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Abstract
Prostate cancer (PC), a complex disease, can be relatively harmless or extremely aggressive. To
identify candidate genes involved in causal pathways of aggressive PC, we implemented a systems
biology approach by combining differential expression analysis and co-expression network analysis
to evaluate transcriptional profiles using lymphoblastoid cell lines from 62 PC patients with
aggressive phenotype (Gleason grade ≥ 8) and 63 PC patients with nonaggressive phenotype (Gleason
grade ≤ 5). From 13935 mRNA genes and 273 microRNAs tested, we identified significant
differences in 1100 mRNAs and 7 microRNAs with false discovery rate < 0.01. We also identified
a co-expression module demonstrating significant association with the aggressive phenotype of PC
(p=3.67×10−11). The module of interest was characterized by over-representation of cell cycle-
related genes (false discovery rate = 3.50×10−50). From this module, we further defined 20 hub genes
that were highly connected to other genes. Interestingly, five of the 7 differentially expressed
microRNAs have been implicated in cell cycle regulation and two (miR-145 and miR-331-3p) are
predicted to target three of the 20 hub genes. Ectopic expression of these two microRNAs reduced
expression of target hub genes and subsequently resulted in cell growth inhibition and apoptosis.
These results suggest that cell cycle is likely to be a molecular pathway causing aggressive phenotype
of PC. Further characterization of cell cycle-related genes (particularly, the hub genes) and miRNAs
that regulate these hub genes could facilitate identification of candidate genes responsible for the
aggressive phenotype and lead to a better understanding of PC etiology and progression.
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Introduction
Prostate cancer (PC) remains the most commonly diagnosed non-skin cancer in men in the
United States. Approximately one in three men over the age of 50 shows histological evidence
of PC. However, only about 10% will be diagnosed with clinically significant PC, implying
that most PCs never progress to become life-threatening. So far, little is known about what
makes some PCs biologically aggressive and more likely to progress to metastastic and
potentially lethal disease. PC is a complex disease, believed to be caused by variations in a
large number of genes and their complex interactions. Conventional approaches used to
elucidate genetic risk factors and genetic mechanisms include family-based linkage analysis,
pathway-based association study and genome-wide association study (GWAS). Among these
approaches, GWAS has been very successful with over a dozen single nucleotide
polymorphisms (SNPs) identified with elevated risk to PC (1). However, the observed
associations have yet to be translated into a full understanding of the genes or genetic elements
mediating disease susceptibility. Furthermore, few PC risk variants identified from GWAS
have any association with clinical characteristics. This is not surprising because these risk SNPs
are identified by comparing PC cases with controls. Studies using case-case design are clearly
needed to identify associations of genetic variants with aggressive PC.

Traditionally, microarray-based transcriptional profiling analysis produces massive gene lists
(usually based on p-value) without consideration of potential relationships among these genes.
The gene-by-gene approach often lacks a coherent picture of disease-related pathological
interactions. To facilitate candidate gene discovery, there is now an increasing interest in using
a systems biology approach. This approach allows for a higher order interpretation of gene
expression relationships and identifies modules of co-expressed genes that are functionally
related, and eventually characterizes causal pathways and genetic variants. So far, studies using
the approach have successfully identified disease-related transcriptional networks and genetic
variants that contribute to the disease phenotypes (2–7). For example, an early study analyzed
the gene expression profiles in large population-based adipose tissue cohorts and found a
marked correlation between gene expression in adipose tissue and obesity-related traits. The
systems biology approach identified a core network module that was causally associated with
obesity (2). This study has recently been validated through characterization of transgenic and
knockout mouse models of genes predicted to be causal for obesity phenotype (7).

Expression levels of many genes show abundant natural variation in species from yeast to
human (8). Studies have demonstrated significant association of genetic polymorphisms with
gene expression in a variety of human cell lines and tissues (9). In addition to genetic factors,
however, microRNAs (miRNA) are emerging as key players in the regulation of gene
expression. miRNAs are small non-coding RNAs that control the expression of protein-coding
transcripts. Each miRNA has multiple target genes that are regulated at the post-transcriptional
level. They have been implicated in various diseases, and may influence tumorigenesis by
acting as oncogenes and tumor suppressors. For example, the miR-17/92 cluster cooperates
with c-MYC to accelerate tumor development (10,11). Germline variations in miRNAs and
their target genes have been reported to have a profound effect not only on tumor progression
but also an individual’s risk of developing cancer (12,13). Hence, miRNAs are related to
diverse cellular processes and regarded as important components of the gene regulatory
network.

To identify the genes that contribute to the aggressive phenotype of PC, we implemented a
systems biology approach and analyzed whole genome gene expression profiles in 125
lymphoblastoid cell lines (LCLs) derived from 62 aggressive and 63 non-aggressive PC
patients. We identified a set of mRNA genes and miRNAs whose expression levels were
associated with not only cell cycle regulation but also aggressive nature of PC. We then verified
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the functional role of two miRNAs using prostate cancer cell lines. These results suggested
that the cell cycle-related biological process may be genetically dysregulated in PC patients
and that miRNAs may be significantly involved in development of the aggressive phenotype.

Materials and Methods
Study Subjects

The patients were selected based on our ongoing clinic-based case-control study (14,15). The
characteristics of these patients were listed in Table 1. All subject in the study provided written
informed consent. The study was approved by the Mayo Clinic IRB.

Cell lines and RNA extraction for profiling analysis
Peripheral blood lymphocytes were collected from 125 Caucasian men with median age of 65
years old (range 44–74) and transformed with Epstein-Bar virus to establish immortalized cell
lines. The transformed cell lines were cultured in RPMI 1640 media supplemented with 15%
fetal bovine serum, and 1% penicillin/streptomycin at 37°C in humidified incubators in an
atmosphere of 5% CO2. Experimental series were set up by seeding 5-ml cultures in T25 flasks.
Each culture was fed with 5ml of fresh media twice a week until the cell number reached
~106 in a T75 flask. The cells were harvested and suspended in 500 µl of RNA Stabilization
reagent (RNAlater) and stored at −80°C for further processing. Total RNA was extracted from
each cell culture using miRNeasy Mini Kit (QIAGEN) according to the manufacturer’s
guidelines. This protocol effectively recovered both mRNA and miRNA. The integrity of these
total RNAs was assessed using an Agilent 2100 Bioanalyzer.

mRNA and miRNA microarrays
Illumina human-6 V2 gene expression BeadChip and microRNA expression panel (based on
miRbase release 9.0) were used for mRNAs and miRNA profiling analyses, respectively
(Illumina, Inc., San Diego, CA). RNA aliquot of 200ng from each cell culture was labeled and
hybridized to each array using standard Illumina protocols. BeadChips (mRNA) or sample
array matrices (miRNA) were scanned on an Illumina BeadArray reader. For mRNA, 30
triplicate samples, 30 duplicate samples and 65 singleton samples were run for a total of 215
expression profiles. For miRNA, there were 84 duplicate samples and 6 quadruplicate samples
for a total of 192 expression profiles. Based on principal component analysis, we removed 26
individual miRNA profiles due to substantial shifts away from a main cluster. However,
replicates from each of the 26 individuals were still included in the analysis as they were in
the main cluster. These expression profiles have been deposited in NCBI’s Gene Expression
Omnibus (GEO) with accession number GSE14794.

Data processing
We processed 215 mRNA profiles from a total of 125 independent patients and 166 miRNA
profiles from a total of 90 independent patients. For both mRNA and miRNA data, raw data
from BeadStudio (Illumina, San Diego, CA) were first transformed using a variance
stabilization transformation algorithm (16) and then normalized using quantile normalization.
We averaged samples with replicates and excluded probes with median detection p value ≥
0.01 (the p values were generated in BeadStudio software). This procedure reduced the number
of mRNA probes from 48702 to 13935 and miRNA probes from 736 to 366. Among the 366
miRNAs, 273 in miRBase database1 version 9.1 were included in the study. The remaining 93
that were putative miRNAs identified in a RAKE analysis were excluded from further analysis.

1http://microrna.sanger.ac.uk
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Data analysis
The pathological grades (Gleason Score) <= 5 and >=8 were used to dichotomize samples into
low grade (non-aggressive) and high grade (aggressive) groups. We applied a two sample t-
test with multiple testing correction to identify genes and miRNAs that were significantly
differentially expressed between the two Gleason grade groups. We defined q-value of false
discovery rate (FDR) < 0.01 to be statistically significant. Pearson correlation coefficients were
also calculated in order to compare results from the following network analysis.

To explore the phenotype-related genes and their interactions, we applied a systems biology
approach using a weighted gene co-expression network analysis (WGCNA) (17–20). Unlike
other gene co-expression networks using a binary variable to encode gene co-expression
(connected=1, unconnected=0), the WGCNA converts co-expression measures into
connection weights or topology overlap measures (TOM). Because the program was
computationally intensive when running on large numbers of genes we simplified the
computation by selecting a subset of genes for analysis. We selected the genes in two steps:
first, we selected the genes that showed significant correlation with PC grade (FDR<0.01);
from the rest of genes, we then selected the top 2000 most variable genes based on coefficient
of variance. We inputted expression profiles of these selected genes to construct weighted gene
co-expression modules using the WGCNA R package (18,19,21). We defined modules using
static method by hierarchically clustering the genes using 1-TOM as the distance measure with
a height cutoff = 0.95 and a minimum size (gene number) cut-off = 40 for the resulting
dendrogram.

To identify which module is correlated with clinical phenotype, we first calculated module
eigengene (ME; i.e., first principal component of the expression values across subjects) using
all genes in each module. We then correlated the MEs to PC grade using the Pearson correlation.
We determined intramodular connectivity for each gene by summing the connectivities of that
gene with each other gene in that module. We used program VisANT (Integrative Visual
Analysis Tool for Biological Networks and Pathways) (22) to construct gene-gene interaction
(connections) networks.

Gene ontology analysis
To explore whether genes in each target group share a common biological function, we
searched for over-representation in gene ontology (GO) categories. We used 13935 mRNA
accession numbers as reference gene list. We inputted each group of genes into DAVID (The
Database for Annotation, Visualization and Integrated Discovery) for GO term enrichment
analysis. The DAVID is a program that checks for an enrichment of genes with specific GO,
KEGG, and SwissProt terms (23).

Nucleofection of miRNA mimics in VCaP and LNCaP cells
We cultured LNCaP cells (24) in RPMI 1640 and VCap (25) cells in Dulbecco's modified
Eagle's medium, respectively. Both cell lines were grown in the media containing 10% fetal
bovine serum, 1% penicillin and streptomycin at 37°C with 5% CO2. Cells were nucleofected
with double stranded synthetic microRNA mimics (syn-hsa-miR-145 miScript miRNA and
syn-hsa-miR-331 miScript miRNA) and scrambled controls (Qiagen, Germantown, MD) using
program T-09 (Lonza, Cologne, Germany). Nucleofection efficiency was monitored by
nucleofecting the cells with 2.0 µg of pmaxGFP plasmid DNA in 6 well plates. Cells were
visualized and tested at 48 hrs after nucleofection.
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Cell viability assay and FACS
After nucleofection, cells were placed on 24 well plates. Media were changed twice after 10
hrs of plating and then once every 24 hrs. Cell viability of treated cells was examined using
LIVE/DEAD Viability/Cytotoxicity Kit (Invitrogen, Eugene, OR) after 48 hrs treatment and
visualized using a fluorescent microscope (100 x) after 15 min staining. FACS analysis was
performed using a FACSCalibur Flow Cytometer (Becton Dikinson) following the method of
Riccardi and Nicoletti (26).

qRT-PCR
Expression level of target genes were quantified at 48 hrs after treatment by qRT-PCR using
the Lightcycler 480 SYBR Green I master mix (Roche, Indianapolis, IN) in an ABI 7500 real
time PCR system. Primer sequences were listed in Supplementary Table 1. GAPDH expression
level was used as normalization control. Relative expression values were calculated following
the 2 −ΔΔ Ct method of Schmittgen and Livak (27) using values from 3 independent
experiments.

Results
Correlation between transcripts and pathological grades

To identify transcripts whose expression traits were associated with aggressive phenotype of
PC, we applied a two sample t-test using 13935 detectable gene expression profiles in 62 high
grade and 63 low grade PC cases. Among all genes tested, we found significant association in
1100 genes (FDR <0.01). For the 125 PC cases, 90 (45 high-grade and 45 low-grade cases)
were also available for miRNA profiling analysis. The two sample t-test using 273 detectable
miRNA expression profiles identified significant association with PC grade in 7 miRNAs
(FDR<0.01) (Supplementary Table 2). The 7 miRNAs included miR-222, miR-221,
miR-331-3p, miR-16, miR-145, miR-9* and miR-551a. Because miR-9 and miR-9* are
processed from the same precursor, we also observed an association of miR-9 with the PC
grade (FDR=0.013). However, we did not find any association of miR-15a with PC grade
(p=0.65) although miR-15a and miR-16 are located in the same miRNA cluster.

To functionally classify these 1100 significant genes, we used the online biological
classification tool DAVID (23) and observed significant enrichment of these genes in multiple
GO categories. The most significant enrichment was the GO category of cell cycle biological
process with FDR=3.40×10−23. The other significant GO categories included DNA replication
(FDR=1.60×10−13) and chromosome (FDR=2.10×10−13). In fact, all significant GO category
clusters were related to cell cycle biological function (Supplementary Table 3).

In an effort to provide additional evidence to support our initial observation, we downloaded
gene expression profiles from another study with benign prostate tissues (28). After obtaining
the relevant clinical information, we re-analyzed the Affymetrix U95av2-based expression
profiles derived from 5 benign prostate tissues in patients with aggressive phenotype (Gleason
Score ≥8) and 4 benign prostate tissues in patients with non-aggressive phenotype (Gleason
Score ≤5). Statistical analysis using t-test revealed significant difference in 1847 RNA probes
(p<0.05). Interestingly, GO analysis of these differential genes showed that cell cycle
regulation was the most significantly enriched GO category with p=2.97×10−5 (FDR=0.056)
(Supplementary Table 3). We further analyzed these differentially expressed genes and found
significant overlap between the benign tissues and the cell lines (p<0.01).

Gene co-expression networks and biological pathways
Because co-expressed genes are biologically related, grouping these highly connected genes
by network analysis may shed light on underlying functional processes in a manner

Wang et al. Page 5

Cancer Res. Author manuscript; available in PMC 2010 December 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



complementary to standard differential expression analyses. To ensure that phenotype-related
genes were used to construct the network, we included the 1100 most significant genes with
FDR <0.01 along with the top 2000 most variable genes (selected from remaining 12835 genes)
determined by their coefficient of variance. The WGCNA analysis identified four modules of
genes with high topological overlap (Figure 1). The modules were defined as a cluster of highly
connected genes (nodes). Each major branch in the figure represented a color-coded module
containing a group of highly correlated genes. The modules turquoise, brown, blue and yellow
included 265, 106, 229 and 65 genes, respectively.

To examine if these modules were associated with aggressive PC, we correlated the module
eigengene to the Gleason grade and found significant correlation of the PC grade only with the
turquoise module (p=3.67×10−11). The other three modules did not show any correlation (all
p>0.05). To biologically characterize those modules, we applied the DAVID tool (23) to
classify these genes in each module and observed various level of GO category enrichment in
all 4 modules (Table 2). Specifically, the PC grade-related turquoise module demonstrated
significant enrichment in the biological process of cell cycle (FDR=3.50×10−50). The blue
module showed over-representation in protein acetylation (FDR=8.21×10−7). The brown and
yellow modules show a strong trend but not statistical significance (FDR>0.01) for GO
category enrichment.

Clinical trait-related hub genes
The importance of a gene is often dependent on how well it associates with other genes in a
network. Studies suggest that more centralized genes in the network are more likely to be key
drivers to proper cellular function than peripheral genes (nodes) (18). These centralized genes
are called hub genes, implying that they are highly connected genes. Intramodular hub genes
are defined based on their high correlation with the module eigengene, i.e. as a good
representative of a module. We focused our analysis on genes in the turquoise module because
of its relevance to clinical trait (Table 2). We used the WGCNA algorithm to calculate
intramodular connectivity (connection strength of a given gene with other genes in a particular
module). To visualize the relationship between gene significance and intramodular
connectiviy, we plotted scaled connectivity on x-axis and gene significance (absolute
correlation coefficient r value between gene expression and PC grade) on y axis. We observed
significant positive correlation (r = 0.61, p = 7.1×10−19) (Figure 2A). The genes with higher
connectivity tended to have stronger correlation with PC grade, suggesting a potentially
important role of highly connected genes (hub genes) in the aggressive phenotype of PC.

To further visualize gene-gene interactions, we exported the WGCNA-generated connectivity
information to the VisANT (22) and observed various degrees of gene-gene connections
(interactions). We raised the weighted cutoff value to >=0.16 to identify hub genes with the
strongest connections with other genes. The raised cutoff reduced the total number of
connections per gene. Under this criterion, we observed 84 genes, each with at least one
connection, and 20 genes, each with at least 10 connections (Figure 2B). We defined the 20
highly connected genes as hub genes. The genes CDC2 and DTL were the strongest, each with
55 connections, while CCNA2 had 50. More importantly, all 20 hub genes not only showed
significant correlation with pathological grade but also have been implicated in cell cycle-
related functions (Table 3).

Hub genes as miRNA targets
Because each miRNA may regulate multiple mRNA genes, we asked if the expression traits
in hub genes were the result of regulatory effects from miRNAs. To explore this, we
downloaded all miRNA target genes predicted by TargetScan (29–31). We focused our search
on the 20 hub genes and the 7 differential miRNAs. We found that three of the 20 hub genes

Wang et al. Page 6

Cancer Res. Author manuscript; available in PMC 2010 December 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



were the predicted targets for two differentially expressed miRNAs. The three hub genes
CCNA2, CDCA5 and KIF23 were significantly up-regulated in aggressive PC (Table 3). The
miR-145, significantly down-regulated in aggressive PC, was predicted to bind to 3’ UTR of
the CCNA2. The miR-331-3p, also significantly down-regulated in aggressive PC, was
predicted to target the genes CDCA5 and KIF23. More interestingly, we observed significant
correlation in expression level for each of these miRNA-gene pairs. The miR-145:CCNA2 pair
showed inverse correlation with p=1.48×10−4. The miR-331-3p:CDCA5 and
miR-331-3p:KIF23 pairs demonstrated inverse correlation with p=2.25×10−4 and p=0.029,
respectively.

Functional evaluation of miR-145 and miR-331-3p in vitro
To evaluate the potential regulatory roles of miR-145 and miR-331-3p, we ectopically
expressed these miRNAs in prostate cancer cell lines LNCaP (24) and VCaP (25). We found
that ectopic expression of the miR-145 reduced the CCNA2 level by 54% in VCaP cells and
45% in LNCaP cells. Ectopic expression of the miR-331 reduced the CDCA5 level by 44 % in
VCaP and 48% in LNCaP cells, and the KIF23 level by 43 % in VCaP and 44 % in LNCaP
cells (Figure 3A). To investigate the functional consequences of ectopic expression of these
miRNAs, we examined cell viability using a flow cytometer. Gene transfer efficiency was
monitored in GFP transfected control groups and ~ 80% of transfection was observed in both
prostate cancer cell lines. We found significant cell growth arrest and apoptosis by the
expression of these miRNAs. Specifically, the miR-145 and miR-331 ectopic expression
induced 37% and 39% apoptosis in the VCaP cells; and 32% and 33% apoptosis in LNCaP
cells respectively. In contrast, scrambled cells didn’t show any significant apoptosis (Figure
3B and 3C).

Discussion
Clinical phenotypes of PC vary from an indolent disease requiring no treatment to one in which
tumors metastasize and escape local therapy even when with early detection. Identification of
candidate genes for aggressive PC has been a difficult task. In this study, we applied a systems
biology approach to study the aggressive phenotype of PC. This approach utilized gene
expression profiles and organized genes into modules based on co-expression. By examining
expression profiles in 125 lymphoblastoid cell lines derived from PC patients, we observed
four co-expression modules. Importantly, one of four modules not only enriched genes known
to play critical roles in cell cycle regulation but also demonstrated significant correlation with
aggressive phenotype of PC. These results, along with results from benign prostate tissues
(Supplementary Table 2), strongly suggested that germline variations of cell cycle-related
genes may be a major cause to aggressive PC.

Hub genes are believed to play major roles in a highly interacted network. In this study, we
have defined 20 highly connected hub genes in an aggressive PC-associated module. Further
data mining revealed significant involvement of these hub genes in the cell cycle regulation
and the development of various tumors. For example, the gene CDC2 (connected to 55 other
genes) is essential for G1/S and G2/M phase transitions of eukaryotic cell cycle. Aberrant
activation of the CDC2 may contribute to tumorigenesis by promoting cell proliferation and
survival (32). The gene DTL (55 connections) plays important roles in DNA synthesis, cell
cycle progression, cytokinesis, proliferation, and differentiation (33). The DTL may regulate
p53 polyubiquitination (34) and CDT1 proteolysis in response to DNA damage (35) and may
also be essential for early G2/M checkpoint (36). Suppression of the DTL causes accumulation
of G(2)/M cells, resulting in growth inhibition of cancer cells(37). The gene CCNA2 (50
connections) belongs to the highly conserved cyclin family. The gene is expressed in all tissues
and binds/activates CDC2 kinases, and thus promotes both cell cycle G1/S and G2/M
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transitions. Overexpression of the gene was associated with high grade (38) and poor prognosis
(39) in breast cancer. These data strongly suggest that dys-regulation of these cell cycle-related
hub genes may be crucial for the development of aggressive phenotype of PC.

It is worthwhile to mention that none of the 20 hub genes were among the top gene list identified
by differential gene expression analysis (Supplementary Table 2). The hub genes with the
greatest and least statistical significance are MELK (FDR= 6.17×10−7) and TPX2 (FDR=
1.89×10−3), respectively. The MELK is ranked 39th and the TPX2 is ranked 613th in differential
analysis (Table 3). Depending on the purpose of a study, a top gene list approach (based on
differential expression p-value) will be more suitable for biomarker discovery because this
type of study is directed at finding disease markers. However, for an understanding of etiology,
simply selecting top differential genes identified by two sample t-test (or similar methods) may
miss important genes. Therefore, a systems biology-based network analysis may provide an
important alternative and more meaningful tool for candidate gene discovery.

miRNA has been emerged as a crucial regulator of gene expression. In this study, we identified
7 differentially expressed miRNAs, five of which have been implicated in regulation of cell
cycle. For example, the top two miRNAs (miR-222/221) directly targeted cell growth
suppressive cyclin-dependent kinase inhibitors p27 and p57 mRNAs, and reduce their protein
levels (40,41). Ectopic expression of the miR-222/221 also resulted in activation of CDK2 and
facilitation of G1/S phase transition (42), which agreed with our present study: significant
increases of the miR-222/221 (FDR<= 4.73×10−6) as well as the CDK2 (FDR=7.79×10−4) in
aggressive PC. The target gene p27 (CDKN1B), however, only showed slightly decreased
expression (mean=8.78 in high grade and 8.79 in low grade on log2 scale, p=0.79). The lack
of significant decrease in the p27 may be explained by the fact that the miRNAs regulate the
target gene at the posttranscriptional level. Another target gene p57 (CDKN1C) was
undetectable in our lymphoblastoid cell lines and therefore was not included in the analysis.

Important role of the miR-222/221 in aggressive PC was recently confirmed by in vivo and in
vitro studies. For example, in vivo overexpression of miR-221 was able to confer a high growth
advantage to LNCaP-derived tumors in SCID mice while anti-miR-221/222 treatment in the
highly aggressive PC3 cell line reduced tumor growth (43). Furthermore, up-regulation of these
two miRNAs in PC-derived primary cell lines showed significant inverse correlation with the
p27 expression. Additionally, both in vitro and in vivo results implicated that p21 and p27 had
compensatory roles in advanced prostate cancer cells, and down-regulation of both these
molecules essentially enhanced the aggressive phenotype (44). These results suggest that the
miR-221/222 may contribute to the oncogenesis and progression of PC through p27(Kip1)
down-regulation.

The other three miRNAs that affect cell cycle regulation include miR-16, miR-145 and
miR-331. The miR-16 can trigger an accumulation of cells in G0/G1 by silencing multiple cell
cycle genes simultaneously (45,46) and negatively regulate two other targets HMGA1 and
CAPRIN1 involved in cell proliferation (47). In our data set, we observed up-regulation of the
miR-16 and down-regulation of the target genes HMGA1 and CAPRIN1. Particularly,
expression difference of the HMGA1 was statistically significant (mean=7.83 in high grade
and 7.90 in low grade, FDR=0.007). The miR-145 showed inhibition of tumor cell growth by
direct silencing c-Myc (48). The MYC is an oncogenic, nuclear phosphoprotein that plays a key
role in cell cycle progression, apoptosis and cellular transformation. Down-regulation of the
miR-145 in aggressive PC was consistent with up-regulation of the MYC in the same sample
set (mean=11.39 in high grade and 11.30 in low grade, p=0.04, FDR=0.10). Consequently, we
observed significant up-regulation of Myc-regulated miRNAs (11) including miR-363
(FDR=0.016), miR-92a (FDR=0.022), miR20b (FDR=0.028) and miR-18b (FDR=0.030).
Additionally, our previous study demonstrated that miR-331 was significantly associated with
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cell cycle-related genes (49). By ectopic expression of the miR-145 and miR-331-3p, the current
study demonstrated significant reduction of corresponding target genes, inhibition of cell
growth and accumulation of apoptotic cells (Figure 3). These findings suggest that differential
expression of these miRNAs at germline level may dys-regulate target hub genes which could
lead to an abnormal cell division and proliferation, and eventually developing an aggressive
phenotype of PC.

Overall, this study used a systems biology approach to identify genes that are potentially
involved in the aggressive phenotype of PC. This approach moves beyond single gene
investigation to provide a systems level perspective on the potential relationships between
members of a network. Our results strongly suggest that dys-regulation of cell cycle may
significantly contribute to the deadly form of PC. These findings are important not only because
we have discovered a candidate pathway and related hub genes but also because we have
identified candidate miRNAs and their predicted target genes. Further studies are needed to
determine genetic causes of expression alterations in both differentially expressed miRNAs
and mRNA genes. Additional functional studies will determine whether variations in the
selected hub genes and miRNAs are attributable to the aggressive nature of PC. These studies
will facilitate candidate gene discovery and lead to better understanding of the aggressive
phenotype of PC, a more clinically relevant form of the disease.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Gene co-expression network analysis
A. Branches (gene modules) of highly correlated genes by average linkage hierarchical
clustering of 3100 genes. The colored bars directly corresponded to the module (color)
designation for the clusters of genes. Grey denoted genes that were not part of any module.
The remaining colors were used for the four modules. B. Multi-dimensional scaling plot of the
entire gene expression network. Each dot represented a gene, where the color corresponded to
the gene module. The distance between each dot indicated their topological overlap.
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Figure 2. Identification of clinical trait-related hub genes
A. Scatterplot between gene significance (absolute r) (y-axis) and scaled intramodular
connectivity (K/Kmax). Each point corresponded to a gene in the turquoise module. The
intramodular connectivity was significantly correlated with gene significance (r = 0.61, p = 7.1
× 10−19). B. Visualization of gene-gene interaction within turquoise module. The connections
were drawn using VisANT tool (ref 22). The genes with at least one connection when weighted
cutoff value >=0.16 were shown. Each node represented a gene. Red nodes were hub genes.
Bigger nodes indicated more connections.
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Figure 3. Biological effect of ectopic expression of miR-145 and miR-331 in prostate cancer cell
lines
A. qRT-PCR was used to measure expression level of target genes using total RNA from
nucleofected cells. Expression values were normalized to GAPDH. Expression levels of target
genes were significantly reduced by ectopic expression of the two miRNAs. Cell viability was
examined in VCaP cells (B) and LNCaP cells (C). Live and dead cells were stained in green
and red, respectively. Percentage of apoptotic cell population measured by FACS was shown
below each corresponding cell image.
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Table 1

Clinical characteristics of prostate cancer patients

Low Grade PC
N=63

High Grade PC
N=62

Patient Characteristics:

      Age, median (range)
     Age, quartiles

65 (44–74) 65 (44–74)

40 – 58 7 (11.1) 7 (11.3)

59 – 64 22 (34.9) 22 (35.5)

65 – 69 22 (34.9) 22 (35.5)

70 – 84 12 (19) 11 (17.7)

     PSA

< 4 10 (15.9) 10 (16.1)

4 – 9.9 34 (54) 32 (51.6)

10 – 19.9 12 (19) 9 (14.5)

≥ 20 7 (11.1) 11 (17.7)

Unknown 0 0

Pathologic Characteristics:

     Nodal Status

Negative 62 (98.4) 51 (82.3)

Positive 1 (1.6) 11 (17.7)

Unknown 0 0

     Stage

1 or 2 47 (74.6) 16 (25.8)

3 or 4 15 (23.8) 35 (56.5)

Unknown 1 (1.6) 11 (17.7)

     Grade

4 5 (7.9) 0

5 58 (92.1) 0

8 0 30 (48.4)

9 0 30 (48.4)

10 0 2 (3.2)
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