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Abstract
Integrin αvβ3 plays a significant role in tumor angiogenesis, and is a receptor for the extracellular
matrix proteins with the exposed arginine-glycine-aspartic (RGD) tripeptide sequence. These include
vitronectin, fibronectin, fibrinogen, lamin, collagen, Von Willibrand’s factor, osteoponin, and
adenovirus particles. Integrin αvβ3 is expressed at low levels on epithelial cells and mature endothelial
cells, but it is overexpressed on the activated endothelial cells of tumor neovasculature and some
tumor cells. The restricted expression of integrin αvβ3 during tumor growth, invasion and metastasis
present an interesting molecular target for both early detection and treatment of rapidly growing solid
tumors. Over the last decade, many radiolabeled linear and cyclic RGD peptide antagonists have
been evaluated as the integrin αvβ3-targeted radiotracers. Significant progress has been made on their
use for imaging integrin αvβ3-positive tumors by SPECT or PET. Among the radiotracers evaluated
in pre-clinical tumor-bearing models, [18F]Galacto-RGD (2-[18F]fluoropropanamide c(RGDfK
(SAA); SAA = 7-amino-L-glyero-L-galacto-2,6-anhydro-7-deoxyheptanamide) and [18F]-
AH111585 are currently under clinical investigation for visualization of integrin αvβ3 expression in
cancer patients. However, their low tumor uptake, high cost and lack of preparative modules for
routine radiosynthesis will limit their continued clinical applications. Thus, there is a continuing need
for more efficient integrin αvβ3-targeted radiotracers that are readily prepared from a kit formulation
without further post-labeling purification. This article will focus on different approaches to maximize
the targeting capability of cyclic RGD peptides and to improve the radiotracer excretion kinetics
from non-cancerous organs. Improvement of tumor uptake and tumor-to-background ratios is
important for early detection of integrin αvβ3-positive tumors and/or noninvasive monitoring of
therapeutic efficacy of antiangiogenic therapy.
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Introduction
Cancer is the second leading cause of death worldwide. Although the exact cause of cancer
remains unknown, most cancer patients will survive after surgery, radiation therapy, and
chemotherapy or a combination thereof if it can be detected at the early stage. Thus, accurate
early detection is highly desirable so that appropriate therapy can be given before the primary
tumors become widely spread.

Tumors produce many angiogenic factors, which are able to activate endothelial cells in
established blood vessels and induce endothelial proliferation, migration, and new vessel
formation (angiogenesis) through a series of sequential but partially overlapping steps.
Angiogenesis is a requirement for tumor growth and metastasis (1–7). Without the
neovasculature to provide oxygen and nutrients, tumors cannot grow beyond 1–2 mm in size.
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Once vascularized, the tumors begin to grow rapidly. The angiogenic process depends on
vascular endothelial cell migration and invasion, is regulated by cell adhesion receptors.
Integrins are such a family of proteins that facilitate the cellular adhesion to and the migration
on extracellular matrix proteins in the intercellular spaces and basement membranes, and
regulate cellular entry and withdraw from the cell cycle (7–10). Integrin αvβ3 serves as a
receptor for extracellular matrix proteins with exposed arginine-glycine-aspartic (RGD)
tripeptide sequence (8–13). These include vitronectin, fibronectin, fibrinogen, lamin, collagen,
osteoponin and adenovirus particles. Integrin αvβ3 is expressed at low levels on epithelial cells
and mature endothelial cells; but it is highly expressed on activated endothelial cells in
neovasculature of tumors, including osteosarcomas, neuroblastomas, glioblastomas,
melanomas, lung carcinomas and breast cancer (14–16). It has been demonstrated that integrin
αvβ3 is overexpressed on both the endothelial cells and tumor cells in human breast cancer
xenografts (17). The integrin αvβ3 expression correlates well with tumor progression and
invasiveness of melanoma, glioma, ovarian and breast cancers (10–17). The restricted
expression of integrin αvβ3 during tumor growth, invasion and metastasis present an interesting
molecular target for diagnosis and treatment of the rapidly growing and metastatic tumors
(18–32).

Over the last decade, many radiolabeled cyclic RGD peptides have been evaluated as
radiotracers for imaging tumors by SPECT or PET (33–68). Several review articles have
appeared covering the nuclear medicine applications of radiolabeled cyclic RGD peptide and
non-peptide antagonists as radiotracers for diagnosis and radiotherapy of integrin αvβ3–
positive tumors (17–29). This article is not intended to be an exhaustive review of the current
literature on radiolabeled RGD peptides and nuclear medicine applications. Instead, it will
focus on different approaches to maximize their targeting capability and to improve the
radiotracer excretion kinetics from non-cancerous organs. Improvement of tumor uptake and
tumor-to-background (T/B) ratios is important for both diagnostic and therapeutic radiotracers.

Radiotracer Design
Figure 1 shows a schematic illustration of an integrin αvβ3-targeted radiotracer. Cyclic RGD
peptide serves as the targeting biomolecule to carry radionuclide to the integrin αvβ3
overexpressed on tumor cells and activated endothelial cells of tumor neovasculature. A
multidentate bifunctional chelator (BFC) is used to attach the metallic radionuclide to the cyclic
RGD peptide (69–72), whereas an organic precursor or synthon is often needed for the 18F-
labeling (73). The pharmacokinetic modifying linker (PKM) is used to improve the radiotracer
excretion kinetics (69–71). For a new integrin αvβ3-targeted radiotracer to be successful, it
must show clinical indications for high-incidence tumors (breast, lung, colorectal, prostate and
skin cancers). The radiotracer should have high tumor uptake and T/B ratios in a short period
of time. To achieve this goal, the radiotracer should have a rapid blood clearance to minimize
background radioactivity. Since most high-incidence tumors (breast, lung and colorectal
cancers) occur in the torso, renal excretion is necessary to avoid radioactivity accumulation in
the gastrointestinal tract. The integrin αvβ3-targeted radiotracer should also be able to
distinguish between benign and malignant tumors, to follow tumor growth and metastasis, and
to predict therapeutic efficacy in integrin αvβ3-positive cancer patient. In addition, a kit
formulation or preparative module is needed for routine preparation of the radiotracer in high
yield and radiochemical purity at low cost.

Choice of Radionuclide
The choice of radionuclide depends largely on the clinical utility of radiotracer. For planar
imaging and SPECT, more than 80% of radiotracers used in nuclear medicine departments
are 99mTc compounds due to optimal nuclear properties of 99mTc and its easy availability at
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low cost (69–72). The 6 h half-life is long enough to allow radiopharmacists to carry out
radiosynthesis and for physicians to collect clinically useful images. At the same time, it is
short enough to permit administration of 20–30 mCi of 99mTc without imposing a significant
radiation dose to the patient. The monochromatic 140 KeV photons are readily collimated to
give high quality images with high spatial resolution. The clinically most relevant radionuclides
for PET include 18F, 62Cu, 64Cu and 68Ga.

18F is a cyclotron-produced isotope suitable for PET. It has a half-life of 110 min. For several
years, 18F-FDG (FDG = 2-fluoro-2-deoxyglucose) has been widely used as an imaging tool
for diagnosis of cancers, brain and cardiovascular diseases. Despite its short half-life, the
availability of preparative modules makes 18F-labeled biomolecules much more accessible to
researchers and clinicians in many clinical institutions.

62Cu is a generator-produced radionuclide from the decay of 62Zn. Its 9.7 min half-life allows
repeated dosing without imposing a significant radiation burden to the patient. The
commercially available 62Zn-62Cu generator has been successfully used in clinical trials (74–
77). 64Cu is another PET isotope useful for development of target-specific radiotracers. It has
a half-life of 12.7 h and a β+ emission (18%, Emax = 0.655 MeV). Despite poor nuclear
properties, its long half-life makes it feasible to prepare, transport, and deliver the 64Cu
radiotracer for clinical applications. More importantly, recent breakthroughs in production
of 64Cu with high specific activity have made it more available to the small research institutions
without on-site cyclotron facilities (78). 64Cu is a viable alternative to 18F for research programs
that wish to incorporate high sensitivity and high spatial resolution of PET, but cannot afford
to maintain the expensive radionuclide production infrastructure. Copper radionuclides and
related radiochemistry have been reviewed by Blower et al (79). Nuclear medicine applications
of 64Cu-labeled monoclonal antibodies and peptides have been reviewed by Anderson et al
(75,80).

68Ga is generator-produced PET isotope with a half-life of 68 min. The 68Ge-68Ga generator
can be used for more than a year, allowing PET studies without the on-site cyclotron. If the
radiotracer is properly designed, 68Ga could become as useful for PET as 99mTc for SPECT
(81,82). In support of this, the 68Ga-labeled somatostatin analogs have been studied extensively
for PET imaging of somatostatin-positive tumors in animal models and cancer patients (83–
91). Gallium chemistry and related medical applications have been reviewed recently (81,82,
92).

Bifunctional Chelators
The choice of BFC depends on the radionuclide. 18F can be incorporated into the cyclic RGD
peptide via a covalent bond without the need for BFC. In contrast, BFC is an important part
of radiotracers containing a metallic radionuclide (69–72,92). Among various BFCs (Figure
2), 6-hydazinonicotinic acid (HYNIC) is of great interest due to its high 99mTc-labeling
efficiency (rapid radiolabeling and high radiolabeling yield), the high solution stability of
its 99mTc complexes, and the easy use of different coligands for modification of biodistribution
characteristic of 99mTc-labeled small biomolecules (93). DOTA (1,4,7,10-
tetraazacyclododecane-1,4,7,10-tetraacetic acid), NOTA (1,4,7-tritazacyclononane-1,4,7-
triacetic acid) and their derivatives (Figure 2) have been used as BFCs for 68Ga and 64Cu-
labeling small biomolecules (84–91). NODAGA is particularly useful for 68Ga- and 64Cu-
labeling due to high hydrophilicity and in vivo stability of its 68Ga and 64Cu chelates. It has
been reported that NOTA derivatives have much higher 68Ga and 64Cu-labeling efficiency
than their DOTA analogs (94–98). The fast and efficient radiolabeling is especially critical
for 68Ga and 62Cu due to their short half-life (t1/2 = 68 min for 68Ga and 9.7 min for 62Cu).
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PKM Linkers
In general, high lipophilicity often leads to more hepatobiliary excretion and/or high protein
binding, which will results in longer blood retention of radioactivity. Hepatobiliary excretion
is detrimental for improvement of T/B ratio. Thus, an important aspect of radiotracer
development is to improve T/B ratios by modifying pharmacokinetics of radiolabeled cyclic
RGD peptides. For example, the negatively charged small peptide sequences or amino acids
have been proposed as PKM linkers to reduce renal uptake and kidney retention of radiolabeled
small biomolecules (70,71,92). The di(cysteic acid) linker has successfully been used to
improve the blood clearance and minimize the liver and kidney activity of radiolabeled
nonpeptide integrin αvβ3 receptor antagonists (99–102). The Asp3 and Ser3 tripeptide
sequences were also used to modify excretion kinetics of the 99mTc-labeled cyclic RGD peptide
(39). Harris et al reported the use of a PEG4 (15-amino-4,7,10,13-tetraoxapentadecanoic acid)
linker to improve the tumor uptake and T/B ratios of the 99mTc-labeled nonpeptide integrin
αvβ3 receptor antagonists (99–102). Kessler et al reported the use of HEG (hexaethylene
glycolic acid) as the PKM linker for the 18F-labeled cyclic RGDfE dimers and tetramers (40–
42). Using the HEG linker also increases the distance between the cyclic RGD motifs. Chen
et al also found that the introduction of the PEG (polyethylene glycolic acid) linker can improve
the tumor uptake and excretion kinetics of 125I- and 18F-labeled c(RGDyK) and 64Cu-labeled
E[c(RGDyK)]2 (48,49,54,103).

Targeting Biomolecules
Figure 3 shows several examples of cyclic RGD peptides that have high affinity and selectivity
for integrin αvβ3. Among the radiotracers evaluated in pre-clinical tumor-bearing models,
[18F]Galacto-RGD (Figure 3: 2-[18F]fluoropropanamide c(RGDfK(SAA); SAA = 7-amino-L-
glyero-L-galacto-2,6-anhydro-7-deoxyheptanamide) and [18F]-AH111585, the core sequence
of which was originally discovered from a phage display library (as ACDRGDCFCG), are
currently under clinical investigation for visualization of integrin αvβ3 expression in cancer
patients (104–109). The results from imaging studies in cancer patients show that there is
sufficient integrin αvβ3 expression for PET imaging, and the accumulation of radiolabeled
RGD peptide radiotracer correlates well with the integrin αvβ3 expression levels in cancer
patients (108,109). However, their relatively low tumor uptake, the high cost and lack of
preparative modules for routine radiosynthesis will limit their continued clinical applications.
Several steps of manual radiosynthesis and post-labeling purification often cause significant
radiation exposure to radiopharmacists. Of course, this problem can be solved by developing
preparative modules for routine radiosynthesis, which will definitely lead to added cost for the
radiotracer. Thus, this is a continuing need for more efficient integrin αvβ3-specific radiotracers
that are readily prepared from a kit formulation without further post-labeling chromatographic
purification.

Maximizing Binding Affinity via Multimerization
Cyclization to Improve Binding Affinity and Selectivity

Many cyclic RGD peptides have been proposed as the integrin αvβ3 antagonists for treatment
of cancer. It was found that incorporation of the RGD sequence into a cyclic pentapeptide
framework (Figure 3) increases the binding affinity and selectivity for integrin αvβ3 over
glycoprotein IIb/IIIa (110–113). After extensive structure-activity evaluations, it was
concluded that the amino acid in position 5 has no significant impact on integrin αvβ3 binding
affinity. The valine (V) residue in c(RGDfV) can be replaced by lysine (K) or glutamic acid
(E) to afford c(RGDfK) and c(RGDfE), respectively, without changing the integrin αvβ3
binding affinity.
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Cyclic RGD Dimers
To improve integrin αvβ3 binding affinity, multimeric RGD peptides, such as E[c
(RGDfK)]2, have been used to develop integrin αvβ3-targeted radiotracers. For example,
Rajopadhye et al were the first to use cyclic RGD dimers, such as E[c(RGDfK)]2 (Figure 4),
to develop diagnostic (99mTc) and therapeutic (90Y and 64Cu) radiotracers (56,57,114,115).
Recently, Chen et al (50,51) reported the 64Cu and 18F-labeled E[c(RGDyK)]2 (Figure 4) as
PET radiotracers. Poethko et al found that the RGDfE dimer [c(RGDfE)HEG]2-K-Dpr-[18F]
FBOA (Figure 4) had much better targeting capability as evidenced by its higher integrin
αvβ3 binding affinity and tumor uptake as compared to its monomeric analog c(RGDfE)HEG-
Dpr-[18F]FBOA (40–42).

Cyclic RGD Tetramers and Octamers
Several groups have used the multimer concept to prepare cyclic RGD tetramers and octamers.
For example, Boturyn et al reported a series of cyclic RGDfK tetramers (116), and found that
increasing the peptide multiplicity significantly enhanced the integrin αvβ3 binding affinity
and internalization. Kessler et al reported a cyclic RGDfE tetramer (Figure 5) that had better
integrin αvβ3 binding affinity than its monomeric and dimeric analogs (40–42). Liu et al
reported the use a cyclic RGDfK tetramer E[E[c(RGDfK)]2]2 (Figure 5) for development of
integrin αvβ3-targeted SPECT and PET radiotracers (52,64–68). Chen et al recently used 64Cu
and 18F-labeled cyclic RGD tetramer E[E[c(RGDxK)]2]2 and octamer E[E[E[c
(RGDyK)]2]2]2 for tumor imaging by PET (52,117). Although the results from both in vitro
assays and ex-vivo biodistribution studies have demonstrated that radiolabeled (99mTc, 18F
and 64Cu) RGD tetramers and octamer have much better tumor targeting capability (higher
integrin αvβ3 binding affinity and better radiotracer tumor uptake) than their dimeric analogs,
it remains unclear if the cyclic RGD motifs in E[E[c(RGDxK)]2]2 (x = f and y) and E[E[E[c
(RGDyK)]2]2]2 are really multivalent in binding to integrin αvβ3. As the peptide multiplicity
increases, the uptake of radiolabeled multimeric RGD peptides in the kidneys, liver, lungs and
spleen are also significantly increased. In addition, the cost for E[E[c(RGDfK)]2]2 and E[E[E
[c(RGDyK)]2]2]2 is prohibitively high for development of integrin αvβ3-targeted radiotracers
in the future. Thus, an alternate approach is needed to improve integrin αvβ3-targeting
capability and minimize the radiotracer accumulation in non-cancerous organs.

Maximizing Binding Affinity via Bivalency
Factors Influencing Binding Affinity

The success of E[c(RGDfK)]2 as targeting biomolecules is very intriguing. Given the short
distance (6 bonds excluding side-arms of K-residues) between two cyclic RGD motifs in E[c
(RGDfK)]2, it is unlikely that they would bind to two adjacent integrin αvβ3 sites
simultaneously. However, the binding of one RGD motif to integrin αvβ3 will significantly
increase the “local concentration” of second RGD motif in the vicinity of integrin αvβ3 sites
(Figure 6A). The “locally enhanced RGD concentration” may explain the higher tumor uptake
of radiolabeled (99mTc, 111In, 90Y, 18F and 64Cu) cyclic RGD dimers as compared to their
monomeric analogs (60–65). To further improve the integrin αvβ3-targeting capability of cyclic
RGD dimers, the distance between two cyclic RGD motifs must be increased so that they are
to achieve simultaneous integrin αvβ3 binding (Figure 6B). The combination of “bivalency”
and the “enriched local RGD concentration” is expected to result in higher integrin αvβ3
targeting capability of cyclic RGD dimers and better tumor uptake with longer tumor retention
time for their corresponding radiotracers.
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Improve Integrin αvβ3 Binding Affinity by Increasing Distance between Cyclic RGD Motifs
To demonstrate this concept, Shi et al recently reported a series of cyclic RGD peptide dimers
(Figure 7) containing triglycine (G3) and PEG4 linkers, which are used to increase the distance
between two cyclic RGD motifs from 6 bonds in E[c(RGDfK)]2 to 24 bonds in 3G3-dimer and
38 bonds in 3PEG4-dimer (118,119). The integrin αvβ3 binding affinities (Table 1)
against 125I-echistatin bound to U87MG human glioma cells follow the order of HYNIC-
tetramer (IC50 = 7 ± 2 nM) > HYNIC-2PEG4-dimer (IC50 = 52 ± 7 nM) ~ HYNIC-3PEG4-
dimer (IC50 = 60 ± 4 nM) ~ HYNIC-3G3-dimer (IC50 = 61 ± 2 nM) > HYNIC-PEG4-dimer
(IC50 = 84 ± 7 nM) ~ HYNIC-dimer (IC50 = 112 ± 21 nM) ≫ HYNIC-G3-monomer (IC50 =
358 ± 8 nM) > HYNIC-PEG4-monomer (IC50 = 452 ± 11 nM). These data indicate that the
G3 and PEG4 linkers between two RGD motifs are responsible for the improved integrin
αvβ3 affinity of HYNIC-3G3-dimer and HYNIC-3PEG4-dimer as compared to that of HYNIC-
PEG4-dimer. The higher binding affinity of HYNIC-tetramer is probably due to its two extra
cyclic RGD motifs.

It is very important to note that the IC50 value depends largely on the radioligand (125I-c
(RGDyK) vs. 125I-echistatin) and tumor cell lines (U87MG vs. MDA-MB-435) used in the
competitive displacement assay. Caution should be taken when comparing the IC50 values of
cyclic RGD peptides with those reported in the literature. Whenever possible, a “control
compound”, such as c(RGDfK) or c(RGDyK) should be used in each experiment.

Ternary ligand complexes [99mTc(HYNIC-3PEG4-dimer)(tricine)(TPPTS)] (99mTc-3PEG4-
dimer) and [99mTc(HYNIC-3G3-dimer)(tricine)(TPPTS)] (99mTc-3G3-dimer) have been
evaluated in the athymic nude mice bearing U87MG glioma and MDA-MB-435 breast tumor
xenografts (118,119). For comparison purposes, [99mTc(HYNIC-PEG4-dimer)(tricine)
(TPPTS)] (99mTc-PEG4-dimer) and [99mTc(HYNIC-tetramer)(tricine)(TPPTS)] (99mTc-
tetramer) were also evaluated in the same tumor-bearing animal model (118,119). As expected,
the breast tumor uptake of 99mTc-3PEG4-dimer and 99mTc-3G3-dimer was comparable to that
of 99mTc-tetramer (Figure 8A), and was >2x higher than that of 99mTc-PEG4-dimer (118).
These data suggest that 3PEG4-dimer, 3G3-dimer and tetramer are most likely
“bivalent” (Figure 6B) whereas PEG4-dimer is monodentate (Figure 6A). If PEG4-dimer were
bivalent, HYNIC-PEG4-dimer would have shared similar integrin αvβ3 binding affinity with
HYNIC-3PEG4-dimer and HYNIC-3G3-dimer while 99mTc-PEG4-dimer would have had the
tumor uptake comparable to that of 99mTc-3PEG4-dimer and 99mTc-3G3-dimer. In
addition, 99mTc-3PEG4-dimer and 99mTc-3G3-dimer had the kidney and liver uptake that was
half of that for 99mTc-tetramer, probably because 3PEG4-dimer and 3G3-dimer have only two
RGD motifs. Therefore, 99mTc-3PEG4-dimer and 99mTc-3G3-dimer have significant
advantages over 99mTc-tetramer with respect to T/B ratios (118,119).

Multimeric ≠ Multivalent
It is critical to note that multimeric RGD peptides are not necessarily multivalent. There are
two factors (bivalency and enhanced local RGD concentration) contributing to high integrin
αvβ3 binding affinity of multimeric RGD peptides. The concentration factor exists in all
multimeric RGD peptides regardless of the linkers. The key for bivalency is the distance
between two cyclic RGD motifs. For example, this distance in 3PEG4-dimer (38 bonds) and
3G3-dimer (26 bonds) is long enough for them to achieve bivalency, which leads to the higher
integrin αvβ3 binding affinity of HYNIC-3PEG4-dimer and HYNIC-3G3-dimer than that of
HYNIC-PEG4-dimer, and the much higher breast tumor uptake (Figure 8A)
for 99mTc-3PEG4-dimer and 99mTc-3G3-dimer as compared to that of 99mTc-PEG4-dimer. In
contrast, the concentration factor is responsible for the better binding affinity of HYNIC-
tetramer than that of HYNIC-3PEG4-dimer and HYNIC-3G3-dimer. The fact that the breast
tumor uptake of 99mTc-3PEG4-dimer and 99mTc-3G3-dimer is comparable to that of 99mTc-
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tetramer suggests that the contribution from the “concentration factor” might not be as
significant as that from the “bivalency factor”. In addition, the ability of a multimeric RGD
peptide to achieve bivalency also depends on the integrin αvβ3 density. If the tumor integrin
αvβ3 density is high, the distance between two neighboring integrin αvβ3 sites will be short,
which makes it easier for the multimeric RGD peptide to achieve bivalency. If the integrin
αvβ3 density is very low, the distance between two neighboring integrin αvβ3 sites will be long,
and it might be more difficult for the same multimeric RGD peptide to achieve simultaneous
integrin αvβ3 binding.

Relationship between Tumor Size and Radiotracer Tumor Uptake
The ability to quantify the integrin αvβ3 in vivo provides opportunities to select the patients
more appropriately for anti-angiogenic treatment and to monitor the therapeutic efficacy of
integrin αvβ3-positive tumors (120,121). The %ID tumor uptake reflects the total integrin
αvβ3 level while the %ID/g tumor uptake reflects the integrin αvβ3 density. Figure 8B shows
the relationship between tumor size and tumor uptake (%ID and %ID/g) of 99mTc-3PEG4-
dimer. There was a linear relationship between tumor size and %ID tumor uptake with R2 =
0.9164 (Figure 8B), suggesting that 99mTc-3PEG4-dimer might be useful for monitoring tumor
growth during anti-angiogenic therapy (118). If the tumor uptake is expressed as %ID/g (Figure
8C), it seems that 99mTc-3PEG4-dimer has a narrow window to achieve an optimal tumor
uptake. When tumor size is small (<0.05 g), there is little angiogenesis with low blood flow,
and 99mTc-3PEG4-dimer has low %ID/g tumor uptake. When the tumor size is 0.1 g–0.25 g,
the microvessel density and integrin αvβ3 density are high. The %ID/g tumor uptake
of 99mTc-3PEG4-dimer is ~10 %ID/g (Figure 8C). As tumors grow, the total integrin αvβ3 level
is higher, and the %ID tumor uptake increases (Figure 8B). However, the microvessel density
decreases due to maturity of blood vessels. The integrin αvβ3 density also decreases due to
larger interstitial space (122). In addition, parts of the tumor may become necrotic, leading to
the lower integrin αvβ3 density. As a result, larger tumors have lower %ID/g tumor uptake than
smaller ones (Figure 8C).

Radiotracer Tumor Uptake and Tumor Cell Integrin αvβ3 Expression
Figure 9 compares the tumor uptake of 99mTc-3PEG4-dimer and 99mTc-3G3-dimer in athymic
nude mice bearing U87MG glioma and HT29 colon cancer xenografts, and the integrin αvβ3
expression levels on U87MG glioma and HT29 cells. Both 99mTc-3PEG4-dimer
and 99mTc-3G3-dimer have significantly higher uptake (%ID/g) in the glioma than HT29
tumors (Figure 9: top), which is supported by the presence of higher level of integrin αvβ3
expression on U87MG glioma cells than those on HT29 cells (Figure 9: bottom). These data
clearly show that the integrin αvβ3 level on tumor cells (U87MG > HT29) plays a significant
role in the radiotracer tumor uptake. More fluorescent staining studies are needed to better
quantify the contributions from the integrin αvβ3 expressed on the tumor cells and
neovasculature in the tumor tissue.

64Cu(DOTA-3PEG4-dimer) and 64Cu(DOTA-3G3-dimer)
Recently, Shi et al (123) reported two cyclic RGD dimer conjugates: DOTA-3PEG4-dimer and
DOTA-3G3-dimer (Figure 10). It was found that the integrin αvβ3 binding affinity (Table 1)
follow the order of DOTA-tetramer (IC50 = 10 ± 2 nM) > DOTA-3G3-dimer (IC50 = 74 ± 3
nM) ~ DOTA-3PEG4-dimer (IC50 = 62 ± 6, nM) > DOTA-dimer (IC50 = 102 ± 5 nM)
against 125I-echistatin bound to U87MG glioma cells. Once again, bivalency is likely
responsible for the higher integrin αvβ3 binding affinity of DOTA-3PEG4-dimer and
DOTA-3G3-dimer than that of DOTA-dimer. This conclusion is completely consistent with
the higher tumor uptake of 64Cu(DOTA-3PEG4-dimer) and 64Cu(DOTA-3G3-dimer) than that
of 64Cu(DOTA-dimer) (123). In contrast, the concentration factor is most likely responsible

Liu Page 7

Bioconjug Chem. Author manuscript; available in PMC 2010 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



for higher integrin αvβ3 binding affinity of DOTA-tetramer than that of DOTA-3PEG4-dimer
and DOTA-3G3-dimer, and the higher initial tumor uptake of 64Cu(DOTA-tetramer) as
compared to that of 64Cu(DOTA-3PEG4-dimer) and 64Cu(DOTA-3G3-dimer) (132).
However, the uptake of 64Cu(DOTA-3PEG4-dimer) in the liver and kidneys was significantly
lower than that reported for 64Cu(DOTA-tetramer) (57), due to the presence of four R-residues
in E[E[c(RGDfK)]2]2 as compared to only two R-residues in 64Cu(DOTA-3PEG4-dimer)
and 64Cu(DOTA-3G3-dimer) (132).

111In(DOTA-3PEG4-dimer) and 111In(DOTA-3G3-dimer)
To explore the impact of radiometal chelates, 111In(DOTA-3PEG4-dimer) and 111In
(DOTA-3G3-dimer) were evaluated in the same animal model (124). 111In(DOTA-3PEG4-
dimer) and 111In(DOTA-3G3-dimer) share the same DOTA chelator, have almost identical
lipophilicity (log P = −4.13 ± 0.08 and −4.20 ± 0.21, respectively), and show very similar
metabolic stability (124). The tumor uptake of 111In(DOTA-3G3-dimer) is comparable to that
of 111In(DOTA-3PEG4-dimer) (Figure 11A). Planar imaging studies showed that they both
had very high tumor uptake with a long tumor retention and excellent tumor-to-background
contrast (124). The activity accumulation in the chest and abdominal regions almost completely
disappeared at 60 min p.i. The combination of the hydrophilic 111In(DOTA) chelate with
PEG4/G3 linkers is responsible for the low liver uptake for 111In(DOTA-3PEG4-dimer)
and 111In(DOTA-3G3-dimer), leading to high tumor/liver ratios (Figure 11A). Both 111In
(DOTA-3PEG4-dimer) and 111In(DOTA-3G3-dimer) also had low kidney and muscle uptake
with very high tumor/kidney and tumor/muscle ratios (124). Their integrin αvβ3-specificity has
been clearly demonstrated by the blocking experiment, in which 111In(DOTA-3PEG4-dimer)
was used as the radiotracer and E[c(RGDfK)]2 as the blocking agent (124). The RGD-
specificity of 111In-labeled cyclic RGD dimers was demonstrated by the higher integrin αvβ3
affinity of DOTA-3PEG4-NS (IC50 = 715 ± 45 nM; 3PEG4-NS = PEG4-E[PEG4-
(RGKfD)]2, a scrambled nonsense peptide) than that of DOTA-3PEG4-dimer (1.3 ± 0.3 nM),
and the much better tumor uptake of 111In(DOTA-3PEG4-dimer) (10.06 ± 3.52 %ID/g) than
that of 111In(DOTA-3PEG4-NS) (0.30 ± 0.09 %ID/g) in the same animal model. On the basis
of the integrin αvβ3- and RGD-specificity of the 111In-labeled cyclic RGD peptides, it has been
suggested that their uptake in several normal organs (e.g. intestine, kidneys, liver, lungs and
spleen) might be also integrin αvβ3-mediated (124).

111In(DOTA-3PEG4-dimer) and 64Cu(DOTA-3PEG4-dimer) share the same DOTA-
conjugate. In spite of their difference in radiometal, the tumor uptake 111In(DOTA-3PEG4-
dimer) (10.89 ± 2.55 and 7.65 ± 3.17 %ID/g at 30and 240 min p.i., respectively) was close to
that of 64Cu(DOTA-3PEG4-dimer) (8.23 ± 1.97 and 6.43 ± 1.22 %ID/g at 30 and 240 min p.i.,
respectively). They also share similar uptake in normal organs. For example, the kidney uptake
of 111In(DOTA-3PEG4-dimer) was 5.80 ± 0.95 and 2.78 ± 0.20 %ID/g at 30 and 240 min p.i.,
respectively, and was comparable to that of 64Cu(DOTA-3PEG4-dimer) (6.59 ± 0.93 %ID/g
at 30 min p.i. and 2.81 ± 0.36 % ID/g at 240 min p.i.). The liver uptake of 111In
(DOTA-3PEG4-dimer) is 2.52 ± 0.57 %ID/g at 30 min and 1.61 ± 0.06 %ID/g at 240 min p.i.
while 64Cu(DOTA-3PEG4-dimer) has the liver uptake of 2.80 ± 0.35 %ID/g at 30 min p.i. and
1.87 ± 0.51 %ID/g at 240 min p.i. Similar conclusion can be made by comparing biodistribution
properties of 64Cu(DOTA-3G3-dimer) and 111In(DOTA-3G3-dimer). These data suggest that
the radiometal chelate (Figure 11B) has minimal impact on radiotracer tumor uptake and
excretion kinetics.

68Ga(NOTA-2PEG4-dimer) and 68Ga(NOTA-2G3-dimer)
We also prepared conjugates NOTA-2PEG4-dimer and NOTA-2G3-dimer (Figure 12: NOTA
= 1,4,7-triaazacyclononane-1,4,7-tetracetic acid) and their 68Ga complexes, 68Ga
(NOTA-2PEG4-dimer) and 68Ga(NOTA-2G3-dimer) (125). The integrin αvβ3 binding affinity
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(Table 1) of NOTA-dimer (IC50 = 100 ± 3 nM), NOTA-2G3-dimer (IC50 = 66 ± 4 nM) and
NOTA-2PEG4-dimer (IC50 = 54 ± 2 nM) were very close to those for DOTA-dimer (IC50 =
102 ± 5 nM), DOTA-3G3-dimer (IC50 = 74 ± 3 nM) and DOTA-3PEG4-dimer (IC50 = 62 ± 6
nM), respectively. These data further suggest that the G3 and PEG4 linkers between cyclic
RGD motifs in dimeric RGD peptides make it possible for them to bind integrin αvβ3 in a
bivalent fashion. The tumor uptake of 68Ga(NOTA-2G3-dimer) and 68Ga(NOTA-2PEG4-
dimer) was much higher than that of 68Ga(NOTA-dimer) in the same tumor-bearing animal
model (125), suggesting that the addition of G3 and PEG4 linkers between two cyclic RGD
motifs increases the radiotracer tumor uptake. In all cases, the tumors can be clearly visualized
as early as 30 min p.i. with excellent contrast (Figure 12). It was also found that the tumor
uptake of 68Ga(NOTA-2PEG4-dimer) in MDA-MB-435 breast tumor was significantly lower
than that in U87MG glioma. Similar results were also obtained for 18F-labeled 3PEG4-dimer
(126), which is consistent with that fact that the MDA-MB-435 breast tumors have lower
integrin αvβ3 expression than U87MG glioma (52–55).

Conclusions
Over the last several years, many multimeric cyclic RGD peptides have been used to increase
the integrin αvβ3–targeting capability. It was found that increasing the peptide multiplicity can
significantly enhance their integrin αvβ3 binding affinity, and improve the radiotracers tumor
targeting ability. However, as peptide multiplicity increases, the uptake of radiolabeled
multimeric RGD peptides is also significantly increased in normal organs. There is no
significant advantage in using radiolabeled tetramers E{E[c(RGDxK)]2}2 (x = f and y) over
their dimeric analogs E[c(RGDxK)]2 (x = f and y) with respect to T/B ratios. In addition, the
cost for E{E[c(RGDxK)]2}2 (x = f and y), E{E[E[c(RGDyK)]2]2}2 is too high for them to be
useful for future radiotracer development.

Recent studies on cyclic RGD dimers suggest that two factors (bivalency and enhanced local
RGD concentration) contribute to the high integrin αvβ3 binding affinity of multimeric cyclic
RGD peptides (118,119,123–126). The concentration factor exists in all multimeric RGD
peptides regardless of the linker length between two cyclic RGD motifs. To achieve bivalency,
the distance between two RGD motifs must be long enough for them to bind the neighboring
integrin αvβ3 sites simultaneously. Among the cyclic RGD peptides, 2PEG4-dimer/3PEG4-
dimer and 2G3-dimer/3G3-dimer show most promising results with respect to the tumor uptake
and T/B ratios of their radiotracers (99mTc, 111In, 64Cu and 68Ga). Thus, 2PEG4-dimer/
3PEG4-dimer and 2G3-dimer/3G3-dimer are better integrin αvβ3-targeting biomolecules than
the tetramer E{E[c(RGDfK)]2}2 with respect to their cost and the T/B ratios of
their 99mTc, 111In, 64Cu and 68Ga radiotracers.

While current research efforts on the integrin αvβ3–targeted radiotracers have been focused on
new cyclic RGD peptides, the formulation development for routine preparation of radiotracers
is often neglected. It must be emphasized that it is common to use post-labeling
chromatographic separation for improvement of radiotracer purity and specific activity for
research purposes. In clinical settings, however, post-labeling purification is not practical.
Regardless of the beauty of the science involved in the discovery of a new radiotracer, its
success relies largely on the availability and capability to improve the quality of cancer patient’s
life. As a matter of fact, the main challenge for [18F]Galacto-RGD and [18F]-AH111585 to
assume a wide-spread clinical utility is not their biological performance, but their clinical
availability at reasonable cost. In this respect, the integrin αvβ3-targeted 99mTc radiotracers
will offer significant advantages over their corresponding 18F analogs because of the clinical
availability of 99Mo-99mTc generators, and the kit formulation for routine preparation
of 99mTc radiotracers at low cost. However, both planar imaging and SPECT suffer a significant
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drawback with respect to quantification of the radiotracer “absolute” organ uptake, the speed
of dynamic imaging, spatial resolution and tissue attenuation.

The successful application of the 68Ga-labeled somatostatin analogs for imaging tumors in
cancer patients has clearly demonstrated that 68Ga is an excellent alternative to 18F. 68Ga is
available from an in-house commercially available 68Ge/68Ga generator (127–129), and its
short half-life is best suited for the fast excretion kinetics of many 68Ga-labeled small
peptides. 64Cu is another viable alternative to 18F. The use of NOTA and its derivatives as
BFCs allows the development of the kit formulation for routine preparation of 68Ga and 64Cu
radiotracers with high specific activity. In addition, 68Ga(NOTA) and 64Cu(NOTA) chelates
have very high hydrophilicity, which is extremely important for improving the radiotracer
clearance kinetics from non-cancerous organs.

It is very important to note that integrin αvβ3 is also overexpressed on the activated endothelial
cells during wound healing and post-infarct remodeling, in rheumatoid arthritis, and
atherosclerotic plaque (1–4,130,131). The integrin αvβ3–targeted radiotracers have been
proposed for imaging myocardial angiogenesis (132), inflammatory diseases (133), and
hindlimb ischemia (134). Recent results showed that the 111In-labeled nonpeptide integrin
αvβ3 antagonist (RP748) was able to image the angiogenesis in the heart with myocardial
infarction (132), and the radiotracer uptake in the infarct region was associated with the integrin
αvβ3 expression level. The results reported by Pichler et al suggest that [18F]Galacto-RGD
might be a powerful tool to distinguish between acute and chronic phases of T-cell mediated
immune responses (133). Studies have also demonstrated the value of a 99mTc-labeled cyclic
RGD monomer (NC100692) for imaging the integrin αvβ3 in rodent models of hindlimb
ischemia (134). These promising results suggest that the newer and more effective integrin
αvβ3–targeted radiotracers under development for tumor imaging might become valuable non-
invasive markers of angiogenesis after ischemic injury, myocardial infarction and
inflammation. In addition, the combination of high tumor uptake, long tumor retention with
favorable pharmacokinetic of 111In(DOTA-3G3-dimer) and 111In(DOTA-3PEG4-dimer)
suggests that their corresponding 90Y and 177Lu analogs, M(DOTA-RGD) (M = 90Y
and 177Lu; and RGD = 3G3-dimer and 3PEG4-dimer), might be useful for the treatment of
integrin αvβ3-positive tumors.
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Figure 1.
Schematic presentation of the radiotracer design. The targeting biomolecule is a multimeric
cyclic RGD peptide. The PKM linker is used to modify radiotracer pharmacokinetics. For the
metal-containing radiotracers, a multidentate BFC is often used to attach the metallic
radionuclide to the targeting biomolecule. For 18F-based radiotracers, an organic precursor or
synthon is often needed to attach 18F onto the multimeric cyclic RGD peptide.
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Figure 2.
BFCs useful for radiolabeling of multimeric cyclic RGD peptides with 99mTc, 68Ga and 64Cu.
DADA (diamidodithiol), MAMA (monoaminemonoamidedithiol), MADT (diaminedithiol),
MAG2 (2-mecaptoacetylglycylglycyl) and HYNIC are particularly useful for 99mTc-labeling
while DOTA, NOTA and their derivatives are excellent BFCs for chelation of 68Ga and 64Cu.
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Figure 3.
Chemdraw structures of cyclic RGD peptides useful as targeting biomolecules for the integrin
αvβ3-targeted radiotracers. [18F]Galacto-RGD (2-[18F]fluoropropanamide c(RGDfK(SAA);
SAA = 7-amino-L-glyero-L-galacto-2,6-anhydro-7-deoxyheptanamide) is currently under
clinical investigation for visualization of integrin αvβ3 expression in cancer patients
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Figure 4.
Cyclic RGD peptide dimers (E[c(RGDfK)]2 and E[c(RGDyK)]2) and [c(RGDfE)HEG]2-K-
Dpr-[18F]FBOA.

Liu Page 21

Bioconjug Chem. Author manuscript; available in PMC 2010 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
A cyclic RGDfK peptide tetramer, E{E[c(RGDfK)]2}2 and a 18F-labeled cyclic RGDfE
tetramer, {[c(RGDfE)HEG]2K}2-K-Dpr-[18F]FBOA.
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Figure 6.
Schematic illustration of interactions between cyclic RGD peptide dimers and integrin αvβ3.
A: The distance between two RGD motifs is not long enough for simultaneous integrin αvβ3
binding. However, the RGD concentration is “locally enriched” in the vicinity of neighboring
integrin αvβ3 once the first RGD motif is bound. B: The distance between two RGD motifs is
long due to the presence of two linkers (L). As a result, the cyclic RGD dimer is able to bind
integrin αvβ3 in a “bivalent” fashion. In both cases, the end-result would be higher integrin
αvβ3 binding affinity for the multimeric cyclic RGD peptides.
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Figure 7.
New cyclic RGD peptide dimers useful for the development of integrin αvβ3–targeted
radiotracers. The PEG4 and G3 linkers are used to increase the distance between two RGD
motifs and to improve radiotracer excretion kinetics from non-cancerous organs.

Liu Page 24

Bioconjug Chem. Author manuscript; available in PMC 2010 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 8.
Top: direct comparison of the tumor uptake for 99mTc-PEG4-dimer, 99mTc-3G3-
dimer, 99mTc-3PEG4-dimer and 99mTc-tetramer in athymic nude mice bearing MDA-MB-435
breast cancer xenografts (A). Bottom: the relationship between the tumor size and tumor uptake
(B and C) of 99mTc-3PEG4-dimer at 120 min p.i. in athymic nude mice bearing U87MG glioma
xenografts. The linear relationship suggests that 99mTc-3PEG4-dimer is for monitoring the
tumor growth or shrinkage during anti-angiogenic therapy.
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Figure 9.
Top: direct comparison of the tumor uptake for 99mTc-3PEG4-dimer and 99mTc-3G3-dimer in
athymic nude mice bearing U87MG glioma and HT29 colon cancer xenografts. Bottom:
confocal microscope images of U87MG glioma (left) and HT29 (right) tumor cells. The blue
color indicates the presence cell nuclei (the presence of 4′,6′-diamidino-2-phenylindole). The
red color indicates the presence of integrin αvβ3 due to the binding of LM609 and TRITC-
coupled goat-anti-mouse IgG. These data show that the integrin αvβ3 level on tumor cells
(U87MG > HT29) plays a significant role in the radiotracer tumor uptake.
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Figure 10.
Structures of DOTA-3G3-dimer and DOTA-3PEG4-dimer.
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Figure 11.
A: comparison of tumor uptake and tumor/liver ratios for 64Cu(DOTA-3PEG4-dimer), 64Cu
(DOTA-3G3-dimer), 111In(DOTA-3PEG4-dimer) and 111In(DOTA-3G3-dimer) in athymic
nude mice bearing U87MG human glioma xenografts. B: Chem-3D presentation of 64Cu
(DOTA-monoamide) (6-coordinated) and 111In(DOTA-monoamide) (7-coordinated).
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Figure 12.
Top: structures of NOTA-2G3-dimer and NOTA-2PEG4-dimer. Bottom: microPET images
for 68Ga(NOTA-2G3-dimer) and 68Ga(NOTA-2PEG4-dimer). Arrows indicate the presence
of tumors.
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Table 1

Integrin αvβ3 binding data for HYNIC-conjugated cyclic RGD peptides against 125I-echistatin bound to the
integrin αvβ3–positive U87MG human glioma cells.

Compound Radiotracer IC50 (nM)

HYNIC-G3-monomer [99mTc(HYNIC-G3-monomer)(tricine)(TPPTS)] 358 ± 8

HYNIC-PEG4-monomer [99mTc(HYNIC-PEG4-monomer)(tricine)(TPPTS)] 452 ± 11

HYNIC-dimer [99mTc(HYNIC-dimer)(tricine)(TPPTS)] 112 ± 21

HYNIC-PEG4-dimer [99mTc(HYNIC-PEG4-dimer)(tricine)(TPPTS)] 84 ± 7

HYNIC-2G3-dimer [99mTc(HYNIC-2G3-dimer)(tricine)(TPPTS)] 60 ± 4

HYNIC-2PEG4-dimer [99mTc(HYNIC-2PEG4-dimer)(tricine)(TPPTS)] 52 ± 7

HYNIC-3G3-dimer [99mTc(HYNIC-3G3-dimer)(tricine)(TPPTS)] 61 ± 2

HYNIC-3PEG4-dimer [99mTc(HYNIC-3PEG4-dimer)(tricine)(TPPTS)] 62 ± 5

HYNIC-tetramer [99mTc(HYNIC-dimer)(tricine)(TPPTS)] 7 ± 2

DOTA-dimer 64Cu(DOTA-dimer)/111In(DOTA-dimer) 102 ± 5

DOTA-3G3-dimer 64Cu(DOTA-3G3-dimer)/111In(DOTA-3G3-dimer) 74 ± 3

DOTA-3PEG4-dimer 64Cu(DOTA-3PEG4-dimer)/111In(DOTA-3PEG4-dimer) 62 ± 6

DOTA-tetramer 64Cu(DOTA-tetramer)/111In(DOTA-tetramer) 10 ± 2

NOTA-dimer 68Ga(NOTA-dimer) 100 ± 3

NOTA-2G3-dimer 68Ga(NOTA-2G3-dimer) 66 ± 4

NOTA-3PEG4-dimer 68Ga(NOTA-2PEG4-dimer) 54 ± 2

Bioconjug Chem. Author manuscript; available in PMC 2010 December 1.


