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Summary
The predictiveness curve shows the population distribution of risk endowed by a marker or risk
prediction model. It provides a means for assessing the model’s capacity for stratifying the
population according to risk. Methods for making inference about the predictiveness curve have
been developed using cross-sectional or cohort data. Here we consider inference based on case-
control studies which are far more common in practice. We investigate the relationship between
the ROC curve and the predictiveness curve. Insights about their relationship provide alternative
ROC interpretations for the predictiveness curve and for a previously proposed summary index of
it. Next the relationship motivates ROC based methods for estimating the predictiveness curve. An
important advantage of these methods over previously proposed methods is that they are rank
invariant. In addition they provide a way of combining information across populations that have
similar ROC curves but varying prevalence of the outcome. We apply the methods to PSA, a
marker for predicting risk of prostate cancer.
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1. Background
The importance of biomarkers in disease screening, diagnosis, and risk prediction has been
generally recognized. A well-established criterion for biomarker selection is classification
accuracy, commonly characterized by the Receiver Operating Characteristic (ROC) curve
and its summary measures. However, classification is not always the major focus.
Oftentimes we use biomarkers to calculate the risk of an outcome. Recently, there has been
increasing awareness that the ROC curve is not the most relevant tool for assessing a
biomarker whose purpose is risk prediction (Gail and Pfeiffer, 2005; Cook, 2007; Huang et
al., 2007; Pepe et al., 2008a; Pencina et al., 2008). On the one hand, the ROC curve does not
display risk which is of primary interest to patients and clinicians. On the other hand, criteria
relating to classification oftentimes can be too stringent for evaluation of a risk prediction
marker. To characterize the predictive capacity of a continuous marker or risk model, a new
graphical tool, the predictiveness curve, has been proposed to display the population
distribution of disease risk predicted by the particular marker or risk model (Bura and
Gastwirth, 2001; Huang et al., 2007; Pepe et al., 2008a).

Let D denote a binary outcome that we term disease here, D = 1 for diseased and D = 0 for
non-diseased. Let Y denote a marker of interest and define Risk(Y) = P (D = 1|Y), the risk
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calculated on the basis of Y. We use the term “risk” in a broad sense, to include presence of
disease at the time Y is measured, and to include future onset of disease after Y is measured,
depending on the application. Assuming Risk(Y) is monotone increasing in Y, the
predictiveness curve for Y is the curve R(v) vs v for v ∈ (0, 1), where R(v) is the risk
corresponding to the vth percentile of Y. The inverse function R−1(p) = P (Risk(Y) ≤ p) is the
proportion of the population with risks less than or equal to p. In other words R−1(p) is the
population cumulative distribution function of risk. An appealing property of the
predictiveness curve is that it provides a common meaningful scale for making comparisons
between markers or risk models that may not be comparable on their original scales.
Comparisons might be based on R(v), the risk percentiles. A better risk prediction marker
tends to have larger variability in percentiles. A clinically compelling comparison is based
on R−1(p). Suppose there exists a low risk threshold pL and/or a high risk threshold pH
which are agreed upon apriori such that the decision for treatment is recommendation for or
against if the estimated risk for a patient is above pH or below pL. A marker or risk model is
preferable to another if it categorizes more people into the low and high risk ranges where
treatment decisions are easy to make and leaves fewer subjects in the equivocal risk range.
That is, we hope to identify markers that have large values of R−1(pL) and 1 − R−1(pH) and
small values of R−1(pH) − R−1(pL).

An example of biomarker evaluation is included in Figure 1, where the ROC and
predictiveness curves for weight and FEV1 are displayed as classification or risk prediction
markers for pulmonary exacerbation in children with cystic fibrosis. The empirical ROC
curves shown in Figure 1(a) suggest that FEV1 has better classification accuracy than
weight. The corresponding predictiveness curves estimated in Huang et al. (2007) are shown
in Figure 1(b). We see for example that at the 90th percentile the risk is 0.76 for FEV1 but
only 0.58 for weight suggesting FEV1 is a better marker of high risk than weight. FEV1 is
also a better marker of low risk. The 10th percentile of risk is 0.28 according to weight but
much lower based on FEV1, 0.15. We can also consider the inverse function taking pH =
0.75 and pL = 0.25. FEV1 is predictive of low risk in R−1(0.25) = 29% of the population,
whereas none are identified as low risk with weight. FEV1 also identifies more people at
high risk than does weight with 1 − R−1(0.75) = 12% and 0% respectively. Less patients are
categorized into the equivocal risk range according to FEV1 (59%) than according to weight
(100%).

Semi-parametric estimators for making inference about the curve and for making pointwise
comparisons between two curves from a cohort study have been developed by Huang et al.
(2007). Since case-control studies are often performed in the early phases of biomarker
development (Pepe et al., 2001), it is important to estimate the predictiveness of continuous
biomarkers in studies that use this type of design as well. When the disease of interest is rare
in the population, using a case-control design to oversample cases can be more efficient than
simple random sampling from the population. In this paper, we consider estimation of the
predictiveness curve from a case-control study, assuming the disease prevalence is known
apriori or that it can be estimated either from an independent cohort or from a parent cohort
study within which the case-control marker study is nested (Baker et al., 2002; Pepe et al.,
2008b). The methodology is based on modeling a parametric ROC curve and exploits the
one-to-one relationship between the predictiveness curve and the ROC curve.

2. Relationship between the Predictiveness Curve and the ROC Curve
Here we focus on the scenario of a single continuous marker. Note the marker may be a
predefined combination of predictors. For example the Framingham risk score is a
combination of age, total cholesterol, HDL cholesterol, systolic blood pressure, treatment for
hypertension, and cigarette smoking. Denote Y, YD, and YD ̄ as the marker measurement in
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the general, diseased, and non-diseased populations respectively. Let F, FD, and FD ̄ be the
corresponding distribution functions and let f, fD, and fD ̄ be the density functions. Let ρ = P
(D = 1) be the disease prevalence. We consider a case-control sample with nD cases and nD ̄
controls.

Throughout this manuscript, we assume the risk of disease P (D = 1|Y) is monotone
increasing in Y. Under this monotone increasing risk assumption, we have that the vth risk
percentile is R(v) = P {D = 1|Y = F−1(v)}. The following theorem characterizes the one-to-
one relationship between the predictiveness curve and the ROC curve.

Theorem 1
Suppose YD and YD ̄ have absolutely continuous distribution functions and P (D = 1|Y) is
monotone increasing in Y. Further suppose the support of YD ̄ covers the support of YD. Then
R(v) vs v can be represented as

(1)

where the ROC curve at false positive rate t is ROC(t), and ROC′(t) is its derivative with
respect to t.

Proof—For v ∈ (0, 1), let y = F−1(v). Suppose FD ̄ (y) = 1 − t. Since y is within the support

of YD ̄, we have  trivially. Let ℒR denote the likelihood ratio function: ℒR(y) =
fD(y)/fD ̄ (y). We have

Moreover,

The last equality holds since  (Green and Swets, 1966). Note the
result can be generalized to the scenario when the upper bound of the support for YD is
larger than the upper bound of the support for YD ̄. We omit the details because it is not
relevant for the method discussed in this paper.

Theorem 1 shows that the predictiveness curve can be constructed from the ROC curve
given the disease prevalence. Conversely, the ROC curve can also be constructed from the
predictiveness curve. Specifically, as pointed out in Pepe et al. (2008a), corresponding to a
percentile value v, the false positive fraction (FPF) is
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, and the true positive fraction (TPF) is

.

The one-to-one relationship between the ROC curve and the predictiveness curve suggests
that there may be a simple relationship between standard summary measures for the curves.
One interesting summary measure of the predictiveness curve previously proposed by Bura

and Gastwirth (2001) is the total gain (TG), , the area sandwiched
between the predictiveness curve and the horizontal line at ρ, the prevalence. The latter is
the predictiveness curve for a completely uninformative marker. Since a better risk
prediction marker has steeper predictiveness curve, Bura and Gastwirth (2001) argued for
gauging predictiveness with the size of TG: better markers have larger values. In Theorem 2,
we show that TG is equivalent to the Kolmogorov-Smirnov measure of distance between
two distributions (case vs control), a traditional ROC summary statistic (Pepe, 2003, pg. 80).
Proof of Theorem 2 is given in the Appendix.

Theorem 2
Under the assumption that P (D = 1|Y) is monotone increasing in Y, we have TG = 2ρ(1 − ρ)
supt{ROC(t) − t} = 2ρ(1 − ρ) maxc{sensitivity(c) + specificity(c) − 1}, where sensitivity(c)
and specificity(c) denote the values when threshold c is used for positive classification with
the marker.

Youden’s index (Youden, 1950), which has a long history as a summary performance
measure for binary tests is the sum of sensitivity and specificity minus 1, and is appealing
when the costs associated with false positive and false negative errors are equal. The point
on the ROC curve that maximizes Youden’s index is often called the ‘optimal point’. It is
interesting to see that the TG is related to this optimal point on the ROC curve. Refer to
Fluss et al. (2005) for various methods to estimate Youden’s index.

Theorem 1 also has implications for estimating the predictiveness curve from a case-control
sample. We can estimate a smooth ROC curve first and then derive the corresponding
predictiveness curve based on (1), where we plug in a known or estimated value for disease
prevalence. This is an appealing procedure for the following reasons: (i) When researchers
are interested in evaluating a biomarker from multiple angles, they may choose to display
both the ROC curve and the predictiveness curve. It is important in this situation that the
assumptions behind estimates of the two curves are compatible with each other. Deriving the
predictiveness curve from the ROC curve will guarantee this; (ii) The fact that the ROC
curve can be estimated only from ranked data implies that methods for deriving the
predictiveness curve from a rank-based ROC curve estimate also only depend on ranks. This
contrasts with previous methods proposed (Huang et al., 2007); (iii) Estimation of the ROC
curve is a well studied problem. There are a wide variety of methods available; (iv) It is
natural to estimate the ROC curve from a case-control study since sensitivity and specificity
are defined conditional on disease status, so case-control data are accommodated by these
methods in contrast to our previous approach (Huang et al., 2007); (v) A fundamental
property of the predictiveness curve is that the area under the curve is equal to ρ since

. The area under an estimated predictiveness curve R̂(v) vs v, on
the other hand, is not necessarily equal to the prevalence estimate. It depends on the
procedure employed for estimation. However, if a predictiveness curve is calculated using a
prevalence estimate ρ̂ and an estimated ROC curve  which is differentiable almost
everywhere, then the area under the estimated predictiveness curve is always equal to ρ̂. In
particular
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This is a desirable property for a predictiveness curve estimate. When we compare two
markers with respect to the steepness of their estimated predictiveness curves, it facilitates
visual comparisons when the estimated curves have the same area under the curve; (vi)
Finally, a unique property of the ROC curve based method compared to alternative methods
is its ability to borrow information across populations when a marker’s discriminatory
performance (ROC curve) is the same across different populations. When this happens, a
common ROC curve can be estimated using samples from different populations (Janes and
Pepe, 2008a,b,c; Huang et al., 2008). The estimator can be combined with disease
prevalences to estimate predictiveness curves for individual populations. In contrast, one
cannot take advantage of the constant ROC curve assumption in other frameworks, for
example, when risk models and marker distributions are estimated separately (Huang et al.,
2007).

Before we start exploring a specific ROC based method for estimation, we note that the
assumption that P (D = 1|Y = y) is increasing in y implies that ℒR(y) is increasing in y which
in turn implies that ROC′(t) is decreasing in t. That is, a monotone increasing risk function
assumption implies concavity of the corresponding ROC curve. Therefore, we prefer
methods that lead to concave estimates of the ROC curve. Note that concavity is always a
desirable property for an ROC curve because it guarantees that the ROC curve will never
cross the 45° “guessing line” (Dorfman et al., 1996) and because it is a property of the
optimal ROC curve for decision rules based on Y (Egan, 1975).

3. Estimation Using Parametric ROC Models
Approaches to estimating an ROC curve vary along a spectrum regarding assumptions
made. At one extreme, we can model the marker distributions within cases and controls
parametrically and calculate the corresponding ROC curve. For example Wieand et al.
(1989) modeled YD and YD ̄ as normally distributed. A method with more flexibility is to
assume YD and YD ̄ are normally distributed after a BoxCox transformation (Zou and Hall,
2000; Faraggi and Reiser, 2002). At the other extreme, an ROC curve can be estimated
completely nonparametrically using empirical estimators for FD and FD ̄ (Greenhouse and
Mantel, 1950; Hsieh and Turnbull, 1996; Wieand et al., 1989). A method in-between is to
assume a parametric model for the ROC curve without enforcing any parametric
distributional assumptions on marker measures. This semi-parametric approach is more
efficient than the nonparametric approach, yet more robust than modeling the marker
distributions parametrically. There are many existing semi-parametric approaches we can
use to estimate a parametric ROC curve. Metz et al. (1998) proposed grouping continuous
data and estimating the parameters based on the Dorfman and Alf maximum-likelihood
algorithm for ordinal data (Dorfman and Alf, 1969). Hsieh and Turnbull (1996) developed a
generalized least squares method to fit a parametric ROC curve to discretized continuous
data. Pepe (2000) and Alonzo and Pepe (2002) proposed a distribution-free ROC-GLM
procedure. Zou and Hall (2000) developed an estimator maximizing the likelihood function
of the order statistics. Pepe and Cai (2004) maximized the pseudolikelihood based on
standardized marker values. Cai and Moskowitz (2004) developed a maximum profile
likelihood approach which provides fully efficient parameter estimates. These semi-
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parametric approaches have the attractive property of being rank-based. We will focus on
these semi-parametric approaches for estimation. First, consider how to formulate a
parametric ROC model.

3.1 Modeling the Predictiveness Curve over the Whole Range
The most widely used parametric ROC model is the binormal ROC curve. It assumes that
there exists a common unspecified monotone transformation h, which transforms the marker
distributions in both cases and controls to normality. Suppose

, the corresponding ROC curve is ROC(t) = Φ{a
+bΦ−1(t)}, where a = (μD − μD ̄)/σD and b = σD ̄/σD.

Many algorithms including the semi-parametric methods listed above have been proposed to
fit the binormal ROC curve. Moreover, the binormal assumption is thought to fit many real
datasets (Hanley, 1988). However, a problem with using the binormal ROC model is that it
is not concave in (0, 1) unless b = 1 (i.e. the normal distributions for cases and controls have
the same variance). This can be seen from the log of the derivative of ROC(t) which is
quadratic in Φ−1(t)

(2)

where C+ is some positive constant.

The lack of concavity for a binormal model has been shown to have only a minor impact on
estimation of the ROC curve itself. However, it can have a large impact on the derivative of
the ROC curve, which in turn can cause problems in estimating the predictiveness curve. To
get a flavor for this, look at the example in Figure 2, where 50 cases and 50 controls are
simulated from normal distributions with equal variances. The estimated binormal ROC
curve (Figure 2a) has a tiny squiggle in the left-hand tail which is almost unnoticeable,
whereas the corresponding predictiveness curve estimate has a big non-monotone tail at the
right end (Figure 2b).

To avoid this problem, one solution is to employ other parametric models that yield concave
ROC curves. Two parametric models for concave ROC curves are the bigamma and bilomax
models. The bigamma ROC curve (Dorfman et al., 1996) assumes there exists a common
monotone transformation that transforms the distributions of YD and YD ̄ into gamma
distributions with the same shape parameter. The use of this ROC model is hindered by the
fact that the ROC function cannot be written in closed-form. The bilomax ROC curve
proposed by Campbell and Ratnaparkhi (1993) assumes the existence of a monotone
transformation h such that the distributions of h(YD ̄) and h(YD) are lomax or type II Pareto
(Lomax, 1954). A detailed account of methods that employ the bilomax ROC curve can be
found in Huang (2007).

In the rest of this paper, we focus on an alternative strategy. Since the binormal ROC curve
is widely used, we develop techniques for predictiveness curve estimation based on this
model. However, instead of fitting the predictiveness curve and the ROC curve over the
entire domain (0,1), we only model a portion of it that is of interest. In this approach we can
ensure concavity of the ROC curve and consequently monotonicity of the predictiveness
curve within a restricted range of interest.
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3.2 Modeling a Portion of the Predictiveness Curve
In addition to addressing the concavity issue, there are several other reasons to consider
estimating the predictiveness curve over a subinterval of (0,1). First, by enforcing model
assumptions on only a portion of the curve, we increase robustness of the estimate. Second,
risks only within a particular range may be of primary interest. Third, a parametric ROC
model creates lack of flexibility in the estimated predictiveness curve at the boundary. As
shown in Table 1, when a binormal ROC model is enforced over the whole (0,1) domain, the
boundary of the predictiveness curve has value either 0 or 1. However, in applications the
risk function is often not 0 or 1 at extreme values of the marker. Therefore, the binormal
predictiveness curve will not fit at the boundary in these settings.

Researchers in the field of diagnostic test evaluation have long been interested in the partial
ROC curve. For example, in screening studies, it is important to minimize the unnecessary
cost due to false positive test results, hence the region of the ROC curve corresponding to
low FPF is most relevant. If the purpose of the study is disease diagnosis, it is critical not to
miss detecting subjects with disease, and hence the part of the ROC curve corresponding to
high TPF is of primary interest. Modeling a partial ROC curve and the area under it has been
proposed and studied (McClish, 1989; Thompson and Zucchini, 1989; Jiang et al., 1996;
Dodd and Pepe, 2003; Pepe and Cai, 2004).

Interestingly, when concavity is required only over a certain portion of the ROC curve,
parametric ROC models which are not concave in the whole range may be employed.
Consider the classic binormal ROC curve, ROC(t) = Φ {a + bΦ−1(t)}, whose derivative is
shown in (2). Consider the following two scenarios: (i) If 0 < b < 1, ROC′ (t) increases as
{Φ−1(t) + ab/(b2 − 1)}2 increases. Thus for ROC′(t) to be monotone decreasing, we need to
have Φ−1(t) < −ab/(b2 − 1) ⇔ t < Φ (−ab/(b2 − 1)) ⇔ a > (1 − b2) Φ−1(t)/b. That is, by
imposing this restriction on (a,b) over the FPF range of interest, the corresponding portion of
the ROC curve is guaranteed to be concave. (ii) If b > 1, ROC′(t) increases as {Φ−1(t) + ab/
(b2 − 1)}2 decreases. Thus for ROC′(t) to be monotone decreasing, we need to have Φ−1(t) >
−ab/(b2 − 1) ⇔ t > Φ (−ab/(b2 − 1)) ⇔ a > (1 − b2) Φ−1(t)/b. We can impose these
restrictions during estimation to guarantee concavity of the partial binormal ROC curve over
the range of interest. Suppose concavity is required for t ∈ (t0, t1), we fit the ROC model
with the restriction on parameter estimates (a, b): a > (1−b2) Φ−1(t0)/b and a > (1 − b2)
Φ−1(t1)/b.

3.3 Estimation
Denote by ROCθ(t), t ∈ (0, 1), the parametric ROC curve with parameter θ. Define

 and H(θ, t, ρ) = 1−(1− ρ)t− ρROCθ(t). Let G−1(θ, p,
ρ) = inf {t : G(θ, t, ρ) ≤ p and } and H−1(θ, v, ρ) = inf {t : H(θ, t, ρ) ≤ v}. We can
estimate θ using algorithms described before and denote its estimator by θ ̂. Let ρ̂ be the
estimate of disease prevalence available to us. Estimators of the corresponding
predictiveness curve and its inverse are

In practice, oftentimes there does not exist a closed-form for H−1(·) or G−1(·) and numerical
methods need to be implemented to calculate R̂(v) and R̂−1(p).
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The prevalence estimate may not have sampling variability in some applications. For
example, if ρ derives from a population disease registry such as
SEER(http://seer.cancer.gov), its value is essentially known due to the large sample size
involved. Moreover, in some settings investigators will want to substitute fixed values of ρ
into the predictiveness estimate in order to determine prevalences that render the marker
useful as indicated by the corresponding predictiveness curves. This sort of “what-if”
exercise, could lead to consideration of specific populations for application of the marker. In
other applications the prevalence will be estimated with sampling variability from data. Such
data may be independent of the case-control data, for example when it is based on a report
from the literature. Alternatively it may be derived from a cohort within which the case-
control study is nested. The nested case-control design has been proposed as the preferred
design for pivotal evaluation of biomarkers for classification (Pepe et al., 2001, 2008b;
Baker et al., 2002) and involves measuring the outcome D for all subjects in random sample
from the population of interest but the marker Y only for a subsample of cases and for a
subsample of controls.

3.4 Asymptotic Theory
Suppose R̂ (v) and R̂ −1(p) are estimators of R(v) and R−1(p). We assume the following
conditions hold.

Assumptions
i.

, where n = nD + nD ̄. Note that for the
special case where ρ is assumed known, we have Σθρ = Σρρ = 0.

ii. ROCθ(t) is differentiable with respect to θ and t.

iii. G(θ, t, ρ) is differentiable with respect to θ, t, and ρ with derivatives g1, g2, and g3.

iv. H−1(θ, v, ρ) is differentiable with respect to θ.

v. G−1(θ, p, ρ) is differentiable with respect to θ.

Theorem 3: We have

where , with

, and

Theorem 4: We have
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where , with

and

.

Observe that the variance of R̂(v) and R̂−1(p) are related by the equation σ2(v) = {∂R(v)/∂v}2

τ2(p) = [g2 {θ, H−1(θ, v)} ∂H−1(θ, v)/∂v]2 τ2(p) where p = R(v). Theorems 3 and 4 follow
directly from the continuous mapping theorem and the chain rule. Typically the terms 
in Theorem 3 and  in Theorem 4 are zero because Σθρ= 0, even in a nested case-control
study. This follows because θ is estimated from the conditional distribution of the marker
given disease status, while ρ̂ is a function only of disease status data.

Due to the lack of closed-forms for H−1(·) and G−1(·), numerical differentiation methods are
needed for calculation of their derivatives when estimating the asymptotic variances of R̂ (v)
and R̂−1(p). We use bootstrap resampling instead for variance estimation with resampling
reflecting the study design. Separate resampling of cases and controls is employed, with
resampling of D for the entire cohort when prevalence is estimated.

4. Simulation
We simulate a nested case-control study to evaluate the finite sample performance of
predictiveness curve estimates. To generate data we use disease prevalence ρ = 0.2, and the
binormal model for the risk marker Y : h(Y)|D = 0 ~ N(0, 1) and h(Y)|D = 1 ~ N(μ, 1), where
h(y) = log{exp(y) −3.5}. A cohort of size n = 5,000 comprises the parent study, with D
generated as Bernoulli with probability ρ = 0.2. The risk marker is then generated for equal
numbers of cases and controls nested within the cohort. Suppose a low risk threshold 0.1 and
a high risk threshold 0.3 are of major interest. The measures studied in the simulation are
R(v) and R−1(p) for p = 0.1, 0.3 and the corresponding R(v) for v = R−1(p). The effect of the
FPF range chosen for fitting the partial ROC curve is evaluated as follows: (i) a binormal
ROC curve with t ∈ (0.01, 0.99) is fitted for estimating both p = R−1(0.1) and p = R−1(0.3)
and corresponding R(v) for v = R−1(p); (ii) a binormal ROC curve with t ∈ (0.5, 0.99) is
fitted for estimating R−1(0.1) and the corresponding R(v), while t ∈ (0.01, 0.50) is employed
when estimating R−1(0.3) and the corresponding R(v). The pseudolikelihood procedure
(Pepe and Cai, 2004) is used for fitting the ROC model.

For comparison purposes, we note that an alternative approach for estimation of the
predictiveness curve is to separately estimate the risk model and the marker distribution. The
method proposed for cohort studies by Huang et al. (2007) can be naturally extended to
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case-control studies. Assume the population risk model is logitP (D = 1|Y) = β0 + β1Y. Let
Sampled indicate being sampled in the case-control study. According to Bayes’ theorem

Therefore to estimate the risk model, we apply an ordinary linear logistic regression model
to the data and correct the intercept using the term −logit (ρ̂) + log (nD/nD ̄). The marker
distribution is estimated as a weighted average of the empirical marker distributions within
cases (F̃D) and controls (F̃D ̄) (Huang, 2007), i.e. F̃(y) = ρ̂F̃D(y) + (1 − ρ̂)F̃D ̄(y).

We evaluate three models with μ = 0.5, 0.8, 1.2, which correspond to markers with relatively
weak, moderate, and strong predictive capacity. For each model, we study performance of
the predictiveness estimators for case-control sample sizes varying from 500 to 1000. For
each sample size, 1000 Monte-Carlo simulations are performed. The bootstrap is conducted
for variance estimation, resampling marker data within cases and controls separately. Also
resampled is disease status for the parent cohort in order to incorporate variability in ρ̂. For
each simulation, 250 bootstrap samples are generated. The 95% confidence intervals are
constructed from the 2.5 and 97.5 percentiles of the bootstrap distributions.

Results for bias, mean squared error (MSE), and empirical coverage probability of
confidence intervals are shown in Table 2. We see that the rank-invariant estimators based
on estimating the partial ROC curve have good performance. Bias is minimal for R(v) and
for R−1(p). All 95% bootstrap confidence intervals have reliable coverage. On the other
hand, the estimator based on logistic regression is biased since this method is not rank-
invariant and in this example an incorrect scale for the marker is employed in the risk model.
It has larger MSE than the partial ROC curve based estimator and very poor coverage in this
simulation setting.

Finally, Table 3 presents average width of percentile bootstrap confidence intervals based on
partial binormal ROC curve fitting, as a function of FPF range, predictive strength of the
marker and sample size. Observe that in general estimation of R−1(p) is more challenging
than estimation of R(v): the former has much wider confidence intervals. Precision of an
estimator for R−1(p) depends on sample size and FPF range. With limited resources (sample
size), widening the range of FPF will increase precision of the corresponding predictiveness
curve estimate. However, flexibility of the ROC curve estimate is compromised. This issue
of bias versus variance trade-off is typical in statistical modeling. Also note that the
precision of the R−1(p) estimator tends to be larger for a marker with better predictive
accuracy, when the predictiveness curve is steep. For a marker with very weak predictive
strength such that the predictiveness curve is very flat at risk threshold p, it is not essential to
estimate R−1(p) with high precision since the marker is not going to be helpful for
predicting.

In practice, it is up to the investigator to make a choice between precision and robustness
given available resources or to increase sample size. For example, for a marker with
moderate predictive strength in our simulation models, average CI length is around 10% for
R−1(p) at p = 0.30 for sample size 500 when FPF ranges from (0.01 to 0.99). This is fairly
informative. We use a sample size of 500 in our illustration of PSA as a predictive marker
for prostate cancer that is described next.
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5. Markers for Prostate Cancer
We illustrate the methodology using data from the placebo arm of the Prostate Cancer
Prevention Trial (Thompson et al., 2006). Almost all subjects, 5519, in the cohort underwent
prostate biopsy at the end of the study and thus had prostate cancer disease status available.
21.9% of men were found to have prostate cancer. The marker, PSA value prior to biopsy, is
available for every subject. Our goal is to evaluate PSA as a risk prediction marker for
diagnosis of prostate cancer from the biopsy. To illustrate application of our methodology to
a nested case-control sample, we randomly sampled 250 cases and 250 controls from the
cohort and pretend that PSA is only measured for these 500 subjects but not for the rest of
the cohort.

Given a low risk threshold of 10% and a high risk threshold of 30%, our main interest is to
estimate R−1(0.10) and 1 − R−1(0.30), the proportions of subjects falling into the low and
high risk ranges. We considered two ways to fit the partial binormal ROC curve, that
prioritize precision and flexibility respectively. First, we fit one concave partial ROC curve
to provide estimates for both R−1(0.10) and 1 −R−1(0.30). To include most of the available
data in the interval while avoiding problems due to sparse data at the boundary, we choose
the FPF range t ∈ (0.05, 0.95). This guarantees at least 12 controls with data beyond the
corresponding risk threshold estimate. The estimated partial ROC curves are displayed in
Figure 3(a). Also displayed is the empirical ROC curve (Obuchowski, 2003). The two in
general agree well with each other.

We then estimate the corresponding partial predictiveness curve for PSA plugging in ρ̂
estimated from the parent cohort. The partial predictiveness curve with its 95% confidence
intervals (taking variablity in ρ̂ into account) are displayed in Figure 3(b), Also displayed is
the nonparametric predictiveness estimate, R̃(v) vs v, under the monotone increasing risk
assumption. This curve is generated by estimating P̃ (D = 1|Y) using isotonic regression as
described below, estimating FD and FD ̄ empirically with F̃D and F̃D ̄, calculating F̃= ρ̂F̃D
+(1−ρ̂)F̃D ̄, and R̃(v) = P̃ {D = 1|Y = F̃−1(v)}. Again, the partial predictiveness curve derived
from the partial binormal ROC models appears to be similar to the nonparametric curve.

Table 4 presents corresponding estimates of R−1(0.1) and 1 −R−1(0.3). First, based on ρ̂
estimated from the phase-one cohort (ρ̂= 21.9%), 20.5% subjects in the population are
classified as low risk, 26.4% classified as high risk. Confidence intervals are constructed
either treating disease prevalence as fixed or taking variability in ρ̂ into account. In this
example, the parent cohort is much larger than the case-control sample (around 10 times
larger), so variability in ρ̂ has a very small impact on the width of these CIs. Observe that the
widths of the confidence intervals are around 18% for estimating R−1(0.10) and 15% for
estimating 1 − R−1(0.30), reasonably tight from a clinical point of view.

When flexibility of the curve is of major concern, a second strategy can be employed for
estimating the predictiveness of PSA at the low and high risk thresholds. Two concave
binormal partial predictiveness curves are fitted separately at the low and high ends of the
domains for v. The ranges of false positive fractions (FPF) for the corresponding partial
ROC curve are (0.38, 0.95) and (0.10, 0.32). Our strategy for choosing these ranges is
described as follows.

For the high risk threshold, pH, and analogously for the low risk threshold, pL, we require
that the FPF corresponding to the risk threshold is an interior point of the domain of the
partial ROC curve. As described below, we first fit a non-parametric risk model to the data,
and use  to denote the fitted value for the ith subject. We then choose as the upper limit
of the ROC domain the estimated FPF corresponding to a slightly lower risk value,
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. Similarly, we chose as the lower limit
of the ROC domain the estimated FPF corresponding to a slightly higher risk values,

. We used Δ = 0.05, although larger values
could certainly be employed. To avoid problems due to sparse data at the boundary, if the
lower FPF limit computed above was smaller than 0.05, it was changed to 0.05, and if the
upper limit calculated above was larger than 0.95, it was changed to 0.95.

The estimated partial ROC curves are displayed in Figure 3(a). They agree fairly well with
the empirical ROC curve and the partial ROC curve with t ∈ (0.05, 0.95). The corresponding
partial predictiveness curve for PSA plugging in ρ̂ estimated from the parent cohort, with its
95% percentile bootstrap confidence interval (with variability in ρ̂ taken into consideration)
are displayed in Figure 3(c). Compared to Figure 3(b), confidence intervals are wider with
reduced range of FPF. The width of CIs for R−1(0.10) and 1 − R−1(0.30) are around 22%
(Table 4). Compare the results for the two partial ROC curve fitting strategies in Table 4.
Estimates of R−1(0.10) and 1 − R−1(0.30) shift upward by 3% and 6% respectively when the
more flexible strategy is employed. Still, they fall into the 95% CIs based on the curve with
the wider FPF range. In practice, if desired precision is of major concern, a wide FPF range
is favored. To further increase precision while maintaining flexibility requires a larger
sample size.

Note that in practice, when we don’t have a large cohort available for precise estimation of
the disease prevalence, sensitivity analysis with varying ρ becomes important. Using our
data as an example, the impact of varying perturbations of ρ are examined (Table 3). First
we plug in ρ = 20.87% and 23.05%, which correspond to the lower and upper bounds of the
95% confidence interval for disease prevalence based on the cohort. When a bigger ρ is
entered, we get a larger estimate of 1−R−1(0.30) and smaller estimate of R−1(0.10), although
changes in these estimates are not big here (around 3% for both partial ROC curve fitting
strategies). Next we increase the perturbation in ρ and plug in ρ = 18.53% and 25.78%,
which correspond to lower and upper bounds of the 95% confidence interval for disease
prevalence if a cohort with 500 subjects is used for estimating prevalence. This time the
magnitude of the predictiveness estimates changes quite a lot (around 5–10%). This
demonstrates the value of a two-phase design for biomarker evaluation when ρ is estimated
precisely from a large cohort while the novel marker Y is measured only for a case-control
subset. We also see the value of a sensitivity analysis when an accurate estimate of
prevalence is not available.

Finally we describe the algorithm used to fit the non-parametric risk model that incorporates
the monotone increasing risk assumption. It involves two steps: (a) We compute P (D = 1|Y,
Sampled) from the case-control sample using isotonic regression with the pool-adjacent-
violators algorithm (Barlow et al., 1972). Specifically, let y1, …, yU be the unique values for
Y in the case-control sample in increasing order. These comprise the initial blocks of the
data. The unrestricted MLE of P (D = 1|Y = y, Sampled) within each block is computed as
the observed proportion of diseased subjects in that block. Next, estimators within adjacent
blocks are compared. If estimators from a pair of adjacent blocks do not increase, the two
blocks are pooled and the estimator is recomputed. This procedure of comparison and
blocking continues until the sequence of proportions is non-decreasing. At the conclusion of
the procedure, the restricted MLE, P̃ (D = 1|Y = yj, Sampled), is the proportion of diseased
subjects within the block containing yj; (b) We estimate the population risk function
according to Bayes’ theorem P̃ (D = 1|Y)/P̃ (D = 0|Y) = {P̃ (D = 1|Y, sampled)/P̃(D = 0|Y,
sampled)} (nD ̄/nD) {ρ̂/(1 − ρ̂)}, and obtain a nonparametric risk estimate for every subject in
the case-control sample , i=1,…, nD+nD ̄.
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6. Discussion
Classification accuracy is usually considered to be an intrinsic property of a marker because
it does not depend on the population-specific disease prevalence. Predictiveness, on the
other hand, integrates classification accuracy and disease prevalence (Pepe et al., 2008a) and
characterizes the risk prediction capacity of the marker in a particular population. In this
paper, we show the one-to-one relationship between the ROC curve and the predictiveness
curve when disease prevalence is fixed. The latter has been proposed as a graphical tool for
evaluating a continuous risk prediction marker. We developed methodology for estimating
the predictiveness curve based on a parametric ROC model using a case-control study
design. The idea of estimating an ROC curve first seems very natural in the retrospective
setting considering that criteria for classification accuracy are defined conditional on disease
status. The availability of a wide variety of methods for estimating a parametric ROC curve
makes this approach even more appealing. We note that the parametric ROC curve
methodology can be applied to a cohort study as well by plugging in the sample prevalence.

The main limitation associated with assuming a parametric ROC model, however, is lack of
flexibility in the predictiveness curve estimator, especially at the boundary. Estimating a
partial predictiveness curve from a partial ROC curve holds promise for resolving this issue.
At the same time, it allows use of the most popular parametric ROC model, the binormal
ROC model, which may not be concave over the whole range of FPF but can be restricted to
be concave in the certain regions. As we have pointed out, an alternative semi-parametric
method for predictiveness curve estimation is to fit a risk model using logistic regression
and to estimate the marker distribution within cases and controls separately (Huang and
Pepe, 2008b, c). This is also an appealing approach since logistic regression is widely used
in epidemiological studies. On the other hand, the ROC curve based method has some
desirable properties that the logistic regression method lacks. First, the ROC curve
estimation method is rank invariant so it does not matter on what scale the marker is
measured, whereas fitting of a parametric risk model depends on the scale of the marker
measure. Second, the ROC curve based method is natural when considering data from
heterogeneous or multiple populations. When a marker’s capacity to distinguish cases from
controls is invariant across populations, existing methods can be applied to estimate the
common ROC curve using data from different populations (Janes and Pepe, 2008b, c; Huang
and Pepe, 2008a; Huang et al., 2008). This together with population-specific prevalences
lead to population-specific predictiveness curve estimates that are more efficient than those
estimated from individual populations. Finally, since the ROC curve has been the gold
standard for biomarker evaluation for decades, researchers may tend to plot it together with
the predictiveness curve when they are interested in examining a marker from multiple
points of view. While a parametric ROC model is fitted, which is fairly common in practice,
deriving the predictiveness curve from it ensures the two curves are estimated under
compatible model assumptions.

Some extensions of our methods should be considered. The methods can easily be extended
to compare points on predictiveness curves for different markers. When predictiveness
curves in subpopulations are of interest, we can estimate the covariate-specific ROC curve
using existing ROC regression methods (Alonzo and Pepe, 2002; Pepe and Cai, 2004; Cai
and Moskowitz, 2004) and derive the corresponding covariate-specific predictiveness curve
by plugging in disease prevalence for the subpopulation. Here we have focused on disease
status at a fixed point in time. When subjects are observed over time, the time dimension
may make things more challenging especially if there is censoring. Methods to incorporate
the time dependence in an event time setting requires further investigation.
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Pepe et al. (2008a) suggested that to evaluate a risk prediction marker, besides estimating its
predictiveness, it is also helpful to provide information about the fractions of cases and
controls identified as high (low) risks in order to assess the effect of correct and incorrect
treatment decisions based on the risk marker. For a given risk threshold p, the true and false
positive fractions are defined as TPF(p) = P {Risk(Y) > p|D = 1} and FPF(p) = P {Risk(Y) >
p|D = 0}. Based on arguments similar to those in Theorem 1, it can be shown that the curve
TPF(p) vs p, can be represented as a plot of ROC(t) vs ρROC′(t)/{ρROC′ (t) + (1 − ρ)},
while the curve FPF(p) vs p, can be represented as a plot of t vs ρROC′ (t)/{ρROC′ (t) + (1 −
ρ)}. So the rank-invariant parametric ROC curve based strategy developed in this work can
be readily applied to estimate these classification performance curves as well for full
evaluation of a marker.
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7. Appendix

Proof of Theorem 2
Let v* be the x-coordinate of the point where the predictiveness curve and the prevalence
curve cross, i.e. R(v*) = ρ. Let t* be the value corresponding to v*, i.e. 1 − (1 − ρ)t* −
ρROC(t*) = v*. Then

Also we have

Now look at the function ROC(t)−t, its derivative is ROC′(t)−1. For a concave ROC curve,
ROC′ (t) is monotone decreasing such that ROC′ (t) − 1 > 0 for t < t* and ROC′ (t) − 1 < 0
for t > t*. So the maximum of ROC(t) − t is achieved at t*, which completes the proof.

Huang and Pepe Page 16

Biometrics. Author manuscript; available in PMC 2010 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
ROC curves and Predictiveness curves for two markers of pulmonary exacerbation in
children with cystic fibrosis.
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Figure 2.
Examples of (a) non-concave binormal ROC curve and (b) the corresponding predictiveness
curve.
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Figure 3.
(a) (Partial) ROC curves for PSA (I: t ∈ (0.05, 0.95), II: range of t determined by R−1(p) ±
0.5) and (b)(c) partial predictiveness curves for PSA estimated from the nested case-control
study and the corresponding 95% confidence intervals for R−1(p) (range of FPF for partial
binormal ROC fitting is (0.05, 0.95) in (b) and determined by R−1(p) ± 0.5 in (c)).
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Table 1

Properties of binormal ROC model and the corresponding predictiveness curve.

lim ROC′(t) Implications for lim R(v)

Binormal ROC(t) = Φ {a + bΦ−1(t)}

b < 1

limt→1 ROC′ (t) = ∞ limv→0 R(v) = 1

limt→0 ROC′ (t) = ∞ limv→1 R(v) = 1

b > 1

limt→1 ROC′ (t) = 0 limv→0 R(v) = 0

limt→0 ROC′ (t) = 0 limv→1 R(v) = 0

b = 1

limt→1 ROC′ (t) = 0 limv→0 R(v) = 0

limt→0 ROC′ (t) = ∞ limv→1 R(v) = 1
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