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Abstract
Mapatumumab (HGS-ETR1) is a fully human IgG1 agonistic monoclonal antibody that
exclusively targets and activates tumor necrosis factor-related apoptosis-inducing ligand receptor 1
(TRAIL-R1). It was tested in vitro at concentrations from 0.01 to 100 μg/ml and in vivo at a dose
of 10 mg/kg administered intraperitoneally using a twice-weekly schedule. Mapatumumab
demonstrated limited activity against the 23 cell lines of the PPTP in vitro panel with no lines
achieving 50% growth inhibition. Mapatumumab induced significant differences in event-free
survival distribution compared to controls in 9 of 37 evaluable solid tumor xenografts tested, but
in none of the 8 ALL xenografts.
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INTRODUCTION
Mapatumumab (HGS-ETR1) is a fully human IgG1 agonistic monoclonal antibody that
exclusively targets and activates tumor necrosis factor-related apoptosis-inducing ligand
receptor 1 (TRAIL-R1). Mapatumumab induces regressions as a single agent against
TRAIL-R1–expressing adult tumor xenografts of multiple histologies (e.g., colon, non-small
cell lung, and renal cancer) [1], and it enhances the antitumor activity of cytotoxic agents
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against multiple adult cancer cell lines [1,2]. Mapatumumab is under clinical evaluation in
adults with cancer, both as a single agent and in combination with cytotoxic agents [3,4].

Previous reports have described TRAIL-induced apoptosis in pediatric cell lines. For
example, in a panel of 7 rhabdomyosarcoma cell lines, three showed high level sensitivity to
TRAIL [5]. TRAIL-induced apoptosis has also been reported to occur in a high percentage
of Ewing sarcoma cell lines, and both Ewing sarcoma cell lines and clinical specimens
express TRAIL-R1 and TRAIL-R2 in a high percentage of cases [6–8]. Neuroblastoma cell
lines are generally reported to be resistant to TRAIL-induced apoptosis [9–11], which may
be the result of lack of caspase-8 expression secondary to promoter methylation as well as
due to the absence of both TRAIL-R1 and TRAIL-R2 in some cell lines [9–11]. The PPTP
evaluated mapatumumab to gain insight into the potential of TRAIL-R1 directed therapy for
pediatric tumors.

MATERIALS AND METHODS
In vitro testing

In vitro testing was performed using the DIMSCAN method, as previously described [12].
Cells were incubated in the presence of mapatumumab for 96 hours at concentrations from
0.01 μg/ml to 100 μg/ml and analyzed as previously described[13].

In vivo tumor growth inhibition studies
CB17SC-M scid−/− female mice (Taconic Farms, Germantown NY), were used to propagate
subcutaneously implanted kidney/rhabdoid tumors, sarcomas (Ewing, osteosarcoma,
rhabdomyosarcoma), neuroblastoma, and non-glioblastoma brain tumors, while BALB/c nu/
nu mice were used for glioma models, as previously described [14,15]. Human leukemia
cells were propagated by intravenous inoculation in female non-obese diabetic (NOD)/
scid−/− mice as described previously [16]. Experiments were conducted using protocols and
conditions approved by the institutional animal care and use committee of the appropriate
consortium member. Responses were determined using three activity measures as previously
described [17]. An in-depth description of the analysis methods is included in the
Supplemental Response Definitions.

Statistical Methods
The exact log-rank test, as implemented using Proc StatXact for SAS®, was used to
compare event-free survival distributions between treatment and control groups. P-values
were two-sided and were not adjusted for multiple comparisons given the exploratory nature
of the studies.

Drugs and Formulation
Mapatumumab was provided to the Pediatric Preclinical Testing Program by Human
Genome Sciences. Mapatumumab was dissolved in phosphate buffered saline and
administered intraperitoneally using a twice-weekly schedule for 6 weeks at a dose of 10
mg/kg. Mapatumumab was provided to each consortium investigator in coded vials for
blinded testing.

RESULTS
In vitro testing

Mapatumumab was tested against the PPTP’s in vitro cell lines at concentrations ranging
from 0.01 μg/ml to 100 μg/ml. Mapatumumab demonstrated very limited activity against the
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23 cell lines of the PPTP in vitro panel, with no lines achieving 50% growth inhibition. The
minimum T/C (%) values for each cell line tested are provided in Supplemental Table I.

In vivo testing
Mapatumumab was evaluated in 46 xenograft models and was well tolerated at the dose and
schedule used for in vivo testing. For unknown reasons, two of the neuroblastoma xenografts
(NB-1643 and NB-SD) showed excessive toxicity (15 of 20 toxic deaths) when initially
tested against mapatumumab. Repeat testing of the same xenografts produced no toxicity.
With the initial testing of the two neuroblastoma xenografts omitted, treated and control
animals experienced similar toxicity rates with 12 of 894 (1.3%) mice dying during the
study [5 of 434 (1.2%) in the control arms and 7 of 440 (1.6%) in the mapatumumab
treatment arms]. There were 45 xenograft models evaluable for efficacy, with only one
xenograft line (NB-1771) excluded from reporting because of excessive toxicity. A
complete summary of results is provided in Supplemental Table II, including total numbers
of mice, number of mice that died (or were otherwise excluded), numbers of mice with
events and average times to event, tumor growth delay, as well as numbers of responses and
T/C values.

Mapatumumab induced significant differences in EFS distribution compared to controls in 9
of 37 evaluable solid tumor xenografts tested (Table I). Significant differences in EFS
distribution occurred in one-half of xenografts in the glioblastoma panel (2 of 4) and the
osteosarcoma panel (3 of 6). None of the 8 ALL xenografts demonstrated significant
differences in EFS distribution between the treated and control groups. Although there were
significant differences in EFS distribution for selected solid tumor xenografts, the EFS T/C
values were below the criteria for intermediate activity for the time to event measure of
activity (EFS T/C > 2). No objective responses were observed in any of the solid tumor
panels or in the ALL panel. The best response was PD2 (progressive disease with growth
delay), with PD2 activity concentrated in the glioblastoma panel (2 of 4) and the
neuroblastoma panel (2 of 5) (Table I). The objective response results for both solid tumors
and leukemia models in a ‘COMPARE’ format, based on the objective response scoring
criteria centered around the midpoint score of 5 that represents stable disease (Supplemental
Figure 1).

DISCUSSION
Mapatumumab demonstrated limited activity against the PPTP in vitro cell line panels and
against its in vivo xenograft tumor panels. The limited activity observed for mapatumumab
against the PPTP’s pediatric preclinical models could result from multiple mechanisms [18],
including: lack of TRAIL-R1 expression, which is noted at the RNA level for multiple PPTP
xenografts and cell lines (Figure 1); inactivation of proapoptotic Bcl-2 family proteins (e.g.,
Bax gene deletions) [19] or overexpression of anti-apoptotic Bcl-2 family proteins;
expression of XIAP; and loss of caspase-8 expression. The latter mechanism may be
particularly relevant to pediatric cancers such as neuroblastoma and Ewing sarcoma, for
which caspase-8 down-regulation has been associated with TRAIL-resistance and for which
caspase-8 re-expression has been associated with restored TRAIL responsiveness [9–11].
Low expression of caspase-8 is observed for several PPTP panels, most notably the
neuroblastoma panel (Figure 1). The limited activity of mapatumumab against the PPTP in
vivo models is unlikely to be due to failure to achieve effective systemic exposures, as
mapatumumab at the dose and schedule used by the PPTP showed substantial preclinical
activity against selected adult cancer models [1]. Additionally, the systemic exposures
achieved for the dose and schedule used by the PPTP are comparable to or exceed those
observed in adults receiving mapatumumab at the recommended phase 2 dose [1,3,4].
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There are several options to pursue in terms of further preclinical studies focused on
developing TRAIL-directed therapies in the pediatric setting. For example, TRAIL-R2
targeted agents (e.g., lexatumumab) or approaches that engage both TRAIL-R1 and TRAIL-
R2 (e.g., combined use of mapatumumab and lexatumumab or use of recombinant human
Apo2L/TRAIL) could be explored. Expression of TRAIL-R2 is somewhat more common
than TRAIL-R1 in the PPTP xenografts and cell lines at the RNA level (Figure 1), and
previous work has suggested that the response of rhabdomyosarcoma cell lines to TRAIL is
through TRAIL-R2 [5]. Another option for future work is evaluating a TRAIL pathway
targeted agent such as mapatumumab or lexatumumab in combination with cytotoxic
chemotherapy. Preclinical studies of these agents in adult cancer models support this
strategy [20], as does previous work using sarcoma cell lines demonstrating that anticancer
agents (e.g., cisplatin, doxorubicin) can reduce levels of FLIP and/or XIAP, thereby
sensitizing the cell lines to the apoptosis-inducing effects of TRAIL signaling pathway
activation [21,22]. Activity leads identified through future testing could help guide clinical
development of TRAIL-directed therapies in children with cancer.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Gene expression analysis for selected genes related to TRAIL pathway signaling using the
Affymetrix HG-U133Plus2 GeneChip (54,613 probesets) as previously described [23]
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