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Summary
Group testing, where subjects are tested in pools rather than individually, has a long history of
successful application in infectious disease screening. In this paper, we develop group testing
regression models to include covariate effects which are best regarded as random. We present
approaches to fit mixed effects models using maximum likelihood, investigate likelihood ratio and
score tests for variance components, and evaluate small sample performance using simulation. We
illustrate our methods using chlamydia and gonorrhea data collected by the state of Nebraska as part
of the Infertility Prevention Project.

Keywords
Generalized linear mixed model; Latent binary response; Likelihood ratio test; Monte Carlo EM
algorithm; Pooled testing; Score test

1. Introduction
The Infertility Prevention Project (IPP) is a national program, funded by the Centers for Disease
Control and Prevention, aimed at providing routine screening, prevention strategies, and
treatment for individuals with chlamydia and/or gonorrhea infection. Chlamydia and gonorrhea
are the two most common sexually transmitted diseases (STDs) in the United States, and each
year the US spends approximately $4 billion on assessment, testing, and treatment for these
infections (Screening and Treatment Guidelines, IPP, Region VII, 2003). Unlike most viral
STDs, individuals with chlamydia and gonorrhea, both bacterial infections, are usually
asymptomatic, and left untreated, both infections can result in a variety of long-term sequelae,
such as pelvic inflammatory disease, ectopic pregnancy, and infertility (Kacena et al., 1998a,
1998b).

This research arises from our interaction with medical collaborators in Nebraska (Region VII
of the IPP), where more than 30,000 individuals are tested for chlamydia and gonorrhea each
year. With the current testing cost of about $15 per individual expected to rise as public health
costs increase nationally, our colleagues have expressed an interest in implementing group
testing (also known as pooled testing) as a means of surveillance in the state. Group testing,
where subjects are tested in pools rather than individually, has a long history of successful
application in infectious disease screening, dating back to the work of Dorfman (1943). Today,
pooling individual samples (e.g., blood, urine, etc.) is a common strategy to reduce testing costs
and has been implemented in a variety of infectious disease applications involving HIV,
hepatitis B/C (Cardoso, Koerner, and Kubanek, 1998; Pilcher et al., 2005), and elsewhere for
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chlamydia and gonorrhea screening (Kacena et al., 1998a, 1998b; Lindan et al., 2005; Rours
et al., 2005).

Traditionally, statistical research in group testing has focused on homogeneous populations;
that is, the positive/negative statuses of individuals tested are assumed to be independent and
identically distributed (iid) random variables. However, in most infectious disease studies,
there is covariate information available for each individual, and a major thrust of the analysis
is to determine which covariates are associated with individual positivity. To address this issue,
Vansteelandt, Goetghebeur, and Verstraeten (2000) and Xie (2001) have each proposed fixed
effects regression approaches to account for individual covariate information with pooled
binary responses. Vansteelandt et al. (2000) use a method by which maximum likelihood
estimates are computed directly using the pooled responses, whereas Xie (2001) treats the
individual responses as unobserved and uses the EM algorithm.

Unifying the approaches of Vansteelandt et al. (2000) and Xie (2001) is the assumption that
individual (latent) statuses are independent. However, one aspect of the Nebraska study
conspicuously calls this assumption into question. Because testing takes place at different clinic
site locations throughout the state, individuals are inherently clustered by design and may share
common characteristics. For example, the level of gonorrhea and chlamydia infection in
Douglas County (which includes Omaha) has recently been described as at “epidemic” levels
(Zagurski, 2006), whereas infection levels in other parts of the state are relatively lower. If the
prevalence of chlamydia and gonorrhea does vary geographically, it would be more natural to
regard the individual latent infection statuses as correlated and to conceptualize clinic locations
as random effects. Taking this perspective, the analysis of group testing samples from the
Nebraska IPP requires the development of new regression methods that allow for within-cluster
correlation among the individual latent binary responses.

In this paper, we generalize the group testing regression modeling approach of Vansteelandt
et al. (2000) to include random effects. In Section 2, we obtain maximum likelihood estimates
and discuss large sample inference for fixed effects parameters. In Section 3, we present
likelihood ratio and score tests for variance components which allow one to assess
heterogeneity among clusters. In Section 4, we provide simulation evidence to show that our
model fitting approaches behave well and that tests for variance components have very good
size and power properties in finite samples. In Section 5, we illustrate the use of our new
analytical methods with the Nebraska IPP data. In Section 6, we summarize and discuss
extensions of this work.

2. Estimation and Inference
2.1. Notation and Assumptions

We are interested in developing mixed effects regression techniques to model the probability
of a single infection (e.g., chlamydia) using pooled testing results. In doing so, we view
individuals from a given clinic site as a cluster. Within the ith site, suppose that each individual
is randomly assigned to one of ni pools and let Yijk = 1 if the kth individual in the jth pool at
site i is positive, Yijk = 0 otherwise, for i = 1, 2, ..., l, j = 1, 2, ..., ni, and k = 1, 2, ..., cij. We

henceforth refer to cij as the pool size. We let , where ui denotes a q × 1
random effect vector for site i, and relate the latent status Yijk to the covariate information
through the generalized linear mixed model

(1)
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where β is a p × 1 vector of fixed effects parameters, xijk is a p × 1 covariate vector associated
with the fixed effects, zijk is a q × 1 covariate vector associated with the site-specific random
effects, and g(·) is a known, monotonic, differentiable link function. It is worth emphasizing
that Yijk is not observed, unless cij = 1, which corresponds to testing subjects individually.

Because identifying positive individuals is not our goal, similarly to Vansteelandt et al.
(2000), we consider the case where only the initial pooled responses are observed; that is,
subsets of positive pools are not retested further. Define Tij = 1 if the jth pool at site i tests
positive, Tij = 0 otherwise, for i = 1, 2, ..., l and j = 1, 2, ..., ni. We assume that the statuses of
individuals and pools from different sites are independent and that, conditional on ui, the
statuses of individuals and pools within site i are independent so that

where γ1 and γ2 denote assay sensitivity and specificity, respectively. It is assumed that γ1 and
γ2 are constants close to 1 and do not depend on cij, a reasonable assumption with modern
diagnostic assays based on nucleic acid technology (NAT). For a number of chlamydia studies,
NATs have been shown to have high sensitivity and specificity for pools of up to size 10 when
pooling urine or cervical swabs (see, e.g., Kacena et al., 1998b). Similar results have been
observed in gonorrhea studies (Kacena et al., 1998a).

We treat the site-specific u1, u2, ..., ul as iid multivariate normal random vectors with mean 0
and covariance matrix D ≡ D(φ), where φ is an m × 1 vector of variance components. Denote
by θ = (β’, φ’)’ the (p + m) × 1 vector of parameters. Under these assumptions, the log-likelihood
of θ based on the observed pool responses T = (Tij) is

(2)

where ,

(3)

and  is the  probability density function.

2.2. Maximum Likelihood Estimation
We consider two approaches to find the MLE θ˄ = (β˄’,φ’)’ and evaluate the relative merits
of each. First, we use adaptive Gauss-Hermite quadrature (Pinheiro and Bates, 1995) to
approximate the integral in (2) and then maximize the approximated log-likelihood with respect
to θ using a Newton-Raphson procedure. This approach is straightforward to implement when
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q is small; however, its use may be ill-advised for large q as the number of quadrature points
needed to confer reasonable precision increases exponentially (Booth, Hobert, and Jank,
2001). As a second approach, we formulate a general Monte Carlo expected maximization
(MCEM) algorithm (McCulloch, 1997). While this approach is computationally more
expensive, it could be modified to allow for other random effects distributions (Chen, Zhang,
and Davidian, 2002), and it has the potential to be applicable with other pooling strategies not
considered here; see Section 6.

The MCEM approach is now described in our hierarchical setting. Treating the random effect
u as missing, the complete data log-likelihood can be written as

(4)

where P (T, u|β, φ) is the density function of (T, u), P (T|u; β) is the conditional density of
T given u, fij(cij, xij, ui, β), is defined as in (3), and c0 = -q log(2π)/2 is free of θ. We define

(5)

noting that I1 depends only on β and that I2 depends only on φ through D = D(φ). With the
observed data T, the E-step involves calculating E(I1|T) and E(I2|T) for a given estimate θ(b)

≡ (β(b), φ(b)). These expectations can not be calculated in closed form, so we approximate them
using Monte Carlo simulation; that is, we generate a large number (M) of random draws from
the conditional distribution f(u|T;θ(b)) and use the sample means of I1 and I2 to estimate E(I1|
T) and E(I2|T), respectively. Because f(u|T; θ(b)) is not available in closed form, we use the
Metropolis-Hastings (MH) algorithm to sample from it. Since pools from different sites are
independent, it suffices to generate samples from f(ui|T; θ(b)), for each i = 1, 2, ..., l. We choose

the  distribution as the proposal function for the MH algorithm. Summarizing,
the MCEM algorithm is implemented as follows:

1. Choose a starting value for θ(0) = (β(0), φ(0)).

2. (E-step). For a given b = 0, 1, 2, ..., approximate E(I1|T) and E(I2|T) by

respectively, where , h = 1, 2, ..., M, are M draws from the conditional distribution
f(ui|T; θ(b)), i = 1, 2, ..., l, using the MH algorithm (see Web Appendix A).

3. (M-step). Maximize  with respect to, β obtaining a new estimate β(b+1). Maximize

 with respect to φ, obtaining a new estimate φ(b+1). Set b = b + 1.

4. Repeat Steps 2 and 3 until ∥β(b+1) - β(b)∥ and ∥(b+1) - β(b)∥ are sufficiently small.
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2.3. Covariance Matrix Estimation
When one uses quadratures to find θ˄, the negative inverse Hessian at the last iteration of the
Newton-Raphson maximization procedure provides an estimate of the covariance matrix of
θ˄. With MCEM, an appeal to the missing information principle and the method of Louis
(1982) gives the observed information matrix

where l(θ|T) is the observed data log-likelihood defined in (2), lc(θ|T, u) is the complete data
log-likelihood in (4), and the functions I1 and I2 are as given in (5). We estimate I(θ) using

where the matrix expression is evaluated at θ = θ˄ using random samples , i = 1, 2, ..., l,
h = 1, 2, ..., M, generated from the conditional density P(u|T; θ˄) via the MH algorithm
described in Web Appendix A. Regardless of which model fitting technique is used, standard
errors are obtained from I(θ˄)-1, making the construction of large sample Wald confidence
intervals possible. Based on the asymptotic results from Nie (2007), one would expect such
confidence intervals to be adequate for l large.

3. Tests for Variance Components
We now consider the problem of testing whether individual random effects are present using
the pooled responses. This is of practical interest because if there is no additional variation
among sites, the analyst may wish to collapse over the sites and use the simpler regression
model of Vansteelandt et al. (2000), which regards all effects as fixed. Herein, we concentrate
on the q = 1 case and take zijk = 1, for all i, j, and k, so that the test of interest is

where σ2 = var(ui). This is sufficient for our purposes as the Nebraska IPP data to be analyzed
in Section 5 involves only potential site effects and no site-specific covariates. Generalizations
for q > 1 are discussed in Section 6. In the literature, the test of H0 versus H1 has been described
as “nonstandard” (Self and Liang, 1987), because the value of σ2 under H0 corresponds to a
boundary point of the parameter space. The implementation of one-sided tests in a constrained
parameter space has recently garnered attention from Molenberghs and Verbeke (2007). Based
on their recommendations, we investigate likelihood ratio and score tests.

3.1. Likelihood ratio test
The likelihood ratio test statistic for H0 versus H1 is given by
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where l(β, σ2) is the log-likelihood defined in (2) with φ = σ2 and θ = (β’, σ2)’. Computing
TLR requires one to fit both the mixed model in Section 2 and the fixed effects model of
Vansteelandt et al. (2000). For the scalar variance case, the results of Self and Liang (1987)

apply so that the asymptotic distribution of TLR is the two-component mixture , where
 is a point mass distribution at 0 and  denotes the χ2 distribution with 1 degree of freedom.

Large values of TLR are evidence against H0.

3.2. Score test
We also propose a score test analogous to Liang (1987) who considers individual response data
but adjust the test to acknowledge the one sided nature of H1. Specifically, we reparameterize
the random intercept for the ith site in (1) as ui ≡ αi = τ1/2vi and rewrite (1) as

where v1, v2, ..., vl are assumed to be iid random variables with unspecified distribution F(·),
E(vi) = 0, and var(vi) = 1. The parameter τ is interpreted as the variance of ui in (1) so that under
this parametrization, the test for homogeneity among sites becomes H0 : τ = σ2 = 0. The log-
likelihood contribution from the ith site is

where ,

and fij(cij, xij, τ1/2vij, β) is defined as in (3) with ui = ui = τ1/2vi and zijk = 1. Define

Expressions for (∂/∂αi) log fi(xi, 0, β) and  log fi(xi, 0, β) are provided in Web Appendix

B. The asymptotic variance of S(β) is equal to , where

(6)
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A score statistic for H0 : σ2 = 0 versus H1 : σ2 > 0 is thus given by

where β˄ is the MLE computed under H0 and  is computed by evaluating ∂li/∂τ, ∂li/
∂β, and the expectations in (6) at τ = 0 and β = β˄. Closed form expressions for ∂li/∂τ and ∂li/
∂β are provided in Web Appendix B. Closed form expressions for Iττ and Iτβ do not exist, so
we approximate them using Monte Carlo simulation to sample pooled responses under H0
while preserving the original covariate values among all pools. Applying the results in
Silvapulle and Silvapulle (1995), the asymptotic distribution of TS is the same two-component

mixture , with large values of TS being evidence against H0.

One small technical detail warrants a remark. In our formulation of the score statistic, we

calculate the estimated variance  using expected information, whereas Molenberghs
and Verbeke (2007) use observed information. We use expected information because
calculating the second derivative of the log-likelihood l(θ) numerically can produce unstable
results; in addition, the observed information matrix can be non-positive definite.

4. Simulation Evidence
4.1. Maximum Likelihood Estimation

We have performed simulations to assess the characteristics of the maximum likelihood
estimates in a variety of situations encountered in large scale infectious disease studies. We
first generated individual binary responses Yijk according to the simple logit model

(7)

where , θ = (β0, β1, σ)’ = (-5, 1, 1)’, and . These configurations provide
a mean prevalence of about 1.4 percent (range: 0.1 to 5.0 percent). We generated N = 2000
(10000) individuals with l = 10 (40) sites and randomly assigned individual responses to pools
within site to create simulated group responses Tij. For simplicity, we take cij = c and ni = n,
for all i and j, so that the overall number of individuals is N = lnc. We assume throughout this
section that γ1 = γ2 = 1 only because the results obtained from imperfect testing (γ1 < 1, γ2 <
1) were similar. Imperfect tests are considered in Section 5. To fit the model in (7), both adaptive
quadratures and MCEM were used. Differences between the fits were negligible so we present
the results from quadratures. For comparative purposes, we also fit the model in (7) to the
individual simulated data (i.e., c = 1) using the glmm package in R. For each (N, l, n, c)
combination, 500 data sets were simulated.

The results from Table 1 demonstrate that, in terms of bias, the fixed effects estimates β˄0 and
β˄1 from group testing do about as well as those from individual testing. The variance
component estimate σ˄ from group testing tends to slightly underestimate the true σ, but this
occurs for individual testing as well. We compare group testing and individual testing on the
basis of N fixed, so it is not surprising that the relative mean squared error (RMSE); that is,
the ratio of the MSE from individual testing to the MSE from group testing, is often less than
unity. However, it is interesting to note that the RMSE for σ˄ is not largely affected by the
pool size c. This is likely explained by the fact that the variance component σ is a site-level
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parameter, and the loss of information (if any) is small when pooling individuals within site.
The estimated 95 percent Wald coverage probabilities are also given based on the 500 Monte
Carlo data sets. These are mostly within the margin of error, suggesting that the variance
estimates from Section 2.3 are adequate.

We now present the results from a second simulation illustrating the performance of the MCEM
algorithm with the model

(8)

where ui = (ui1, ui2)’ follows a bivariate normal distribution with mean 0 = (0, 0)’,
, , and corr(ui1, ui2) = ρ. Additionally, we take , zijk ∼

, β = (β0, β1)’ = (-4, 1)’, φ = (σ1, σ2, ρ)’ = (0.7, 0.5, 0)’, and θ = (β’, φ’)’. These
configurations provide a mean prevalence of about 4.3 percent (range: 0.1 to 17.4 percent).
We generated individual responses according to the model in (8) and created pools by random
assignment as before; 200 simulated data sets were used for each (N, l, n, c) combination. For
each data set, we initially took the number of Monte Carlo draws to be M = 1500 and increased
M incrementally based on the recommendations in Booth and Holbert (1999). To prevent
premature stopping, we used the convergence criteria

for 5 consecutive iterations with ε = 0.0001. For each iteration, 10 percent of the simulated
random effects were discarded for “burn in” purposes. When convergence was reached,
100,000 random draws from P (u|T; θ˄) were used to estimate I(θ); see Web Appendix A. For
a given simulated data set, we terminated the algorithm if our convergence criteria was not met
after 80 iterations. Non-convergence mainly occurs when the pool size c is large and the number
of sites l is small. For the worst case, presented in Table 2 with (l, n, c) = (20, 10, 10), we
observed non-convergence and/or a non-positive definite information matrix for about 8
percent of the data sets and removed these from consideration. This behavior is unfortunate,
but not unexpected, given the stochastic nature of the MCEM approach. Furthermore,
additional investigation reveals that non-convergence is fueled by the relatively low prevalence
settings used when simulating individual data. Of course, group testing is most applicable in
low prevalence settings.

The results from Table 2 show that the fixed effects estimates β˄0 and β˄1 from MCEM
generally have small bias. The random effects standard deviations σ˄1 and σ˄ do tend to
underestimate the true standard deviations, but not by much. The correlation estimate ρ˄ is
generally on target but is somewhat more variable than the fixed effect estimates. We also
report in Table 2 numerical evidence that the information matrix estimate I(θ˄) is adequate.
This can be seen by the relative closeness of “SD” and “SE,” the sample standard deviation of
the 200 maximum likelihood estimates θ˄ and the average estimated standard error from I
(θ˄)-1, respectively. With few exceptions, the estimated 95 percent Wald interval confidence
coefficients for all parameters are within the margin of Monte Carlo error.

4.2. Tests for Homogeneity
We next characterize the performance of the likelihood ratio and score tests for homogeneity

discussed in Section 3. Using the model in (7) with β = (β0, β1)’ = (-4, 1)’, , and
, Table 3 shows the estimated size and power of the α = 0.05 tests for σ = 0, 0.2,

0.3, ..., 0.6. For each (N, l, n, c, σ) combination, we generated 500 data sets and created pools
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using random assignment as before; the estimated power in Table 3 is the proportion of times
H0 : σ2 = 0 is rejected out of 500. For the score test, the expectations Iττ and Iτβ in (6) were
approximated using 2000 replicates as described in Section 3.2. The results suggest that both
tests confer the correct size; estimated nominal α = 0.05 sizes are all within the margin of Monte
Carlo error. Powers for both tests increase in nearly the same manner, although the score test
has a slight advantage for σ close to 0. This finding is congruous with the locally most powerful
result described in Lin (1997) for individual testing when q = 1.

5. Nebraska IPP Data
The state of Nebraska takes part in the nationwide IPP through its Sexually Transmitted
Diseases and Infertility Control Program. At l = 78 clinic sites throughout the state, urine or
swab (cervical or male urethra) specimens are collected on each individual and are transported
to the Nebraska Public Health Laboratory (NPHL) in Omaha for chlamydia and gonorrhea
testing. More than 30,000 individual tests are performed annually by the NPHL; we use the
individual testing results from the first quarter of 2006 to test our group testing methods. The
data set consists of chlamydia and gonorrhea infection statuses (infected/not) for 6,138
subjects, as well as several risk covariates. The number of subjects within site varies from 1 to
540. The sample prevalence for chlamydia and gonorrhea is 7.8 percent and 1.7 percent,
respectively, making group testing potentially attractive as a means of surveillance.

We consider chlamydia and gonorrhea infections separately. While group testing is not used
currently in Nebraska, it is being used elsewhere for chlamydia and gonorrhea screening, as
noted in Section 1. In fact, Lindan et al. (2005) estimates that approximately 12 percent of
laboratories in the US use group testing for detecting chlamydia. When compared to individual
testing, Kacena et al. (1998b) and Kacena et al. (1998a) report that pooling can reduce testing
costs by 39 and 60 percent for chlamydia and gonorrhea, respectively.

We use pool sizes c = 2, 5, 8 and construct pools in the following way. If site i has ni subjects,
we first create [ni/c] pools by assigning subjects to pools at random. Any remaining subjects
are assigned to a smaller-sized pool. For example, if there are 23 subjects available for one site
and c = 5, 4 pools of size 5 and 1 pool of size 3 are created for that site. To incorporate the
effects of imperfect testing, pooled responses are recorded assuming that assay sensitivity and
specificity are γ1 = 0.95 and 2 = 0.98, respectively. These values are reasonable for both
infections based on the empirical findings of Kacena et al. (1998a) and Kacena et al.
(1998b). To cover a large number of the possible arrangements of individuals within site, we
simulate 100 sets of pools. Among the available covariates from the Nebraska data set, we
chose age, gender, urethritis status, and infection symptoms status, based on a variable selection
process with the individual data. For each data set and for each infection, we fit the model

(9)

where  is the random clinic site effect. We do not consider variable selection issues
in this paper, although this is a good topic for future research with group testing models.

Table 4 displays the results from fitting the model in (9). For each infection, we provide the
parameter estimates based on the raw individual data. Probability values for the score and
likelihood ratio tests of H0 : σ2 = 0 were highly significant for both infections (p < 0.01) based
on the individual data. Estimates and standard errors from pooled testing in Table 4 are obtained
by averaging over the 100 simulated sets of pools. There is a general agreement between the
estimates from individual testing and pooled testing; those from pooled testing are more
variable, but this is expected. For each set of pools, we performed the α = 0.05 level likelihood
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ratio and score tests as described in Section 3. For each c > 1, the proportion of times H0 is
rejected is also given in Table 4 for the score test (likelihood ratio test results were similar).
Above all, geographic heterogeneity is apparent for both infections using the pooled responses.

6. Discussion
We have generalized the work of Vansteelandt et al. (2000) to incorporate random effects into
group testing regression models and have illustrated the usefulness of this extension using
chlamydia and gonorrhea data collected by the state of Nebraska. We have presented methods
for maximum likelihood estimation, for large sample inference, and for assessing homogeneity
in the latent binary responses that arise with group testing. For future research, it may be of
interest to investigate different pool composition strategies, as was done by Vansteelandt et al.
(2000) and Bilder and Tebbs (2008) in fixed effects models. Vansteelandt et al. (2000) showed
that forming x-homogeneous pools (i.e., pools whose covariate values are as similar as
possible) minimizes the amount of lost information due to pooling and provides the best fixed
effects parameter estimates. In models with random effects, it is not clear how x-homogeneous
and/or z-homogeneous compositions would a ect the parameter estimates.

Tests for variance components in Section 3 have been examined in the scalar variance case,
but more general tests of variance components could be formulated using the results from Self
and Liang (1987) and Silvapulle and Silvapulle (1995). For example, in (8), one might wish
to test  or possibly , while leaving  unspecified. Such
examples fall into a larger class of tests involving the unique components of D. In higher
dimensional settings, likelihood ratio and score statistics continue to follow mixture χ2

distributions, but with possibly a larger number of components.

Our hierarchical formulation requires that individuals are pooled within site, but this
assumption may not be practical in some applications. A useful extension of this work would
be to allow for subjects from different sites to be pooled together. In this setting, fitting the
model using quadratures would most likely be computationally infeasible, but the MCEM
approach may prove fruitful. Even so, when compared to pooling subjects within site, we would
expect both the loss in precision of the random effects estimates and the loss in power of the
homogeneity tests to be significant. Although we have introduced random effects models for
group testing using only the initial pool results, our work can be extended to handle the
multistage pooling designs presented in Brookmeyer (1999). When γ1 = γ2 = 1 (perfect testing),
this extension is almost automatic, but is perhaps not practical in infectious disease contexts.
When imperfect tests are used, conceptually our methodology is applicable, although the
likelihood function is far more complicated. We would expect this to be also true for other
pooling strategies such as array-based pooling (see, e.g., Kim et al., 2007).

Finally, we are currently pursuing the development of techniques to simultaneously model the
prevalence of multiple infections within a group testing regression framework, thereby
extending the work of Hughes-Oliver and Rosenberger (2000) to incorporate covariate
information. Such regression models have the potential to find widespread use, because many
epidemiological investigations using group testing do involve multiple infections and disease
statuses are often correlated.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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