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Abstract
The automatic classification of the wealth of molecular configurations gathered in simulation in
the form of a few coordinates that help explain the main states and transitions of the system is a
recurring problem in computational molecular biophysics. We use the recently proposed ScIMAP
algorithm to automatically extract motion parameters from simulation data. The procedure uses
only molecular shape similarity and topology information inferred directly from the simulated
conformations, and is not biased by a priori known information. The automatically-recovered
coordinates prove as excellent reaction coordinates for the molecules studied and can be used to
identify stable states and transitions, and as a basis to build free-energy surfaces. The coordinates
provide a better description of the free energy landscape when compared with coordinates
computed using Principal Components Analysis (PCA), the most popular linear dimensionality
reduction technique. The method is first validated on the analysis of the dynamics of an all-atom
model of alanine dipeptide, where it successfully recover all previously-known metastable states.
When applied to characterize the simulated folding of a coarse-grained model of β-hairpin, in
addition to the folded and unfolded states, two symmetric misfolding crossings of the hairpin
strands are observed, together with the most likely transitions from one to the other.
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1 Introduction
Biological processes at the molecular level usually involve motion and structural changes in
biomolecules, such as proteins and peptides. Most in silico studies start by gathering large
sets of conformational data through some form of simulation, for example Molecular
Dynamics (MD). 1-3 When provided with a physical model of the molecule(s) to simulate,
these techniques produce as output abundant conformational samples in the form of
Cartesian (x, y, z) coordinates for each of the molecule’s atoms. As the computational cost of
MD simulations increases rapidly with atom count, significant research effort has been
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devoted to improve the time scales sampled for large molecular systems while retaining the
most interesting simulation details, at the expense of some accuracy in the modeling.
Toward this goal, several coarse-grained or multi-resolution molecular models have been
proposed,(e.g., 4-29) that approximate the dynamics of a system by considering a reduced
set of e effective degrees of freedom, at least in part of the system, or part the simulation
time. Other methods to speed up simulations include taking adaptive and/or larger size
simulation steps, 30-32 using different forms of “accelerated” molecular dynamics, 33-36
replica exchange/parallel tempering, 37-40 implicit solvent models, 41 and large-scale
distributed computing. 42

Once abundant molecular samples of the studied process have been gathered through
simulations, the data are subjected to analysis. Input data given as Cartesian coordinates is
always high-dimensional, since there are 3 coordinates (or parameters) per atom. A central
question is whether the configurational space spanned in the simulation can be described by
using a few essential degrees of freedom reproducing the collective motion of the system. In
order to address this question, it is crucial to find ways to reduce the dimensionality of the
simulated conformations to render the process understandable, without the need to visualize
molecular trajectories directly.

For these purposes, so-called reaction coordinates have been devised over the years to
succinctly describe molecular conformations, so they can be classified along a few,
meaningful axes. Such coordinates are oftentimes used to construct free-energy landscapes
and quantify the thermodynamics of the molecular process under consideration. Usually,
reaction coordinates are either chosen from a pool of previously proposed ones, or
empirically designed to suit a particular molecular system (eg 43,44). Recently, methods
have been proposed to automate the selection reaction coordinates for a molecular process.
In the last few years several groups have worked on the definition of the theoretical
framework and computational approaches to extract a minimal number of reaction
coordinates in high-dimensional systems 45. Although it does not provide a complete view
of all the relevant contributions emerging in this very active field, it is worth mentioning as
significant examples the Transition Path Theory 46,47 and Transition Path Sampling 48-51,
the Markovian State Model 52-54, Milestoning 55-57, the Nudged Elastic Band Method
58,59, and the String Method 60-62. Other recent, relevant examples include an automated
method proposed 63 for identifying an “optimal” set of reaction coordinates by using genetic
neural networks to mine a database of known reaction coordinates and physical variables,
and a combinatorial pattern discovery approach 64 that first turns each simulated
conformation into a 7-dimensional vector of known reaction coordinates, then applies
clustering to these vectors.

In this context, we have recently proposed the ScIMAP method 65 to automatically extract
the essential parameters spanning the configurational landscape associated with a molecular
motion, by using only the simulated conformations, without any bias by a priori
information. We call such parameters structural reaction coordinates hereafter. The idea is
to use dimensionality reduction methods 66,67 to describe the motion landscape with few,
but meaningful, automatically-recovered structural reaction coordinates. The purpose of
dimensionality reduction is to extract the main features from a set of points, which are
initially represented by a large set of redundant parameters. Most dimensionality reduction
techniques produce as a result a lower-dimensional representation for each point that
summarizes the variability of the (high-dimensional) original representation of the points.
Ideally, one would like a low-dimensional Euclidean representation of the points that would
serve as a “projection” or “map” of the input data. Such a low-dimensional map is easy to
visualize and the process of interest can then be succinctly described by looking at this
projection. Dimensionality reduction is used in a plethora of fields, including classification
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problems, data mining, image analysis and recognition, 68-72 structural and computational
biology, 73-75 economics, and language interpretation and analysis. 76 Molecular
simulation data presents interesting challenges for dimensionality reduction. First of all,
these data are highly non-linear in nature. Also, data from molecular simulations tend to
cluster around energy minima, producing uneven sampling that varies greatly in density
throughout the input space.

Several mathematical tools are available to perform dimensionality reduction automatically,
and the output of these tools can be interpreted in the particular application domain. Linear
methods, such as Principal Components Analysis (PCA), 77 find a projection of the input
data into the hyperplane best preserving the data variability. PCA has been largely used on
molecular data, for example to analyze protein flexibility around equilibrium 74,78 and to
capture essential dynamics. 75 However, linear methods such as PCA fail when the data
distribution is highly non-linear (as it is usually the case in large scale molecular motions).
Non-linear methods aim to recover an intrinsic parameterization for a data set that lies on a
non-linear (yet low-dimensional) surface, which is the case for most interesting molecular
processes. Several non-linear dimensionality reduction methods exist. Parametric methods
augment linear methods with the notion of a kernel function and force the data to lie on this
surface, for example as in kernel PCA. 79 Non-parametric methods, on the contrary, try to
infer the non-linearity of the data from the data itself. The most popular methods include
Isomap 80 and Locally Linear Embedding (LLE). 81 Here, we use the recently introduced
ScIMAP method, 65 based on the Isomap algorithm. This procedure relies on the input data
itself to infer its inherent topology using only a notion of similarity between the input points.
Details are given in the next section.

In this work we apply the ScIMAP method to compute structural reaction coordinates for
two systems where a direct relationship between the computed parameters and structural
properties of the molecules is easy to find. The results demonstrate the capabilities of the
method and its value as a versatile and general analysis tool. The first system considered, an
all-atom model of alanine dipeptide, has been studied thoroughly by simulation; 82-84 it is
well known that with the force field used here (Amber99 with implicit water) only two
parameters (namely, the dihedral angles φ, and ψ) are suffcient to accurately span the
configurational space of the molecule at standard conditions. The application of ScIMAP
correctly recovers these coordinates and identifies all the known states of the molecule. The
second system studied, a coarse-grained β-hairpin, is used to show how the topological
approach in the ScIMAP method identifies shapes and transitions that are not easy to
distinguish with traditional reaction coordinates. For both cases, the automatically-recovered
parameters are computed using the same, unaltered ScIMAP method and molecular shape
similarity as a basic operation, and serve as excellent structural reaction coordinates to
characterize the molecular process.

2 Materials and Methods
In this section we describe the non-linear dimensionality reduction technique we use to
analyze MD trajectories. It is first presented in its pure mathematical form, and then adapted
to work with molecular conformations. We also introduce the two molecular models and
data sets to which we apply the method to automatically extract structural reaction
coordinates.

The Isomap algorithm
The Isomap algorithm 80 is a non-parametric, non-linear dimensionality reduction
technique. It takes as input a set S of abstract “points,” which are assumed to lie on a low-
dimensional, non-linear surface (or manifold), and a similarity measure between them,
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, so that d(xi, xj) is the distance between points xi and xj. The Isomap algorithm
requires as input the number of reduced dimensions to be considered and returns in output
the error expected when the requested reduced dimensionality is used instead of the whole
space. An “optimal” effective dimensionality for a given data set can therefore be estimated
by considering the minimum number of dimensions providing a satisfactorily small error
(see 65,80 for details).

Using the provided similarity measure, Isomap infers the inherent topology (or connectivity)
of the manifold where the points reside to lie by connecting each point to its nearest
neighbors according to the distance d(xi, xj). For each input point, it then computes only a
few coordinates such that the Euclidean distance between the points’ low-dimensional
coordinates best preserve the geodesic distance between all pairs of points. The geodesic
distance between a pair of points is defined as the length of the shortest path between the
points, when the path is confined to the surface where the points lie. By preserving all
geodesic distances (rather than direct distances) Isomap “unrolls” the low-dimensional
manifold into its intrinsic parameterization, as shown in Figure 1. A detailed implementation
of the Isomap algorithm is provided in the original paper 80. The key point of the algorithm
is the approximation of the geodesic distance as the shortest path on the nearest neighbors
network on the data points. In practice, this is achieved through the following three steps:

1. Build a neighborhood graph, G. For each point, find the set of points that are
nearest neighbors on the manifold using the distance measure d(xi, xj). The typical
approach is to select the k nearest neighbors to every point. Alternatively, a
distance cutoff, ∊, can be introduced, and all pairs of points closer than ∊ are
considered nearest neighbors.

2. Compute the geodesics. The geodesics are approximated as the shortest paths on G
for all pairs of points. Construct a matrix D where Dij is the shortest path between
xi and xj.

3. Compute the low-dimensional embedding. Use Multidimensional Scaling (MDS)
85 on the matrix D of estimated geodesic distances computed in 2). This produces
coordinates for each point that best preserve the geodesic distances. These
coordinates, when plotted as Euclidean coordinates, have the effect of “unrolling”
the non-linear surface (see Figure 1).

The advantages of the Isomap method over linear dimensionality reduction techniques stem
from the fact that it deduces the topology of the input data by connecting nearby points, thus
it “follows” the non-linear process by computing coordinates that preserve global
information based on the local similarity measure. The main disadvantage of Isomap is the
computational cost of computing the neighborhood graph G, which is in general O(n2), and
dependent on the cost of the distance measure d(xi, xj). To alleviate the computational cost
and memory requirements of steps 2) and 3) above, another version of Isomap, called
Landmark Isomap, 86 was devised. It relies on the fact that if the data is truly low-
dimensional, then it should suffice to preserve only a subset of the geodesic distances. In
other words, instead of preserving all possible pairs of geodesic distances, it preserves only
the geodesic distance from each point to a subset of landmark points, chosen among the
original data set. Generally, as many landmark points as allowed by the computer system’s
memory are used to avoid the risk of underestimating the number needed. In order to adapt
Isomap to work with molecular trajectories, an appropriate distance measure d(xi, xj) is
needed, when xi and xj are molecular conformations given as the Cartesian coordinates of
the constituent atoms. A natural measure of similarity for different conformations of the
same molecule is least-Root-Mean-Squared-Deviation (lRMSD).
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ScIMAP: Scalable Isomap Method
The ScIMAP method 65 includes some improvements over Isomap, such as an e cient
parallelization of all three steps discussed above, and a method to map redundant points into
the recovered coordinate space that is much less resource-demanding than including all the
data points in the analysis. These improvements are crucial when working with big data sets
of molecular conformations and allow the application of nonlinear dimensionality reduction
to extract effective global coordinates from extensive configurational sampling. A detailed
implementation of the algorithm and its testing has been described in 65, where ScIMAP has
been used to characterize the folding process of coarse-grained SH3 protein model, and
ScIMAP coordinates have been shown to correctly locate the transition-state ensemble on
the resulting free energy landscape.

However, the first applications of ScIMAP have not focused on the meaning of the
coordinates or the effect of different molecular models on the results, which are the goals of
the present paper. The computational complexity of the ScIMAP algorithm is dominated by
the cost of computing the nearest-neighbors graph for the input data set. The efficient
computation of nearest-neighbors remains an active research area; it has been shown that in
high-dimensional spaces the scaling of the nearest-neighbors graph calculations is bounded
by d × N2 87, where N is the number of conformations in the data set and d is the
dimensionality of the system. The ScIMAP implementation used for this work was based on
the open-source package OOPSMP 88 to compute the nearest-neighbors graph. OOPSMP,
which was originally developed for motion planning, contains robust and efficient
implementations of nearest-neighbors algorithms, and it scales quadratically with N and
linearly with d (as expected).

It is worth mentioning the recently proposed application of the Distance Projection onto
Euclidean Spaces (DPES) approximation to ScIMAP, 89 which significantly speeds up the
neighborhood graph computation at the expense of a small approximation in the
identification of neighboring points, as shown by the application of the DPES method
originally applied in the robotic motion planning domain. 90 As a result, the overall method
is general and efficient for large-scale data analysis. As the focus of the present work is
mainly on the interpretation of the recovered coordinates, the DPES approximation will not
be used.

Alanine Dipeptide Model
We first present the application of ScIMAP to a small biomolecule that has been studied
thoroughly in the past, the alanine dipeptide. We used an all-atom model consisting of 22
atoms, namely CH3-CONH-CHCH3-CONH-CH3. This peptide is composed by a very short
piece of backbone and one alanine side chain attached to it. Because the two peptide bonds
present in the peptide are quite rigid, the configurational space of the molecule can be well
approximated by using only the two torsions around the Cα atom, named φ and ψ, as shown
in Figure 2.

A long MD simulation was performed using the Sander module of the AMBER 9.0 package
91 using an implicit water model to simulate the molecule in solution. The system was first
randomized at 400K, then equilibrated at room temperature (300K). A sampling of 500,000
conformations was gathered from a molecular dynamics trajectory corresponding to 100ns
of simulated time, at 300K. Several computational studies 82-84, 92, 93 have used the
backbone (φ, ψ) angles to explore the molecule’s conformational landscape, both in vacuum
and in solution. These two angles determine the overall shape of the peptide, and are
sufficient to characterize its configurational landscape.
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It is worth mentioning that results obtained with different force fields and parameterization
of the alanine dipeptide system have been reported in the literature; while simulations with
different choice suggested that other degrees of freedom (besides the φ and ψ dihedral
angles) participate to the dynamics, * in the solvated model used here as well as in explicit
water simulation, there was no significant motion of this angle other than a vibration around
equilibrium.

Several different (meta)stable states of the peptide as a function of its (φ, ψ) angles have
been characterized in previous studies. In particular, at standard conditions, there are two
main conformations, clearly distinct from one other, as shown in Figure 2:

1. Extended. Also called “C7eq”, “C5” or “β-like” in the literature, since it is the more
extended shape (Figure 2b).

2. Right-turn. Also called “αR” or “α-like” since it resembles a tiny piece of a right-
handed helix (Figure 2a).

Figure 3 shows the free energy profile associated with the system, as measured on the
sampled data, as a function of the (φ, ψ) dihedral angles. Free energy (potential of mean
force) was computed using the WHAM method. 94-99 The C5 state corresponds to the top-
left corner of the free energy plot, while the αR state corresponds to the other main
minimum, south-east of the C5 state. Several other less populated states of alanine dipeptide
have been observed and characterized in the literature. The ones presented here are those
corresponding roughly to the center of the local minima on the free energy plot:

1. Left-turn: Also called “αL”. This corresponds to the lonely minimum in the
middle-right of the plot, and is extremely unlikely with the given model.

2. αP : This is the minimum west of αR, another helix-like conformation.

3. PII: Also a less likely minimum. The physical reasons for this minimum have been
studied in the literature. 84

The same conformational sampling used to produce the free energy plot of Figure 3 is used
for the application of the the ScIMAP method. The results are presented in Section 3.

β-hairpin Model
A β-hairpin system is considered as a second example. In particular, the Honeycutt-
Thirumalai Cα coarse-grained model. 100 This coarse-grained model allows for a faster
sampling of larger scale motions and disregards individual atomic vibrations that do not
contribute to the overall hairpin shape. The fact that this model has 22 effective “particles”
yields the same computational cost as for the alanine dipeptide model for the basic shape
similarity operation in the ScIMAP algorithm, and provides a good example of how the
method can be applied independently from the molecular model used. The coarse-grained
model for the hairpin considers three distinct amino acid types:

• P: polar or hydrophilic residues.

• H: hydrophobic residues.

• N: neutral residues.

The sequence for the hairpin studied is:

*Another angle was found to have an important span, but only in vacuum. 83, 84 This angle is defined as the torsion formed by the
atoms O-C-N-Cα, before the ϕ angle.
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The folded conformation of the β-hairpin is shown in Figure 4, and consists of two strands,
one two residues longer than the other, connected by a hinge region (the (NP)2 stretch of the
sequence) and packed together. An exhaustive sampling of the conformational space was
obtained by running Langevin dynamics simulation, around the folding temperature Tf (Tf =
0.7 in the system natural units). 101 The data sampling was obtained by running eight
independent simulations starting from different random initial conditions. Each of the eight
simulations gathered 45, 000 conformations for a total of 360, 000 conformations.

The coarse-grained energy function assigns a certain degree of rigidity to the strands, and
more flexibility to the hinge residues. 100 However, the hairpin still exhibits bending and
twisting of the strands. Previous computational studies 100,101 have shown that this hairpin
model exhibits a two-state folding behavior where only a closed (folded) and an open
(unfolded) state are significantly populated.

3 Results and Discussion
We present the results obtained from the application of the ScIMAP algorithm to both data
sets. We show that in both cases the first two coordinates are sufficient to completely
characterize the conformational landscape spanned by MD.

Alanine Dipeptide
The ScIMAP algorithm was applied to the 500,000 simulated conformations using lRMSD
as the distance measure, as explained before. To build the neighborhood, several values of k
(namely, 10, 15, 20, 25) were used to build a neighborhood graph. There was no significant
difference in the recovered low-dimensional landscape obtained with different values of k,
other than a slight shift in the placement of the free-energy minima, attesting to the
robustness of the method against varying neighborhood parameters, as previously shown. 65
5,000 landmarks were chosen randomly from the trajectory.

Some care needs to be taken in the definition of the lRMSD metric regarding conformations
associated with the same physical state of this system. In particular, the hydrogen atoms in
the CH3 groups of the alanine dipeptide present a C3 symmetry around the C atom. The
lRMSD metric, which considers each atom individually, will classify all three 120°
rotationally-symmetric positions of the hydrogen atoms as different, when in fact they
should be considered indistinguishable from a chemical perspective. In order to circumvent
this problem the lRMSD distance for this system is defined modulus 120° rotations
hydrogens around the C atom. This allows to consider the hydrogen atoms as
indistinguishable while their vibrations are still sampled. The free-energy landscape as a
function of the first few ScIMAP coordinates is shown in Figure 5. All the main states of the
peptide described in Section 2 are correctly recovered as free-energy minima. In particular,
the first ScIMAP coordinate clearly distinguishes between the “extended” and “helical”
states; adding the second ScIMAP coordinate separates the two distinct routes connecting
the minima.

Figure 3 shows that there are two regions where the ψ angle makes the transition from the
helical to the extended shapes: around ψ ≡ 55° (near the top of the plot) and ψ ≡ −100°
(wrapping around the vertical axis, near the bottom of the plot). In the low-dimensional
embedding, the first two coordinates clearly capture the circular topology of ψ.
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Since φ is not sampled in its full 360° degrees, the use of one extra dimension (the 3rd

ScIMAP coordinate) more clearly separates the two main conformational states. The less
likely αL state is identified in a cluster of its own, separated from the other states.

The ScIMAP coordinates are ordered by data variance, so that the first coordinate explains
the most data variability, the second coordinate adds the most variability after that, and so
on. Figure 6 shows that the first two coordinates provide a good representation of the data,
as the residual variance for coordinates higher than two is < 0.05. Residual variance for each
dimension d is computed as 1 — Rd, where Rd is the squared correlation coe cient between
the original (geodesic) distances and the corresponding Euclidean distances for the same
pair of conformations, using the first d low-dimensional coordinates. Some features of
interest may still be captured in dimensions higher than the 3rd, although they would
correspond to more localized events. In particular, a careful analysis of the 4th, 5th and 6th

ScIMAP coordinates provides a classification of the different configurations of the capping
CH3 dihedral angle (data not shown).

For comparison, results obtained from the application of Principal Components Analysis
(PCA) are shown in Figure 6. Note that for this system the PCA projection resembles the
ScIMAP results, in the sense that the conformations are projected into a barrel-like shape.
PCA was applied to the coordinates after re-positioning the hydrogen atoms to take into
account of their indistiguishability, as explained above. Because of the small size of the
system and the fact that the atoms do not move far from their equilibrium positions, PCA
can capture the main motions and the rotation around the ψ and φ angles. However, the
linear projection done by PCA mixes the cluster boundaries and does not provide the clean
separation (and transitions) of the conformational states that ScIMAP does. In other words,
even though four main minima are observed (labeled in Figure 6), the correspondence with
the four main states is not as clear as with the ScIMAP coordinates. In addition, the αL state
is mixed together with the other two helix-like states, and cannot be distinguished in Figure
6; clearly, a PCA projection of coordinates cannot capture the difference between a right-
and a left-turn of the alanine dipeptide; consistently the residual variance comparison
reflects the lower accuracy of PCA with respect to ScIMAP. Residual variance is generally
considered the measure of choice to estimate the error in dimensionality reduction, 80 and it
has been previously used to compare Isomap and PCA coordinates in protein dynamics. 65

β-hairpin
The ScIMAP results presented here for the analysis of the β-hairpin configurational data
were obtained using lRMSD as distance measure and k = 12 neighbors. ScIMAP embedding
for k = 15, 10, 5, and 3 were also performed to check the robustness of the procedure, and
yield almost identical results. It is worth noting that the application of the ScIMAP method
to this system is no more expensive than for the all-atom alanine dipeptide model presented
above: in both cases the data consist of three-dimensional configurations with 22 “atoms”.
Figure 7 shows the free-energy profile for the β-hairpin model, as a function of the first three
ScIMAP coordinates. The first ScIMAP coordinate clearly distinguishes between the
“closed” (free energy minimum on the left side in Figure 7), and the “open” (free energy
minimum on the right side) hairpin conformations, accounting for the main direction of the
folding reaction. The second ScIMAP coordinate reveals additional features on the folding
process; the free energy plot as a function of the first two ScIMAP coordinates exhibits a
symmetry along the second coordinate, which can be explained by looking at representative
hairpin shapes placed by ScIMAP in the two local free-energy minima symmetrically
located, above and below the deeper minimum corresponding to the closed state, as
illustrated in Figure 7. Conformations labeled as M1 and M2 in Figure 7 (representatives
from the top and bottom minima, respectively) correspond to two stereo-chemically
different partially misfolded twists of the hairpin. It is worth stressing that the Isomap’s
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geodesic distance formulation, used in ScIMAP, automatically captures the topological
difference between M1 and M2, while the lRMSD distance alone would have classified both
configurational states as very similar. The transitions between the M, F and U states clearly
show that the hairpin cannot directly “jump” from an M1 conformation to an M2
conformation without separating the strands first. This can happen in two ways: either the
hairpin folds into the F state, which leaves both strands in anti-parallel position allowing
their re-positioning, or the hairpin unfolds into the U state from which the re-positioning can
also occur. The free-energy surface as a function of the first two coordinates clearly shows
these possible transitions as saddle points.

In Figure 7, the third ScIMAP coordinate is also shown to provide a more exhaustive
analysis. This dimension adds to explaining the data variability but does not introduce new
minima or transitions. A free energy landscape computed as a function of the first three PCA
coordinates is shown in Figure 8 for comparison. Since the hairpin’s conformational
landscape is relatively simpler than a full-size protein, 65 PCA can roughly separate open
and closed states, and has a third minimum to the right, also roughly corresponding to a
single semi-open state. However, the separation is less clear. A representative ensemble of
conformations picked from the F and M regions includes many misclassified shapes that fall
into both minima. Obviously the M1 and M2 states explained above, which ScIMAP
separates, and can be accessed through the F or U states, cannot be clearly distinguished by
PCA. The residual variance of ScIMAP and PCA as a function of the number of dimensions
used is also shown. Quantitatively, ScIMAP clearly classifies the data variance better with
just one coordinate. Qualitatively, the non-linear nature of ScIMAP captures more
interesting features than PCA, beyond the residual variance comparison. The clear
separation of the two stereo-chemically symmetric states illustrates ScIMAP’s superior
performance in identifying states and transitions.

Resource utilization
The computation of ScIMAP coordinates is more computationally expensive than traditional
structural reaction coordinates, since global information is being preserved. This is reflected
in the topology-preserving mapping, which is based on the neighborhood around each input
point. The computation of the nearest-neighbors graph remains the bottleneck of the
procedure. For both models presented here the ScIMAP calculations were performed on a
cluster of 50 processors (AMD Opteron 275, at 2.2GHz). The running times and memory
usage are summarized in Table I. Wall Time refers to the actual time elapsed (as opposed to
the time spent only on computation-exclusive CPU cycles). Wall time is typically used to
report performance of parallel algorithms since it includes time spent on communication
between processors. Table I clearly shows that the neighbor computation stage takes
significantly longer than the other two stages. However, this is the stage that requires the
least amount of memory. On the other hand, building a matrix of geodesic distances of size
n × nl, where n is the number of points and nl the number of landmarks, requires almost all
of the memory available to each processor. The amount of memory used per processor can
be reduced by using more processors and/or fewer landmarks, but maximizing the number
of landmarks results in higher quality coordinates for a given number of processors. 65
Computing the final coordinates requires the computation of the top eigenvalues and
corresponding eigenvectors of a similarly-sized matrix.

4 Conclusion
We have presented the results obtained in the application of the ScIMAP algorithm to
analyze a large configurational sampling of an all-atom model of alanine dipeptide, and a
coarse-grained β-hairpin model. We have shown that the low-dimensional representation
obtained by ScIMAP, using shape similarity as a basic operation and no information on the
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actual degrees of freedom, successfully classifies the samples along axes that have a high
correspondence with a-priori known parameters. In the case of alanine dipeptide the φ and ψ
backbone angles are recovered as the most important coordinates of the system and the first
automatically-recovered coordinate differentiates between the two main shapes of the
peptide: extended and helical. In the case of the coarse-grained model of a β-hairpin the first
ScIMAP coordinate follows the main folding/unfolding reaction, while the second
coordinate distinguishes two stereo-chemically symmetric partially-misfolded states. This
example shows the power of the geodesic formulation of ScIMAP, separating geometrically
similar states that cannot be reached directly one from the other, and the possible routes
connecting them.

This work illustrates the robustness of the ScIMAP method against different models and
further validates its usefulness to automatically extract structural reaction coordinates from
simulation data, in an unbiased way. Even though computing these coordinates is
computationally more expensive than computing most reaction coordinates used to date, in
many cases it may eliminate the need of devising custom, empirically designed, reaction
coordinates.

An intriguing question that remains to be answered is whether a physical interpretation can
be generally associated to the reaction coordinates obtained by the ScIMAP algorithm. At
this stage of development, the method does not provide a straightforward way to interpret
the resulting coordinates, nor if/what particular features is missed when a reduced number of
variables is used. In the systems discussed here we could a posteriori interpret the extracted
coordinates by comparing them with a priori known physical observables (e.g.,, specific
dihedral angles, opening of the angles between the hairpin strands); work toward a more
general understanding of the meaning (if any) of automatically extracted reaction
coordinates is ongoing.
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Fig. 1.
The Isomap algorithm. Top: An intrinsically non-linear 2D data set, given as 3D data. The
neighborhood graph is overlaid for illustration. Bottom: The resulting two-dimensional
embedding coordinates for each point, as resulting from the application of the Isomap
algorithm. The neighborhood graph is overlaid for comparison.
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Fig. 2.
Alanine dipeptide most populated configurations: a) Right-turn. b) Extended.
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Fig. 3.
Alanine Dipeptide Free Energy as a function of the (φ, ψ) backbone angles
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Fig. 4.
Model of a 22-residue β-hairpin rendered as a tubular representation, showing the “closed”
(“folded”) conformation.
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Fig. 5.
Free energy versus the first three ScIMAP coordinates for the indistinguishable hydrogen
model of the Alanine Dipeptide. 1st — 2nd coordinates (top) and 1st — 3rd coordinates
(bottom).
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Fig. 6.
Free energy as a function of the first three PCA coordinates for the β-hairpin model (left).
Residual variance of PCA compared with ScIMAP (right).
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Fig. 7.
Free-energy plots using the first three ScIMAP coordinates. Representative ensemble
pictures for the four main minima are shown in the bottom-right corner.
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Fig. 8.
Free-energy plots using the first three PCA coordinates. The U, F and M states only roughly
correspond to those in Figure 7. The residual variance vs. number of computed dimensions
for both ScIMAP and PCA is shown to the right.
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Table I

Resource utilization of ScIMAP. (a) Alanine Dipeptide (500,000 conformations) (b) β-hairpin (360,000
conformations) Computational resource utilization of ScIMAP for the systems studied. Wall time indicates the
actual time used by 50 processors in parallel. The memory usage shown is per-node.

ScIMAP stage Wall Time Memory

Neighbor finding (k=20) 7 hrs 70 MB

Geodesics (5,000 landmarks) 10 min 1, 800 MB

Embedding coordinates 12 min 2, 200 MB

ScIMAP stage Wall Time Memory

Neighbor finding (k=12) 5 hrs 50 MB

Geodesics (5,000 landmarks) 4 min 1, 200 MB

Embedding coordinates 3 min 1, 500 MB
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