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SUMMARY
We propose a unified framework for the analysis of Chromatin (Ch) Immunoprecipitation (IP)
microarray (ChIP-chip) data for detecting transcription factor binding sites (TFBSs) or motifs. ChIP-
chip assays are used to focus the genome-wide search for TFBSs by isolating a sample of DNA
fragments with TFBSs and applying this sample to a microarray with probes corresponding to tiled
segments across the genome. Present analytical methods use a two-step approach: (i) analyze array
data to estimate IP enrichment peaks then (ii) analyze the corresponding sequences independently
of intensity information. The proposed model integrates peak finding and motif discovery through a
unified Bayesian hidden Markov model (HMM) framework that accommodates the inherent
uncertainty in both measurements. A Markov Chain Monte Carlo algorithm is formulated for
parameter estimation, adapting recursive techniques used for HMMs. In simulations and applications
to a yeast RAP1 dataset, the proposed method has favorable TFBS discovery performance compared
to currently available two-stage procedures in terms of both sensitivity and specificity.
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1. Introduction
Chromatin (Ch) Immunoprecipitation (IP) microarray (ChIP-Chip) assays use microarrays of
DNA sequences to measure specific DNA-protein interactions, with a goal of discovering the
genomic locations of transcription factor binding sites (TFBSs). Transcription factors (TFs)
are proteins that regulate the expression of nearby genes by binding to DNA. TFs bind to TFBSs
that are usually on the order of 10–20 nucleotides in length, and even in relatively small
genomes, the binding sites occur in hundreds of locations (Buck and Lieb, 2004). However,
motif discovery methods cannot be directly applied to the genome in order to find TFBSs
because of the number of false positive binding site matches that would result. ChIP-chip data
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allows one to narrow the search from the whole genome to only those regions where binding
has likely occurred in vivo.

In chromatin immunoprecipitation experiments, the TF of interest binds to the DNA in vivo
under controlled conditions, and the protein-DNA complexes are fixed or crosslinked and
extracted. The DNA is sheared into approximately 1kb fragments by sonication. Next, an
antibody specific to the TF of interest selectively binds to the protein-DNA complexes of
interest, and this entire complex precipitates out of solution. The DNA precipitate is then
extracted, the crosslinks are reversed, it is universally amplified, and fluorescently labeled.
This IP sample is enriched for DNA fragments that contained a binding site. Reference samples
of the input DNA fragments that do not go through the IP process are used as controls, and
either two-color microarrays (Buck and Lieb, 2004) or high density oligonucleotide arrays
(Kapranov et al., 2002; Cawley et al., 2004) compare the DNA present in the IP and the
reference sample at each DNA segment that has a corresponding probe. If a probe or continuous
region of many probes has higher intensity in the IP sample than the reference, it is said to be
relatively enriched. The sequences of the enriched regions are often searched for the presence
of TFBSs.

TFBSs generally do not match an exact sequence, and but are usually represented by a 4×w
position specific weight matrix (PSWM) Θ where the four rows represent the nucleotides A,
C, G and T and the w columns represent the w motif positions (Liu et al., 1995). The element
Θij is the probability that the nucleotide at position j of the sequence is i, i ∈ {A,C,G,T}.
Searching for patterns of several base pairs within segments of DNA that might be several
thousand base pairs long can lead to many false positive matches because there are thousands
of potentially similar sites within a single DNA segment. This multiplicity greatly increases
the computational burden, especially if many DNA segments are considered simultaneously.
Further, the “background” DNA sequence that does not contain binding sites generally has a
highly non-random distribution of nucleotides. The computational and statistical challenges of
motif discovery have led to the development of a number of statistical model-based methods
for motif discovery (Liu et al., 1995; Gupta and Liu, 2003; Zhou and Liu, 2004) as well as
computationally fast and partially heuristic methods (Liu et al., 2002; Buhler and Tompa,
2002).

The analysis of ChIP-chip data is typically done through a two step approach. The first step
deals with the ChIP-chip array data, and it analyzes the probe intensities to find the regions of
enrichment. The second step uses the genomic sequences of the regions found in the first step
to estimate the motif. Next, we describe the main features and form of ChIP-chip data, and
discuss currently available methods for its analysis.

1.1 Data structure
There are two main technologies used for ChIP-chip experiments: (i) a two-color system in
which the IP sample is labeled with one fluorescent dye and the reference sample is labeled
with a different dye and applied to the same array, and (ii) the oligonucleotide (e.g. Affymetrix)
array, in which the IP sample is applied to one set of arrays, and the reference sample is applied
to a different array set. In this article, we focus on two-color ChIP-chip data. The probes on
the two-color arrays range from about 100 to 2,000 base pairs in length. For each probe p on
each array, there are two measurements: one for the IP sample intensity IPp and one for the
reference sample intensity Refp. The variation due to the random error of a specific probe’s
measurement is reduced by taking the ratio of IPp/Refp which removes the multiplicative effect
of probe p that is common to both IPp and Refp (Rocke and Durbin, 2001). Enrichment implies
that log(IPp/Refp) > 0 for a given probe p.
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The full ChIP-chip experiment can be represented as an P × R matrix Y where microarray
replicates are indexed r ∈ [1 … R], and the probes are indexed by p ∈ [1 … P]. A row of this
matrix which contains all measurements from a probe is denoted as yp. The number of probes
P ranges from 10,000 to 1,000,000 in different experiments, and the number of replicates R is
small, usually between 1 and 10. The rth element of yp is denoted as ypr and is the log-ratio of
the IP sample intensity and the reference sample intensity, that is, ypr = log(IPpr/Refpr). A
schematic of the data is shown in Figure 1. The values of ypr that are higher are more likely to
be IP enriched. The histogram of average values of yp (Figure 2) from a yeast RAP1 experiment
(Lieb et al., 2001) shows that the averages can be thought of as a mixture of the enriched and
the not enriched probes. The sequence that corresponds to probe p will be denoted as xp. The
consecutive probes are adjacent on the genome, and the fragments which hybridize to the
probes correspond to the complementary sequence. xp is a sequence of A’s, C’s, G’s, and T’s
with length Kp. A subsequence of xp from position j to position k will be denoted as xp[j : k].
The probe sequences can range from a few hundred to several thousand base pairs in length,
but the resolution of each probe is limited by the size of the applied DNA fragments. ChIP-
chip analysis should also consider the spatial correlation between probes that represent adjacent
loci. Probes are correlated if the genomic distance between the probes is less than the length
of the DNA fragments in the sample. Correlation between adjacent probes is a prominent
feature of the data because the DNA fragments applied to the arrays may span two or more
probes (Buck and Lieb, 2004).

1.2 Current methods for analyzing ChIP-chip data
Sliding window approaches were suggested by Cawley et al. (2004); Keles et al. (2004); Ji and
Wong (2005) and Buck et al. (2005). Cawley et al. (2004) proposed using a Wilcoxon rank
sum statistic for each probe, while Keles et al. (2004) used a Welch t-statistic, and Ji and Wong
(2005) used a t-like-statistic which has a shrunken variance estimate. These methods identify
regions or peaks of intensity as IP enriched when the moving average of the statistic exceeds
a threshold, and give an False Discovery Rate (FDR) for each peak.

Another approach to finding regions of enrichment is to use Hidden Markov Models (HMMs).
Ji and Wong (2005) developed a nonparametric method called Unbalanced Mixture Subtraction
(UMS) to estimate the emission densities and the FDR within an HMM. Li et al. (2005)
proposed an HMM with the same state space, but used normal distribution models for the
emission densities. Li et al. (2005) and Ji and Wong (2005) both demonstrate the superior
performance of the HMM method over moving average models in terms of power for detecting
IP enrichment for small sample sizes. One limitation with both of these methods is that the
transition probabilities and the emission densities are not estimated simultaneously by the
HMM so that the user must select values which may lead to suboptimal performance. Keles
(2007) proposed a hierarchical mixture model for detecting regions of IP enrichment, that
considers regions of adjacent probes collectively in order to take advantage of the correlation
between probes. A similar robust hierarchical method was proposed by Gottardo et al.
(2006), allowing for probe specific differences in error variance, and using a normalization
procedure called Model-based Analysis of Tiling-array (MAT) for oligonucleotide ChIP-chip
(Johnson et al., 2006). Normalization methods for two color ChIP-chip data are inherently
difficult, due to the skewed nature of ChIP-chip log ratios Buck and Lieb (2004). Recently,
Zheng et al. (2007) advanced a model for the estimating for the shape of the probe intensity
enrichment peaks. This approach has the advantage adaptively pooling information from
adjacent probes based upon data-driven peak shape estimates.

In most two step procedures, the first step estimates the probe’s enrichment probability based
on the intensity information. Probes that exceed some cutoff based upon the intensity model
are submitted to a second step that estimates the probes’ binding site probability based on the
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probe sequence. However, the probe intensity and sequence are not independent–that is, probes
with with or near TFBSs have a higher likelihood of being enriched. Using a intensity based
cutoff in the first step that does not consider the probe’s surrounding sequence is likely to miss
some probes with TFBSs. Ignoring the probe level information when considering the sequence
could also lead to biases, as the probe measurement may be informative towards the extent of
actual binding. It thus seems reasonable to consider a joint model of the ChIP-chip
measurements and sequence for more accurate estimation.

Shim and Keles (2007) propose a procedure that analyzes the genome sequence conditionally
upon the probe intensity information. Their method uses the measurements from the probes
within a conditional two-component mixture model. The model estimates the probability of a
TFBS occurrence at a particular base pair in the genomic sequence conditionally upon a
smoothed average of the probe level intensity statistics. The relationship between the ChIP-
chip value of probe i, Ti, and the indicator variable, Zi, denoting whether a motif starts at
position i, is modeled as logit[Pr(Zi = 1|Ti)] = β0 + β1Ti. Averaging of Ti’s between probes only
approximately accounts for spatial correlations, unlike an HMM. A more debatable assumption
is that the ChIP-chip value, Ti is taken to be without error despite the uncertainty inherent in
estimation. The estimation procedure appears likely to suffer from limitations of the EM-based
algorithm, for example multimodality traps, as well as the inability to capture multiple binding
sites close together. Shim and Keles (2007) use their technique as a refinement procedure after
the bound regions have already been selected, rather than allowing the sequence model to
inform the probe measurement model.

In this article, we propose a joint model for ChIP-chip and sequence data for TFBS discovery,
accounting for the uncertainty inherent in both steps. The probe level information, followed
by a motif discovery step, is used to generate initial motif candidates under the assumption that
the “best” binding sites are more likely to be present close to the highly enriched probes.
However, once the initial estimates are obtained, the entire set of data is fit using a novel joint
model (Section 2). As we see later in data analyses (Section 4), our framework succeeds in
finding many TFBSs that are missed by two-step procedures. The motivation for the joint
model is to minimize the number of probes close to binding sites, that fail the intensity cutoff.
We use the probe level information to allow (i) probe level experimental/measurement errors
not to bias the observations in case a functional binding site is truly present, but observed
binding is not significant enough, and (ii) the intensity of binding to have an influence on our
assessment of the strength of a binding site. There could be minor errors due to some regions
containing motif matches that show no high intensities, but the joint model should not allow
too many of these regions to bias the analysis. In addition, our model may be easily extended
to more than one motif of interest.

2. The general model
In this section, we first describe the models used for the probe intensity, the probe sequences,
and the full joint HMM framework for the probe intensity and sequence data.

2.1 Probe intensity model
The probe level data is modeled through a hidden Markov model (HMM). HMMs are Markov
random processes with latent states that emit random variables whose distributions depend on
the state. The hidden states of the HMM at the probe level are the binding states of probe p
denoted as sp where sp = 1 if the pth probe is IP enriched and sp = 0 otherwise. The log-ratio
of the intensities for the pth probe, yp, are assumed to have the density fsp(yp) (sp = 0, 1), with
ypr, the observation for replicate r of probe p distributed as , where μp is a probe-
specific mean, and the replicates are independently distributed. The Gaussian assumption is
justifiable if one considers the raw intensity values to have approximately a gamma or
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lognormal distribution so that the log transformation yields an approximately Gaussian random
variable. Next, we assume a hierarchical model for μp, with

. In other words, enrichment
implies that the probes’ average intensity is relatively high (> 0) whereas the non-enriched
probes will have mean intensities close to 0. Figure 2 demonstrates that the observed probe
averages ¯yp may be accurately fit by a mixture of normal densities for μp. The density for

yp can be written as . Integration with respect to the
parameter μp yields a compound symmetric multivariate Gaussian density,

, where 1R and IR are the R-dimensional vector of 1’s and
identity matrix, respectively.

2.2 Sequence Model
Next, we formulate the model for the sequence data in detail. The vast majority of the DNA
that does not contain the binding sites of interest is referred to as the background sequence.
Subsequent letters of this background sequence may depend on the previous letters, this
dependence is often modeled as having a Markov structure (Liu et al., 2002). We propose using
PSWMs representing repeats to allow for the modeling of the low complexity background
patterns, resulting in fewer parameters than high-dimensional Markov models. Specifically,
the PSWMs of the proposed background model include one-letter words (A, C, G, and T) as
well as repeats of A’s and T’s. PSWMs in the model will be denoted as Θυ (υ ∈ [1 … V]), with
ΘV representing the PSWM corresponding to the motif of interest. Let Θυ have length wυ, and
let π be the vector of the prevalences πυ of PSWM υ. The emission densities of the sequence
are denoted as psp(xp) (sp = 0, 1) for the non-enriched and enriched states, respectively. Let
Θ(sp) denote the set of PSWMs that can be involved in generating the sequence under state
sp, with Θ(0) = (Θ1, ‥, ΘV−1), and Θ(1) = (Θ1, ‥, ΘV) = (Θ(0), ΘV). The probability of observing
sequence xp is denoted by psp(xp|Θ(sp)) (sp = 0, 1). The sets of PSWMs in Θ(0) and Θ(1) can be
considered as words that are part of a stochastic dictionary (Gupta and Liu, 2003). Let the
motif site locations be denoted by the indicator variables A = (Aij), where Aij = 1(0) if position
j of probe i is (is not) the start of a motif site. The full likelihood of the joint model can be
written as

In order to estimate parameters of the model under the presence of a huge amount of missing
data: A, the unknown site locations, and s = (s1, …, sP), the latent emission states, we formulate
a Data Augmentation (DA) sampling scheme for fitting the full HMM, which is given in the
Appendices.

2.3 Priors
The final part of the model specification involves prior elicitation. The prior for the intensity
parameter μ1 was taken to be noninformative (∝ 1). The priors for  were also
noninformative, with . The priors for each row
of the HMM transition matrix (τij) (i, j = 0, 1) are taken to be Dirichlet distributions with
hyperparameters denoted as δij. More precisely, [τi0, τi1] ∼ Dirichlet(δi0, δi1). The δij are equal
for all transitions so that δij = δi′j′ and are small (0.1) relative to the total number of transitions
∼ P = 11,575, and therefore, minimally informative.
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One difficulty in estimating the motif is that the motif and prevalence of the motif may be
jointly nonidentifiable in practice. The less conserved a motif is, the more prevalent it may be.
If there is no prior placed on the motif prevalence, then the model often tends to converge to
a highly prevalent and non-specific motif which contradicts the biological understanding of
the specificity of transcription factor binding. A relatively strong prior may be implemented
for πV to avoid this problem and hasten convergence. We assume a prior for the motif
prevalence as πV ∼ Beta(δV (1 − γ), δV γ) where δ0 is a large pseudocount and γ (with 0 < γ <
1) indicates the prior expected value. The conditional prior for the other components of π, (i.e.
π1, …, πV −1) can then be drawn from the prior Dirichlet distribution Dir(δ1, ‥, δV−1) and scaled
by 1−πV (δ1, ‥, δV−1 represent small non-zero pseudocount values). Let δ = (δ0, ‥, δV). The
prior for the motif matrix of interest ΘV is taken to be the product Dirichlet distribution Pir
(B) where B = (bij) is a 4 × wV matrix of pseudocounts, bij denoting the count of the symbol i
at motif position j which is also set to a small non-zero value, uniform across letters.

3. Application to Yeast RAP1 data
We applied our method to a yeast dataset from Lieb et al. (2001) which involved a ChIP-chip
experiment for the Rap1 transcription factor. The data consist of four arrays and 11,575 non-
telomeric probes of various lengths spanning the yeast genome of 17 chromosomes with a total
of 12 million base pairs. The array data and the sequence data were preprocessed, and details
are in the supplementary file.

3.1 Model initialization
We used an initialization phase similar to the first step of the two stage procedure in which the
segments of highest enrichment are selected using the IO model, and used to provide the initial
estimate of the motif matrix. Once the motif estimate is initialized, the full original set of probes
was analyzed by the joint model. For initialization, the probes that were selected by the IO
model were ranked according to the log-ratio of the intensity probabilities in favor of
enrichment log(f1(yp)/f0(yp)). The sequences of the probes in the highest 1% of likelihood ratios
were then selected for the search for the initial motif estimate.

The initialization of the sequence model requires a reasonable estimate of the TFBS motif to
facilitate convergence. The sequences selected by the above procedure are likely to have the
highest concentration of the motif binding sites, but it is evident that there are many non-random
patterns in the DNA that correspond to different modes in the likelihood and can lead to the
failure of the stochastic dictionary model to find the motif which gives the highest likelihood
for these sequences. To get the initial motif estimate, an accumulating stochastic dictionary
model was fit to the sequences in which successive motifs are estimated and added to the
dictionary. First, the dictionary was initialized with PSWMs of length one representing A’s,
C’s, G’s, and T’s as well as repeat words of A’s and T’s of both of length 4 and length 8, which
appeared sufficient to capture the dependence in the background, i.e. did not lead to further
“repeat” motifs being predicted. These 8 motifs were considered part of the fixed background
model with motif matrices Θ1, … Θ8. The search for the “interesting” motif (ΘV) was restricted
to the assumed motif width of 13 (Lieb et al., 2001), and a motif of length 13 with uniform
probability across all letters at all positions was added to the dictionary and updated using the
data augmentation method described in Section 2 (V = 9). This motif is considered the
foreground motif Θ* and is the only motif updated in each cycle of the DA sampler. After
approximate convergence, the updated motif is added to the fixed background dictionary, and
another motif of length 13 with uniform probability across all letters at all positions is added
to the dictionary so that V = 10, and this new word becomes the new foreground motif. The
procedure of iteratively adding words to the background allows the model to consider different
modes in the space of potential motifs.
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Two likelihoods of the sequences are plotted across the iterations in order to find a reasonable
motif for initialization. The first is the likelihood of the sequences given the full dictionary up
to that point which may be denoted as ΠXi∈Top Sequence p(Xi|Θ1, …, Θ8+m, Θ*) where m ≥ 0 is
the number of accumulated words and Θ* is the updated motif. The likelihood increases as
motifs are added to the dictionary, and after a few iterations a plateau is reached signifying
entrapment in a likelihood mode. The second likelihood computed is based on the original
eight-PSWM background with only the current foreground motif and may be denoted as
ΠXi∈Top Sequence p(Xi|Θ1, …Θ8, Θ*). This likelihood is an indication of the improvement in
model fit given the addition of only the current foreground motif (Figure 1 in the Supplementary
material). The motif that gives the largest increase in sequence likelihood is taken as a
reasonable choice for the initial estimate of ΘV in the joint sequence and intensity model, while
the PSWMs Θ1, …, Θ8 are used in the background model.

3.2 Data analysis
The next phase of the analysis is the application of the joint model that is applied to the full
original dataset. An assessment of the sensitivity to the selection of hyperparameters was
performed as well as a comparison of the results with other ChIP-chip analysis methods.

3.2.1 Sensitivity analysis—We first did a sensitivity analysis to examine the dependence
of the final estimates on the choice of the prior hyperparameters. The hyperparameters for the
pseudocounts δij, δυ, and the elements of the pseudocount matrix B were set to 0.1. These
pseudocounts are quite small compared to the number of observed counts, and do not greatly
affect the inference. We first fixed δ0 = 106 and varied the prior parameter for the expected
motif prevalence γ ∈ [5, 6, 7, 8, 9, 10, 20]×10−5 to assess the sensitivity to this prior. MCMC
convergence of the DA sampler was diagnosed with parallel chains by using criterion that the
Gelman and Rubin  statistic was less than 1.18. The parameters monitored included all of
the intensity model parameters, the HMM transition parameters, and the parameters for the
most probable letter at each position in the estimated motif. The IS model DA sampler ran for
2000 iterations, and the last 50% were sampled for posterior inference. The corresponding
numbers of binding sites found by the IS model for each value of γ were [283, 284, 295, 299,
305, 309, > 1000] respectively. The last value indicated that the model did not converge to the
correct mode of the posterior distribution. The number of TFBSs was about 300 in the range
γ ∈ [7.0, 10.0]×10−5. The positions of the binding sites discovered were also very consistent,
the intersection of the binding site lists for the first six consecutive values of γ being [281, 283,
293, 296, 304]. In other words, 281 of the 283 TFBSs found when γ = 5.0 × 10−5 were also
found when γ = 6.0 × 10−5. A similar sensitivity analysis was performed by varying the δ0
hyperparameter (δ0 ∈ [10, 9, 8, 7, 6, 5, 4] × 105) while fixing γ = 0.0001. The number of sites
found were [314, 312, 312,, 318, 321, > 1000] respectively and the intersections of the binding
site lists for consecutive values of δ0 were [316, 312, 306, 308]. This indicates that the sites
were consistent for δ0 ∈ [5, 10] × 105. Increasing γ and decreasing δ0 both had the effect of
slightly increasing the number of sites found at the expense of model convergence. However,
the model gave consistent results for a broad range of hyperparameter values, and the final
motif estimate (Figure 3) has a strong resemblance to the motifs reported previously by (Lieb
et al., 2001) and in the TRANSFAC database (Matys et al., 2003). The sensitivity of the two-
stage models to the parameters was also considered, and comparative tables of the motif sites
discovered is given in the supplementary material. See Supplementary Tables 1–5. The two-
stage methods may have the benefit of additional stability as γ is increased above 0.0001, but
the posterior probability of the sites found decreases with increasing γ.

3.2.2 Comparisons with other approaches—We chose the largest value of γ = 10−4 for
which convergence was observed to compare the IS method with three two step methods. The
first method is the intensity only (IO) model which is the proposed method without the sequence
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component, the second method is the ChIPOTle method (Buck et al., 2005), and the third
method is TileMap (Ji and Wong, 2005). The ChIPOTle method requires one to choose a
normal approximation or a nonparametric model to estimate the p-value for rejection of the
“No Enrichment” null hypothesis, and one must decide on a p-value cutoff for selecting regions
for the motif finding stage. We chose the normal approximation method and a p-value cutoff
of 0.001. There does not seem to be an objective rule for choosing this cutoff, but this
conservative value is consistent with the other models.

The three two-step methods produced estimates of the regions of IP enrichment to which the
stochastic dictionary model was applied with γ = 10−4 and δ0 = 106 to obtain lists of estimated
TFBSs as in Section 4.1. The estimates for the parameters common to the IO and the IS models
(Table 1) appear similar in both. The comparisons of estimated TFBSs (Table 2) show a marked
agreement between the four methods, with the IS model finding the most TFBSs and the IO
model the next highest. However, the TileMap method found roughly half of the TFBSs of the
other methods. The TFBS found by the joint IS model included 98.2%, 94.5%, and 96.9% of
the TFBS found by the IO model, ChIPOTle, and TileMap respectively. Also, the IS model
was highly consistent in that it found a much larger number of sites compared to TileMap, for
example, that found only 52.9% of the ChIPOTle sites. This might indicate a higher sensitivity
of the IS model, but the higher specificity cannot be directly assessed because the locations of
all “true” binding sites are not known.

An analysis of the differences between the probe enrichment probabilities estimated by the IO
model and the joint IS model was performed to examine the effect of adding the sequence
component to the model. The enrichment probabilities for the probes that were identified as
enriched by the IS model and not the IO model have IO model enrichment probabilities in the
range [0.049, 0.746]. These probes are neither definitely enriched nor definitely not enriched
according to the IO model, and the intensity information dominates the probe calls. This
suggests that the IS model has only a moderate effect in altering enrichment probabilities due
to sequence information. Despite fewer probes being identified as enriched by the joint IS
model, this model found more binding sites which is consistent with the idea that the probe
measurement information contributes significantly to prediction of binding sites. Most of the
probes have smaller enrichment probabilities under the joint IS model. The IO model selected
934 probes as enriched while the IS model selected 922. These results are also consistent with
the idea that including sequence in the model can help to classify some of the probes with
ambiguous posterior enrichment probabilities so that more probes corresponding to binding
sites are identified as enriched.

4. Simulation studies
In order to explore the performance of our approach more critically, we next conducted
simulation studies designed to assess (i) how the joint model performs compared to standard
two-step procedures and (ii) how the priors for motif prevalence affect the performance of the
joint model, in a variety of data settings.

Simulated datasets were generated to assess the operating characteristics of the proposed
method in three situations: when the probe enrichment values correspond to (i) the intensity
only HMM, (ii) a misspecified model, and (iii) the TileMap nonparametric ChIP-chip model
(Ji and Wong, 2005). The real intensity data was used instead of simulated intensity data in
order to mimic the structure and the informativeness of the true experiment, and binding sites
simulated and inserted into the corresponding sequence as described below. A HMM was fit
to the 11,575 probe intensities on the 17 yeast chromosomes for a total of 12 million base pairs.
To simulate the sequence data, we used the probe intensity data from the Rap1 dataset (Lieb
et al., 2001) with four independent arrays described in Section 3, and applied the intensity-only
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model and the TileMap model which gave the probe enrichment probability estimate ŝp. The
enrichment state for each of the probes were then simulated by Bernoulli random variables
with probability ŝp, that is, sp,Simulated ∼ Bernoulli(ŝp). For the probes that were selected as
enriched (sp,Simulated = 1), motif realizations were randomly inserted into the corresponding
genomic sequences. We also considered a case where the intensity model is misspecified so
that sp,Simulated ∼ Bernoulli(ŝp*) where ŝp* = Bernoulli(ŝp) with probability 0.9 and otherwise
Logit(ŝp*) = Logit(ŝp) + ϵ where ϵ ∼ N(0, 1).

There were four simulation scenarios with two types of motif (a highly conserved artificial
motif and the Rap1 binding motif taken from the literature), and two levels of motif site
prevalence (0.0005: High, and 0.0002: Low). The highly conserved motif consisted of a 13
length sequence with each position having a 99% probability of the consensus letter and the
rest of the letters with equal probability.

4.1 Analysis of simulated data
The accuracy of the binding site estimates is used to assess the models. The proposed joint
intensity-sequence (IS) model gives the binding site probabilities directly, but the two step
ChIP-chip methods like TileMap (TM) give only the enrichment probabilities of the probe
sequences, not specific binding sites within those sequences. In order to get binding site
estimates for TileMap, we used the following procedure. If a probe sequence had a posterior
probability > 0.5 for enrichment, then it was included in the set of selected sequences. These
selected sequences were searched for binding sites by fitting the stochastic dictionary model
(Gupta and Liu, 2003). The primary aim of the analysis is to locate the binding sites of the TF,
and these sites may be estimated by the posterior probability that each position on the genome
corresponds to a sampled motif binding site (that is Ai = 1). This probability is estimated by
averaging the indicators Ai at each position on the genome at each iteration of the DA sampler.
A position on the genome was included in a list of binding sites if the posterior probability of
being sampled as a TFBS was > 0.5.

When fitting motif discovery models with real DNA used as background, there are multiple
motifs that represent multiple modes in the likelihood surface which may result in poor
convergence. Multimodality issues when one does not know the true motif are discussed in
Section 3. In the low prevalence scenarios, a strong prior was placed on the prevalence of the
motif to prevent divergence as described in the Section 2.3, with δ0 = 106 and γ = 0.0001.
Sensitivity analyses demonstrated that model estimation was robust to prior specifications
within a moderately large range of the set values (more details in Section 3).

Four models were applied to each dataset (Figure 4). In the first model, the motif sites were
sampled with the stochastic dictionary model conditioning upon the true enrichment region,
and we call this the Known Binding Region (KBR) model. Second, the two step procedure was
applied by fitting the Intensity Only (IO) model, and third, the two step procedure was applied
using the TileMap method (TM). The TileMap method was not originally designed for two-
color arrays, but it is flexible enough to use a test statistic for probe enrichment computed by
another method. The test statistics for each probe were computed separately as the p-value
under the null hypothesis that  where  is given by the IO model, and

 is a shrinkage estimate for the variance suggested by Ji and Wong (2005). Lastly, the
proposed joint intensity and sequence (IS) model was applied. The model performance
measures were sensitivity and Positive Predictive Value (PPV) for detection of simulated
binding sites. PPV is the probability that an identified site was a true site.

Figure 4 shows that the highly conserved motif was detected more accurately than the Rap1
motif for all models. Also, decreasing the prevalence of the Rap1 motif negatively impacted
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the sensitivities of all models. However, the effects of motif conservation were the strongest.
The IS model was almost equivalent to the KBR model with the artificial motif. The IS model
gives superior performance compared with the IO model in terms sensitivity for a given level
of specificity for all four scenarios. Most notably, the sensitivity is enhanced by the joint IS
model for all scenarios from for the IO model compared with for the IS model given a similar
level of specificity. This implies that the motif matrix estimation is more accurate for the IS
because this estimation is directly related to the accuracy of binding site estimation. In the low
prevalence Rap1 motif scenario, the TileMap procedure failed to find any binding sites in 2 of
the 5 simulations. The fits to simulated data that failed to converge were removed from analysis.

4.2 Simulated data based on the misspecified models
Next, in order to do a fair comparison, we simulated sequences based upon a misspecified IO
model and the nonparametric TileMap intensity model enrichment estimates. First we discuss
the misspecified model. For the highly conserved motif, the IS model performs almost as well
as the KBR model, but the IO model loses some sensitivity under misspecification. For the
high frequency Rap1 motif, the IS model loses less sensitivity (56% to 52%) than the IO model
(50% to 40%). Further, the sensitivity (without loss of PPV) of the IS model is better preserved
under misspecification than the IO model for all simulation scenarios.

The TileMap intensity model selected fewer regions to be enriched than the IO model, and a
higher prevalence of binding sites within these regions was needed in order to estimate the
motif accurately. The Rap1 motif was randomly inserted into the selected regions with a
prevalence of 0.001. This scenario was repeated 5 times (Lower 2 panels of Figure 4). The
TileMap (TM) model has the highest sensitivity, but the joint IS model is still demonstrated
to comparable to the IO model The nonparametric intensity model of TileMap assumes that
the probe intensity component of the proposed model may be misspecified, but the proposed
joint model still shows an excellent performance.

5. Discussion
The proposed HMM for transcription binding site detection is a preliminary approach towards
jointly analyzing the sequence data and ChIP-chip experimental measurements rather than the
implementation of a two stage procedure. A sequence likelihood based on a stochastic
dictionary model is included within the emission densities of the HMM. The joint Intensity
Sequence (IS) model was shown to significantly out-perform the two-stage procedures for
binding site discovery in terms of the sensitivity with a comparable specificity in the simulated
data, indicating that using ChIP-chip binding information in the sequence motif discovery
procedure improves estimation of TFBSs.

Several additional issues should be considered in ChIP-chip analysis. First, the low number of
replicates is likely to be a continued feature of this type of data with some models even designed
for experiments without replication (Johnson et al., 2006). Another issue is the effect of the
variation in probe lengths– it was observed that longer probe lengths in general had a greater
probability for enrichment. Future models could consider probe length explicitly. Also, the
probes are only approximately equally spaced. A continuous-time HMM may be more
appropriate to model probes that are unevenly distributed or contain large gaps.

This preliminary work presents a scenario for several possible variations and extensions of the
IS model. The proposed model currently estimates probe specific enrichment probabilities.
With the availability of higher resolution oligonucleotide arrays, future methods could consider
genome-wide base-pair specific enrichment probabilities so that the genomic sequence is the
fundamental unit of analysis rather than the probes that are an imperfect sampling of the
genome. However, with arrays of higher resolution for larger genomes that contain possibly

Gelfond et al. Page 10

Biometrics. Author manuscript; available in PMC 2009 December 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



millions of probes (for example, human or mouse data), the dynamic programming techniques
employed in the current MCMC procedure may not longer be feasible and alternative
techniques would need to be explored. This could range from employing approximations to
the model likelihood calculated through the recursive summations, to initial filtering steps that
could reduce the total number of probes being considered using the joint model. Also, the bulk
of the computational time is spent computing probe-specific sequence likelihoods and in
sampling non-overlapping sequence segments, and this part of the algorithm may be done in
parallel.

The simple binding model proposed is a reductionist perspective of the TF binding process.
One possible limitation of using the current joint model in certain situations is that it may miss
a number of real binding events that lack the motif sequence, as the binding is a result of
interactions between the transcription factor with collaborating factors. For example, the Tup1
protein interacts with DNA indirectly in association with several different motifs (Buck and
Lieb, 2006). The model could be extended to include the possibility of alternative binding
motifs for the TF of interest, by introducing additional hidden states, each characterized by an
alternative sequence motif. Biological insight into TFs working in conjunction are likely to
motivate successful model extensions.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
ChIP-chip data schematic is shown for one ChIP-chip replicate. The genomic sequence is
shown in blue, and the segments corresponding to the probes is indicated by bars over the
sequence. The number of base pairs has been greatly reduced for clarity. Note that log(IPp1/
Refp1) is increased for the probes close to a binding site, and the region corresponding to the
significant probes contains a binding site. Also, note the correlation between adjacent probes.
This figure appears in color in the electronic version of the article.
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Figure 2.

Histogram of average probe intensities  from Rap1 yeast experiment. The
density estimates from the proposed model fit are overlayed, and the two component mixture
of both Enriched and not Enriched probes is evident. This figure appears in color in the
electronic version of the article.
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Figure 3.
Comparison of motif logos of the model estimates and literature. The final motif estimate for
Rap1 by the joint IS model is at the top. The bottom two plots show the motif discovered by
Lieb et al. (2001) and the motif listed in the TRANSFAC database. This figure appears in color
in the electronic version of the article.
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Figure 4.
The plots show the results of simulations when the underlying true model is either the Intensity
Only model (IO-TRUE), a misspecified Intensity Only model (IO-MISS), or the TileMap
model (TileMap-TRUE). The four scenarios have High or Low motif prevalence (Hi/Low)
with either a Highly Conserved (HC) or the Rap1 motif. The error bars are +/− 1 standard
deviation. This figure appears in color in the electronic version of the article.
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Table 1

Parameter estimates from IO and IS methods

Intensity Only Intensity with Sequence

Parameter Estimate (SD) Estimate (SD)

μ1 0.982 (0.03) 1.02 (0.03)

σa 0.1172 (0.001) 0.1173 (0.001)

ν0
2

0.045 (0.001) 0.045 (0.001)

ν1
2

0.364 (0.021) 0.344 (0.021)

τ00 0.97 (0.002) 0.97 (0.002)

τ11 0.71 (0.02) 0.70 (0.02)
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Table 2

Estimated binding site overlaps between the four methods

- TileMap ChIPOTle Intensity Only Intensity with Sequence

TileMap 159

ChIPOTle 152 293

Intensity Only 152 267 284

Intensity with Sequence 152 277 279 309
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