaishi, O. (1985) J. Biol. Chem. 260, 7035-7041.
- Liston, T. E. & Roberts, L. J., II (1985) Proc. Natl. Acad. Sci. USA 82, 6030-6034.
- Watanabe, K., Iguchi, Y., Iguchi, S., Arai, Y., Hayaishi, O. & Roberts, L. J., II (1986) Proc. Natl. Acad. Sci. USA 83, 1583-1587.
- Watanabe, K., Iguchi, Y., Iguchi, S., Arai, Y., Hayaishi, O. & Roberts, L. J., II (1987) in Advances in Prostaglandin, Thromboxane, and Leukotriene Research, eds. Samuelsson, B., Paoletti, R. & Ramwell, P. W. (Raven, New York), Vol. 17, pp. 44-46.
- Wermuth, B., Omar, A., Forster, A., Francesco, C., Wolf, M., Wartburg, J. P., Bullock, B. & Gabbay, K. H. (1987) in Enzymology and Molecular Biology of Carbonyl Metabolism: Aldehyde Dehydrogenase, Aldo-Keto Reductase, and Alcohol Dehydrogenase, eds. Weiner, H. & Flynn, T. G. (Liss, New York), pp. 297-307.
- 7. Hirs, C. H. W. (1967) Methods Enzymol. 11, 199-203.
- Habeeb, A. F. S. A. & Atassi, M. Z. (1970) Biochemistry 9, 4939-4944.
- 9. Bidlingmeyer, B. A., Cohen, S. A. & Tarvin, T. L. (1984) J. Chromatogr. 336, 93-104.
- Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J. & Rutter, W. J. (1979) *Biochemistry* 18, 5294-5299.
- 11. Aviv, H. & Leder, P. (1972) Proc. Natl. Acad. Sci. USA 69, 1408-1412.
- 12. Watson, C. J. & Jackson, J. F. (1985) in DNA Cloning, ed. Glover, D. M. (IRL, Oxford), Vol. 1, pp. 79-88.
- Wahl, G. M., Padgett, R. A. & Stark, G. R. (1979) J. Biol. Chem. 254, 8679–8689.
- Nawa, H., Hirose, T., Takashima, H., Inayama, S. & Nakanishi, S. (1983) Nature (London) 306, 32-36.
- Nakanishi, S., Inoue, A., Kita, T., Nakamura, M., Chang, A. C. Y., Cohen, S. N. & Numa, S. (1979) Nature (London) 278, 423-427.
- 16. Feinberg, A. P. & Vogelstein, B. (1983) Anal. Biochem. 132, 6-13.
- 17. Maxam, A. M. & Gilbert, W. (1980) Methods Enzymol. 65, 499-560.
- 18. Messing, J. (1983) Methods Enzymol. 101, 20-78.
- 19. Alwine, J. C., Kemp, D. J. & Stark, G. R. (1977) Proc. Natl. Acad. Sci. USA 74, 5350-5354.
- 20. McMaster, G. K. & Carmichael, G. G. (1977) Proc. Natl. Acad. Sci. USA 74, 4835-4838.
- Dayhoff, M. O., Schwartz, R. M. & Orcutt, B. C. (1978) in Atlas of Protein Sequence and Structure, ed. Dayhoff, M. O. (Natl. Biomed. Res. Found., Washington, DC), Vol. 5, Suppl. 3, pp. 345-352.
- 22. Landon, M. (1977) Methods Enzymol. 47, 145-149.
- 23. Proudfoot, N. J. & Brownlee, G. G. (1976) Nature (London) 263, 211–214.
- 24. Wartburg, J. P. & Wermuth, B. (1982) Methods Enzymol. 89, 506-513.
- Tomarev, S. I., Zinovieva, R. D., Dolgilevich, S. M., Luchin, S. V., Krayev, A. S., Skryabin, K. G. & Gause, G. G. (1984) *FEBS Lett.* 171, 297-302.
- 26. Wistow, G. J. & Piatigorsky, J. (1987) Science 236, 1554-1556.
- 27. Wistow, G. J., Mulders, J. W. M. & Jong, W. W. (1987) Nature (London) 326, 622-624.
- Kiltz, H.-H., Keil, W., Griesbach, M., Petry, K. & Meyer, H. (1977) Hoppe-Seyler's Z. Physiol. Chem. 358, 123-127.
- 29. Torff, H.-J., Becker, D. & Schwarzwalder, J. (1977) in *Pyridine Nucleotide Dependent Dehydrogenases*, ed. Sund, H. (de Gruyter, Berlin), pp. 31-42.
- 30. O'Brien, W. E., McInnes, R., Kalumuck, K. & Adcock, M. (1986) Proc. Natl. Acad. Sci. USA 83, 7211–7215.
- Chin, C. C. Q., Brewer, J. M. & Wold, F. (1981) J. Biol. Chem. 256, 1377-1382.
- Lai, H.-C. J., Li, N., Weiss, M. J., Reddy, C. C. & Tu, C.-P. D. (1984) J. Biol. Chem. 259, 5536-5542.