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Summary
In many applications involving geographically indexed data, interest focuses on identifying
regions of rapid change in the spatial surface, or the related problem of the construction or testing
of boundaries separating regions with markedly different observed values of the spatial variable.
This process is often referred to in the literature as boundary analysis or wombling. Recent
developments in hierarchical models for point-referenced (geostatistical) and areal (lattice) data
have led to corresponding statistical wombling methods, but there does not appear to be any
literature on the subject in the point process case, where the locations themselves are assumed to
be random and likelihood evaluation is notoriously difficult. We extend existing point-level and
areal wombling tools to this case, obtaining full posterior inference for multivariate spatial random
effects that, when mapped, can help suggest spatial covariates still missing from the model. In the
areal case we can also construct wombled maps showing significant boundaries in the fitted
intensity surface, while the point-referenced formulation permits testing the significance of a
postulated boundary. In the computationally demanding point-referenced case, our algorithm
combines Monte Carlo approximants to the likelihood with a predictive process step to reduce the
dimension of the problem to a manageable size. We apply these techniques to an analysis of
colorectal and prostate cancer data from the northern half of Minnesota, where a key substantive
concern is possible similarities in their spatial patterns, and whether they are affected by each
patient's distance to facilities likely to offer helpful cancer screening options.
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1. Introduction
Spatially referenced data occur in diverse scientific disciplines, such as image analysis,
geological and environmental sciences, ecological systems, disease mapping, and in broader
public health contexts. As opposed to the usual case of measurements at fixed spatial
locations, the locations themselves may be random (e.g., addresses of emerging cancer
cases), in which case they should be treated as random realizations of a spatial process.

Inferential interest customarily focuses upon estimating model parameters and producing a
spatial surface over the domain of interest. Once such an interpolated surface has been
obtained, locating areas of rapid change on the surface may be of interest. Such local
analysis of the surface (e.g., gradients at given points) has only started receiving attention.
Detecting zones or boundaries of rapid change on interpolated spatial surfaces is often
referred to as wombling, after a foundational article by Womble (1951). The field is also
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known as boundary analysis, barrier analysis, and edge detection in fields such as landscape
topography, systematic biology, sociology, ecology, and image analysis. Ultimately, the
underlying influences responsible for these zones or boundaries are typically of greatest
scientific interest.

While boundary and cluster analysis are related, the latter detects clusters of homogeneous
regions by classifying a region as a member of a particular cluster. By contrast, boundary
analysis attempts to detect regions of rapid change, typically “lines” or “curves” on the
spatial surface. Substantive interest focuses upon the boundary itself and what distinguishes
the regions on either side, rather than on any particular region. Therefore, methods for
spatial clustering (e.g., Lawson and Denison, 2002; Ma et al., 2007) are not directly
applicable here. Another related problem is that of spatial extrema detection (Pascutto et al.,
2000) that finds differences between locations and the state or national average. In
wombling, interest instead lies in detecting sharp boundaries in the spatial relative intensity
surface, so that the reasons for these rapid changes at a local scale can be investigated.

The motivating problem here involves the spatial distribution of colorectal and prostate
cancers diagnosed in the state of Minnesota. These data are part of a much larger set
collected by the Minnesota Cancer Surveillance System (MCSS), a program sponsored by
the Minnesota Department of Health. The MCSS includes the residential address of
essentially every person diagnosed with cancer in Minnesota. Here we consider the subset of
men diagnosed during the period 1998−2002 (an interval chosen partly for its centering
around a U.S. Census year, 2000) and residing in roughly the northern half of the state,
defined here as cases with latitude greater than 45.855, the latitudinal midpoint between
Minneapolis and Duluth, Minnesota. This results in 6206 cases for analysis.

Figure 1 plots the residential locations in this data, where we have added a random “jitter” to
each in order to protect the confidentiality of the patients (and explaining why some of the
cases appear to lie outside of the spatial domain). The research problem of interest is to
detect regions of elevated colorectal or prostate cancer intensity, relative to the available
population and after accounting for important spatial and nonspatial covariates. An example
of the former is distance to the cancer treatment facilities (shown as triangles in Figure 1),
since proximity to such sites may correlate with better screening (PSA testing, colonoscopy,
etc.). We wish to identify boundaries separating zones where these residual relative
intensities significantly differ. More specifically, we wish to detect regions of high gradients
that often occur due to lurking spatial variables representing local disparities, such as
disparities in income or access to health care. Statistically mapping such gradients can reveal
“hotspots” that suggest hidden risk factors, and may also help administrators determine
where to build new screening facilities, or how to expand the service regions of existing
ones.

Estimation methods for inhomogeneous spatial point process models often avoid full
likelihood evaluations by formulating estimating equations (Waagepetersen, 2007;
Waagepetersen and Guan, 2008) or blocked-bootstrap algorithms (Guan and Loh, 2007).
Inference on spatial associations proceeds not from the intensity surface, but from pairwise
correlation functions and transforms thereof (e.g., the g and K functions described in
Waagepetersen, 2007). Consequently these methods do not permit estimating gradients or
wombling on the intensity surface. We instead propose a fully Bayesian approach that yields
posterior distributions for the intensity surface, or even the spatial residual surface after
adjusting for regressors, and for gradients (at points or along curves) and all wombling-
related estimands. Inference is exact and does not rely upon possibly inappropriate use of
infill or increasing-domain asymptotics.
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Here we present wombling methods for estimated intensity surfaces within a hierarchical
point process setting. Recently, Banerjee and Gelfand (2006) developed an inferential
method for boundaries on Gaussian process surfaces, but this has been applied only to
geostatistical (fixed location) models. Our current application requires modeling random
locations to construct intensity surfaces. Full Bayesian inference for point process models is
computationally intensive, a problem that is aggravated by a large number of spatial
locations. We resort to a reduced-rank predictive process (Banerjee et al., 2008) that
operates on a lower-dimensional subspace. Our contribution here is to integrate wombling
methods with predictive process surfaces within a point-process framework in order to
analyze the data in Figure 1.

Point process data can be converted to areal data by aggregating to regional summaries, a
common data deidentification tool. Hence we compare our approach to those for areal
wombling. Lu and Carlin (2005) recently developed a hierarchical statistical modeling
framework to perform areal wombling. Here the underlying map and its geopolitical
boundaries are considered the domain of interest. These models account for spatial
association and permit borrowing of strength across the model hierarchy. Further, their
Bayesian implementation enables direct estimation of the posterior probability that two
geographic regions are separated by the wombled boundary.

In Section 2 we briefly review the spatial point process model and develop models for areal
and point-level wombling. Section 3 then applies our models to the MCSS data, mapping
boundaries of different types and testing for significance of certain pre-specified candidate
boundaries. Finally, Section 4 summarizes and offers directions for future work.

2. Point Process Wombling
We provide a brief introduction to hierarchical point process modeling, referring to Liang et
al. (2007) for full details. We then marry these methods to the problem of boundary analysis,
taking our cues from the point-level and areal wombling literature in turn.

2.1 Point process hierarchical modeling

Consider a set of random locations  where disease occurrence is observed over a
spatial domain D. The covariates associated with each disease occurrence can be classified
as spatial or non-spatial. Spatial covariates, denoted as z(s), are location-specific regardless
of whether a disease occurs there or not, such as elevation, climate, exposure to pollutants,
the driving distance to certain key locations, etc. Non-spatial covariates are not location-
specific, but are instead case-specific, such as age, cancer stage, or education level. We
further categorize some non-spatial covariates (for us, cancer type) as providing “marks,”
leading to a marked point process model. Non-spatial covariates are obtainable only at
locations where the disease occurs. We denote these covariates by v, and view them as
“nuisance” covariates. We do not seek to distinguish point patterns by these covariates;
rather, we only wish to adjust the fitted intensity surface to reflect their effects.

In general, we view the data, including locations and nuisance covariates, as a random
realization from some non-homogeneous Poisson process with intensity function λ(s, v, k)
defined over the product space , where  is the nuisance covariate space and 
is the mark space. The likelihood for the intensity surface given the data is then

(1)
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where vi and ki denote the non-spatial covariates and marks for the i-th case, respectively.

We let λ(s, v, k) = r(s)π(s, v, k), where r(s) is the population density surface at location s. (In
practice, we may approximate this surface using areal unit population counts, setting r(s) =
n(A)/|A| if s ∈ A, where n(A) is the number of points in A and |A| is the area of A.) So, r(s)
serves as an offset and π(s, v, k) is interpreted as a population-adjusted (or relative)
intensity. We then set π(s, v, k) = exp{β0k + z(s)Tβk + vTαk + wk(s)}, where wk(s) is a zero-
centered stochastic process, and β0k, βk and αk are unknown regression coefficients. With
w(s) a Gaussian process and no non-spatial covariates, the original point process becomes a
log Gaussian Cox process (LGCP; Møller and Waagepetersen, 2004, p.72).

A key advantage in the likelihood computation emerges from the additive form in z(s) and v.
Let {(ski, vki), i = 1, 2,...nk} be the locations and nuisance covariates associated with the nk
points having mark k. The likelihood (1) becomes

(2)

Inserting the expression for π(s, v, k) in (2), we obtain

(3)

where  can be evaluated analytically and the only numerical
integration required is over D in the likelihood. This is still challenging as the intensity
function involves the stochastic process wk(s) thereby precluding a closed form. Berman and
Turner (1992) and Hossain and Lawson (2008) explore direct evaluation of point process
likelihoods using numerical quadrature. We instead opt for a Monte Carlo approximation:

for a uniformly drawn random set of locations in D, say , we write

(4)

where  is the Monte Carlo sum
(Møller and Waagepetersen, 2004). Plugging (4) into (3) yields the likelihood approximation

(5)

The additive form in z(s) and v imposes a “separable” or multiplicative effect of v on the
spatial intensity. Including interaction terms in π(s, v, k) yields

(6)

Here  denotes the set of all the first order interaction terms between z(s) and v. The
corresponding coefficient in γk is set to zero when a given interaction term is excluded. With
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v categorical, the integral in (2) is no more difficult than in the additive case, while with v

continuous, we get that  is equal to

The innermost integral is available analytically, and the integration with respect to s can then
be done as in (4). The specifications of wk(s) may depend upon the data and the researcher's
interest. The next two subsections present two model specifications that lead to what we
term point process areal and point-level wombling, respectively.

2.2 Point process areal wombling
Confidentiality rules often compel researchers to aggregate point-referenced locations to
areal regions (e.g., census tracts). In this case, we set wk(s) = wki if s ∈ region i, whence the
spatial residual surface is a tiled surface. Conditionally autoregressive (CAR) models
(Besag, 1974) or their multivariate (MCAR) versions (Mardia, 1988) that use the Markovian
dependence on the adjacency structure become natural models for the {wki}.

Since the spatial residuals are now regional characteristics, wombling on the spatial residual
surface reveals boundaries between unmeasured spatially varying covariates that affect the
regional intensity surface. Following Lu and Carlin (2005), we may define the boundary
likelihood value (BLV) for mark k as Δij,k = |wki – wkj| for any two adjacent regions i and j.
Crisp and fuzzy wombling boundaries are then based upon the posterior distributions of
these BLVs. In the crisp case, we can define the edge between region i and j as part of the
boundary if E(Δij,k|Data) > c for some constant c > 0, or if P(Δij,k > c|Data) > c* for some
constant 0 < c* < 1. In the fuzzy case, resulting maps have their edges shaded according to
the P(Δij,k > c|Data) themselves, to reflect the relative probabilities of being part of the
boundary. MCMC samples of the model parameters can be obtained through standard (e.g.,
Metropolis-Hastings) algorithms, hence we can readily obtain posterior samples

. Then , and .

We can also womble on the (log) relative intensity surface itself, in order to find boundaries
separating regions of significantly different fitted intensity. The BLV between any two
adjacent regions i and j might be taken to be the absolute difference between the values of
the intensity function at the corresponding centroids ci and cj at some typical non-spatial

covariate values v0, namely, . An alternate definition is

, which can be interpreted as the absolute
difference in the aggregate occurrence rates.

Finally, we remark that the model in this subsection reduces to the multivariate extension of
Lu and Carlin (2005) in the case where all spatial covariates are observed at areal level. This
is not the case in our MCSS data, however, as distance to nearest screening and radiation
treatment facility is a spatially continuous covariate.

2.3 Point process point-referenced wombling
2.3.1 Curvilinear wombling—Banerjee and Gelfand (2006) propose a Bayesian point-
level wombling framework for any mean-squared differentiable surface Y(s), which can be
either the spatial residual surface or the log relative intensity surface. For any open curve C,
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the wombling measure of the curve is defined as the total or the average gradient along C,

 and ,
respectively, where  is the Euclidean inner product, n(s) is the normal direction to C,
Dn(s)Y(s) is the directional derivative along n(s), and ν(C) is the arc length of C. For a closed
curve C, these measures are related to the concept of “flux” of the region bounded by C.
Banerjee and Gelfand (2006) derive the distribution theory for the above wombling
measures, and propose to determine whether a curve is a “boundary curve” or not based on
the posterior distribution (e.g, declaring a boundary if the 95% posterior probability interval
for the wombling measure excludes zero). In practice, the curve C consists of a sequence of
linear segments, and the posterior distributions of the wombling measures associated with
each linear segment are obtained. The wombling measure for the entire curve is then a
weighted sum, with the lengths of the comprising line segments as the weights.

2.3.2 Predictive point-process models—Another challenge presented by our MCSS
data is the large number of locations n, which precludes direct computation of Gaussian
process models that involve inversion of the (n + J) × (n + J) covariance matrix, where J is
the number of points used to approximate the integral. To tackle this problem, we adopt a
process-based “reduced-rank kriging” approach (Banerjee et al., 2008) that replaces the
original process with a dimension-reducing predictive process model residing on a lower-
dimensional subspace generated by a smaller number of sites, or knots. With K marks,
assume w(s) = (w1(s), . . . , wK(s))T to be a multivariate Gaussian process, MVGP(0, Γw(·, ·;

θ)), where  is the K × K cross-covariance matrix
function. The predictive process corresponding to this multivariate process is the predictor

of w(s) based upon the realizations  of w(s) over a collection of m

sites , where m is much smaller than n. Given S*, the predictive process is

the spatial interpolator , where 
is the K × mK cross-covariance matrix. We call  the predictive process derived from the
parent process w(s). Computational gains accrue from w* ∼ MV N(0, Γ*(θ)) where

 is a mK × mK dispersion matrix, instead of the much larger nK ×
nK matrices corresponding to w. Replacing w(s) in (5) with  we obtain

(7)

where  is obtained by replacing each wk(tj) in  with  where
 is the k-th row of rT(t; θ). The predictive process inherits the attractive properties of

the conditional expectation as an orthogonal projection and offers an optimal approximation
to the original likelihood within a Kullback-Leibler paradigm.

We conclude with some remarks on knot selection. With evenly distributed of data
locations, one possibility is to select knots on a uniform grid overlaid on the domain.
Selection can then be achieved through a formal design-based approach that minimizes a
spatially averaged predictive variance criterion (see, e.g., Diggle and Lophaven, 2006).
However, in general the locations are highly irregular, generating substantial areas of sparse
observations where we wish to avoid placing knots, since they would be “wasted” and
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possibly lead to inflated predictive process variances and slower convergence. Here we
implement the space-covering design algorithms (e.g., Royle and Nychka, 1998) that yield a
representative collection of knots that better cover the domain. Other alternatives include
popular clustering algorithms such as k-means or more robust median-based partitioning
around medoids algorithms (e.g., Kaufmann and Roseauw, 1990). User-friendly
implementations of these algorithms are available in R packages such as fields and cluster.

2.3.3 Gradients on predictive process surfaces

We assume a stationary and separable cross-covariance function ,
where ρ(s, s′; θ) is a stationary univariate correlation function and Σ is a K × K covariance
matrix (see Subsection 3.2). Thus, Γw(s, s′; θ) inherits its smoothness properties from ρ(s, s′;
θ), which we assume is infinitely differentiable whenever ||s–s′|| > 0. Since the elements of
rT (s; θ) share the same smoothness as ρ(s, s′; θ),  is infinitely differentiable (almost
surely) everywhere in the domain, except possibly for . Mean square differentiability
is also immediate since w* is Gaussian with a finite variance. Consequently, for cross-
covariances built from, say, the Matérn correlation family, even with ν < 1 (e.g., with the
exponential correlation function) so that the parent process w(s) is not mean square
differentiable, the predictive process still is.

For posterior inference, we first form the finite difference directional predictive process with

respect to a fixed direction (say, the unit vector u) as . Being a
linear function of two Gaussian processes,  and  is itself a Gaussian
process. Using a limiting argument for Gaussian processes, we have

(8)

Since w* ∼ MV N(0, Γ*(θ)), (8) implies that  is a non-stationary

Gaussian process , where . More

generally, for K marks, we compute the 2 × K gradient matrix .
Stacking up the elements of this matrix into a 2K × 1 column vector, we find that this vector

will follow a multivariate Gaussian process , where

 is the 2K × 2K cross-covariance matrix with  denoting the
2K × mK matrix obtained by applying ∇ to each of the components of rT(s; θ). Posterior
inference is straightforward in a sampling-based framework: having obtained the posterior

samples , posterior samples of the predictive process gradient are obtained by

setting  for l = 1, . . . , L.

3. Application to the Colorectal and Prostate Cancer Data
We now turn to the analysis of the MCSS colorectal and prostate cancer data using the
methods of Sections 2.2 and 2.3. We consider two location-specific covariates: z1(s), the log
standardized distance to the nearest cancer treatment site (as indicated by the presence of a
licensed radiation treatment facility), and z2(s), the poverty rate in the census tract
containing s. We also employ two non-location-specific covariates: v1, cancer stage, set to 1
if the cancer is diagnosed late (regional or distant stage) and 0 otherwise, and v2, the
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patient's age at diagnosis. The population density r(s) we use for standardization is available
at 2000 census tract level, meaning that we assume population density is constant across any
tract.

The first and second rows of Figure 2 show maps of the raw median non-spatially varying
covariates (age and proportion diagnosed late), while the third row maps a crude estimate of
the log-relative intensities for the colorectal (left column) and prostate (right column) cancer
cases. These summaries are presented at tract level, even though we have exact (or nearly
exact) spatial coordinates here. In the first two rows, tracts containing no participants are
simply shaded according to the overall observed median values, which are approximately
0.1 for (centered) age for both cancers, and 0.513 and 0.161 for proportion diagnosed late in
the colorectal cancer and prostate cancer groups, respectively. None of these four maps
show strong spatial patterns, though we do see several rural areas with higher or lower than
average age, late diagnosis fraction, or both. The third row maps the logs of the numbers of
patients divided by total number of residents in each tract. This crude estimate of the tract-
level log-relative intensity (unadjusted for any spatial or nonspatial covariates) indicates a
fairly “flat” map, except for a few northwestern census tracts without any colorectal cancers.

Figure 3 shows tract-level maps of population density, r(s), and our two location-specific
covariates, z1(s) and z2(s). Again we give a tract-level display here, but emphasize that z1(s)
is actually available for all s. Population density is fairly uniform over all but the most urban
tracts, and z1(s) (distance to nearest treatment site) appears exactly as expected. In the
poverty map, the large and dark-shaded north-central tract that looks like a letter “P” rotated
90 degrees clockwise is the Red Lake Indian Reservation.

We use Monte Carlo integration to approximate the integral of the intensity in (4). To do
this, within each of the nD = 261 census tracts Di, we randomly generate ni points {tij, j = 1, ·

· · , ni}. The integrated intensity surface is then given by , where the
integrated intensity over each stratum is approximated by the Monte Carlo sum for the
predictive process likelihood as described in (4). We compare three strategies for choosing
tij's: the first draws points uniformly distributed over the spatial domain, the second
maintains roughly the same number of points within each census tract, and the third samples
proportionally to tract area and also accounts for its population density (thus, for small areas
that are densely populated, we add more points). We use 2000 different posterior β samples
to compute the integral, and compare the results in each case to a “benchmark” integral
evaluated using using 261,000 points with about 1000 points in each census tract. We
checked the median absolute differences (and their 2.5% and 97.5% percentiles) using these
three strategies using roughly 10, 50, and 100 points per tract. The benchmark integral
evaluates to approximately 6206 (the total number of observations), but varies between 5951
and 6492 over the 2000 β samples. With 100 points per census tract, we find that all three
methods offer satisfactory approximations to the benchmark, with the relative error across
the 2000 samples never being more than than 0.08%.

The population varies moderately across census tracts (from 856 to 8916) but their areas
vary significantly, implying substantial variability in population density (from 0.3846/km2 to
3767.0/km2) over the northern Minnesota census tracts. Our integrand, therefore, lacks
smoothness, complicating its numerical evaluation. For subsequent inference we adopt the
second strategy for choosing the tij's, using approximately 100 randomly selected points
within each of our 261 census tracts, resulting in 26,100 points.
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3.1 Areal wombling
As described in Section 2.2, in this case the spatial residual surface is a tiled surface. We

assume that , i.e. the spatial residuals w follow an

MCAR distribution, where ,  and  are within-cancer spatial
variance parameters, and ρ ∈ (−1, 1) represents the correlation between colorectal and
prostate cancer. We use this model to perform boundary analysis on both the spatial residual
surface and the log relative intensity surface for our MCSS dataset.

We apply our areal wombling models to the spatial residuals using a cut-off value c =
log(1.5). Thus, conditioning on all the other factors, we regard tracts as meaningfully
different if their relative intensities differ by 50%. We consider edges that have P(Δij > c|
Data) > 0.8 to be crisp wombling boundaries. The top row of Figure 4 shows wombling
boundaries for the spatial residual surface. Boundaries are shown as thick white lines
between the regions, which are themselves shaded according to their fitted wki. The left
panel shows the wombled residual boundaries for colorectal cancers, while the right panel
corresponds to prostate cancers. The patterns for colorectal and prostate cancers are very
similar – almost identical. A few northwestern census tracts are isolated from their
neighbors due to their low fitted relative intensities (hence the need for fairly large negative
residuals here). Overall, there is some evidence of separation of the northern and southern
parts of the map, perhaps indicating the need for more aggressive screening for both cancers
in the former.

The upper left panel of Figure 4 shows the Red Lake Indian Reservation tract to be almost
entirely isolated from its neighbors for colorectal cancer, which is consistent with the raw
data in the lower left corner of Figure 2. To investigate this issue more carefully, we
calculated the sample posterior probability that all five of the Δij corresponding to the five
boundary segments that form the Red Lake tract's perimeter were greater than log(1.5). We
obtained probability estimates of 0.63 and 0.29 for colorectal and prostate cancer,
respectively, consistent with the appearance of the top row of Figure 4.

Next, we apply this same method to the estimated log intensity surfaces which depend upon
the non-spatial covariates (age and stage at diagnosis). Hence we womble on the log
intensity surface for a patient of mean age who received an early diagnosis. Defining πi,k to
be the log intensity value at the centroid of region i for treatment k at the specified age and
diagnosis stage, the corresponding BLV's are then Δij,k = |πi,k – πj,k|. The bottom row of
Figure 4 shows the resulting wombled boundaries, again using c = log(1.5). Our method
again successfully isolates the two rural, low-density census tracts in the northwest,
suggesting that these census tracts have very different cancer relative intensities from their
neighbors on both the fitted and residual scales.

3.2 Point-level wombling
The point wombling methods discussed in Subsection 2.3 require the target function to be
mean-square differentiable. The presence of discontinuous covariates precludes such point
wombling analysis on the fitted log intensity surface, but our spatial residual surfaces remain
mean-square differentiable and permit inference on gradient processes. We assume that w(s)
= (w1(s), w2(s))T is a bivariate Gaussian process GP(0, Γw(·, ·, θ)) with

, where  and  is the univariate exponential
correlation function. The scale of the spatial decay parameter ϕ depends on the distance
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function employed. To ensure the positive definiteness of the resulting covariance matrix,
we project longitude and latitude onto planar coordinates using an azimuthal projection
(preserving distance from each point to the north pole), enabling us to use Euclidean
distance. As is often the case, the spatial range parameter ϕ is only weakly identified (i.e.,
identifiable, but difficult to estimate), so an informative prior is needed for satisfactory
MCMC behavior. For simplicity, we might simply fix this parameter at a value that specifies
an effective spatial range equal to some fraction f (1/2, 1/4, 1/8, etc.) of the maximal inter-
site distance. After experimenting with various values of f, we selected f = 1/2, or ϕ = 66, as
it seemed to provide the best model fit as well as sensible fitted surfaces.

Table 1 displays estimates from our predictive process model with different numbers of
knots, and from a simple areally aggregated Poisson regression model. The spatial
coefficients are initially sensitive to the choice of knots, but stabilize with more than 200
knots. The non-spatial coefficients (age and late) are very robust. We also notice that the
distance effect is significantly negative in the point process model, while it is not identified
as significant by the Poisson model. This might be because the distance from a tract centroid
to the nearest treatment facility is not that representative for many rural cases. Our model
indicates relative risk tends to be lower in rural areas than in urban areas. The Poisson
regression model fails to identify age as a significant risk factor for either cancer, and even
leans slightly negative for prostate cancer, in strong conflict with intuition and past research.
This is apparently the result of ecological fallacy: the aggregate Poisson model is forced to
use average age as a predictor, and this is not an effective strategy. In contrast, our
predictive point process models correctly identify a significant positive effect of age on the
relative intensities of both cancers. These estimates agree extremely well over a range of
between 26,100 and 52,000 tij's using 200 knots. Finally, the correlation parameter ρ is
estimated to be about 0.95, much higher than that from the Poisson model (0.76), indicating
that the residuals for these two groups have very similar patterns. In summary, Table 1
indicates that aggregation brings about a loss of accuracy of the point estimates, and of their
statistical significance as well.

Turning to mapped summaries, the top panels of Figure 5 show image-contour maps of the
estimated spatial residuals under the point process model. We see a few similarities with the
areally-wombled spatial residual maps in the top row of Figure 4, but overall the spatial
pattern is not very strong, and we see only a few patches with high residuals. However,
because the underlying spatial surface is now assumed to be continuous, we are able to see
finer scale changes in the fitted surface (subject of course to the image plot's resolution).

In wombling one is often interested in detecting “zones” of rapid change that are regions
where locations with high gradients are likely to reside. We interpolate, for each outcome
type j = 1, . . . , K, the maximal gradient  over our domain. Here || · || is the
Euclidean norm and this quantity is precisely the maximum of directional gradients over all
directions, i.e., maxu . Note that the posterior samples of this quantity can be
directly obtained from those of the . The bottom panels of Figure 5 shows the mean
predicted surface of  over the spatial domain for j = 1, 2 (i.e., colorectal and
prostate cancers). We see a few patches of rapid change, especially in the southeast and
northeast near Lake Superior. These high-gradient areas are very near the cities of Duluth
and Silver Bay, both of which feature large groups of unionized workers, many employed in
the mining industry. Since prostate and colorectal cancers are preventable with proper
screening, which in turn would be freely available to unionized workers, we speculate that
level of unionization (if available) might be the next variable to enter into our model.
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Point-level wombling can be carried out on any postulated boundary curve, regardless of its
geopolitical nature. For drawing comparisons with our Subsection 3.1 results, we will work
with curves constructed using census tract boundaries. We obtain the entire posterior
distributions, and hence assess significance, of the line integrals (in Section 2.3) for the
census tracts. In practice, we approximate the line integral with a sequence of linear
segments and use a Monte Carlo approximation to the integral over each segment. The
“normal direction to the curve” is then taken as the normal direction to each comprising
segment. Some idea about wombling boundaries are gleaned from the contours: curves
moving along a stream of contour lines will typically reveal higher curvilinear gradients,
while curves cutting perpendicular to contours will not. In principle, one could evaluate the
wombling measure for every conceivable boundary, but this is impractical. Therefore, we
present results for five candidate boundaries, shown as wide white lines in Figure 5 with
indices shown by the arrows in the figure (which are also included in the first row of Figure
4 for easy look-up).

We point out that the aggregated Poisson model could be used for areal wombling (as in
Figure 4), but not point-level wombling and spatial gradient estimation (as in Figure 5). To
compare the areal and point-level approaches, we selected three of the the most likely
wombling boundary segments (labeled 1−3) from our areal analysis. Boundaries 4 and 5 are
components of the Red Lake Reservation tract, one that emerged as significant in the areal
analysis, and one that did not. We then computed 95% central credible intervals (CI's) for
the curvilinear wombling measures for these 5 segments. Boundary 1 has an insignificant
curvilinear gradient for colorectal (CI: (−0.35, 0.40)) and prostate cancer (CI: (−0.08, 0.49)),
although more pronounced for the latter, while Boundary 2 (CI's: (2.75, 5.70) for colorectal,
(3.20, 6.24) for prostate) and Boundary 3 (CI's: (1.69, 2.29) for colorectal, (1.95, 2.81) for
prostate) are significant for both cancers. This is because Boundary 1 does not lie in a “hot
spot” in the gradient maps (second row of Figure 5), whereas Boundaries 2 and 3 do. Similar
statements can be made of the two Red Lake tracts, where our results are also consistent
with our earlier, areal analysis: Boundary 4 has a significantly positive curvilinear gradient
for both cancers (CI's: (1.14, 2.52) for colorectal, (0.55, 2.54) for prostate), while Boundary
5 (CI's: (−0.81, 0.17) for colorectal, (−0.55, 0.02) for prostate) does not.

4. Discussion
This article has extended statistical spatial boundary analysis (wombling) to a spatial point
process framework. We found the areal models to be conceptually and computationally
more convenient, but also saw an example where the added precision provided by the point
process model leads to a slightly different (and, arguably, better) decision as to whether a
particular apparent boundary is in fact statistically meaningful. Our model implementations
are somewhat complex, but this is largely due to the complexity of the likelihood (2) itself;
our addition of the boundary analysis component does not render the task infeasible.

Wombling with spatial gradients requires that the destination process be mean square
differentiable. The intensity surface does not meet this criteria without covariates at precise
locations – e.g., when a covariate like poverty level is assessed at a regional level. This
yields only a piecewise continuous tiled surface. One could, then, interpolate the covariates
to ultimately produce a differentiable target surface, so that the point-level methods still
apply. A model-based approach for such reconstructions is desirable and will be explored.

Future work will also include modeling the change in the wombled boundaries over time –
spatiotemporal wombling. The time variable can be viewed as continuous or discrete,
leading to a rich collection of models. The feasibility of a spatiotemporal predictive point
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process as well as spatiotemporal splines and other likelihood approximations will be
investigated.
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Figure 1.
Jittered residential locations of colorectal (circles) and prostate (plus signs) cancer cases, as
well as major cancer treatment facilities (triangles), northern Minnesota, 1998−2002.
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Figure 2.
Minnesota cancer covariate and response data for the colorectal (left column) and prostate
(right column) cases: top row, tract-specific map of observed median age; middle row, tract-
specific map of observed proportion of late diagnosis; bottom row, tract-specific observed
log-relative intensity (count divided by population).
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Figure 3.
Top, population density per square kilometer by tract; middle, log-standardized distance to
nearest treatment site by tract; bottom, poverty rate by tract.
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Figure 4.
Areal wombling boundaries (thick white lines), MCSS colorectal and prostate cancer data.
Left panels, colorectal cancer; right panels, prostate cancer. Top row, spatial residual
surface; bottom row, fitted log intensity surface. The five arrows indicate candidate areal
wombling boundaries to be tested for significance in the text.
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Figure 5.
Image-contour maps of estimated spatial residuals (top row) and mean predicted gradient
surfaces (bottom row), point-level wombling on MCSS cancer data. Left panels are for
colorectal cancer; right panels are for prostate cancer. The five arrows indicate candidate
areal wombling boundaries (thick white lines) to be tested for significance in the text.
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Table 1

Sensitivity of parameter estimates for the Bayesian point process model with different number of knots.
Results for the areal Poisson model are also shown for comparison; in this aggregate data model, “distance” is
the distance from the centroid of the census tract to nearest treatment facility, “age” is the mean observed age,
and “late” is the proportion of late diagonosed patients within each census tract.

Point Process Models Poisson Model

64 knots 200 knots 256 knots (areal)

colorectal:

intercept −8.65 (−8.87,−8.48) −7.97 (−8.17,−7.72) −8.02 (−8.12,−7.77) −6.30 (−6.58,−6.02)

distance −0.04 (−0.07,−0.01) −0.17 (−0.20,−0.14) −0.16 (−0.19,−0.13) 0.03 (−0.01,0.07)

poverty −0.97 (−1.83,−0.22) −1.06 (−1.84,−0.25) −1.09 (−1.81,−0.31) −0.99 (−1.93,−0.06)

age 0.25 (0.23,0.27) 0.25 (0.23,0.27) 0.25 (0.23,0.27) 0.06 (−0.04,0.16)

late 0.05 (−0.04,0.14) 0.05 (−0.04,0.14) 0.06 (−0.03,0.14) −0.05 (−0.32,0.21)

prostate:

intercept −6.40 (−6.62,−6.29) −5.76 (−5.89,−5.62) −5.80 (−6.03,−5.58) −5.06 (−5.24,−4.84)

distance −0.11 (−0.13,−0.08) −0.25 (−0.27,−0.24) −0.23 (−0.26,−0.20) 0.01 (−0.02,0.04)

poverty −2.97 (−3.59,−2.38) −3.32 (−3.97,−2.63) −3.25 (−4.01,−2.71) −2.85 (−3.55,−2.15)

age 0.25 (0.24,0.27) 0.26 (0.24,0.27) 0.25 (0.24,0.27) −0.03 (−0.17,0.11)

late −1.65 (−1.73,−1.58) −1.65 (−1.73,−1.58) −1.65 (−1.72,−1.59) −0.08 (−0.45,0.29)

ρ 0.93 (0.90,0.97) 0.95 (0.91,0.99) 0.96 (0.90,0.99) 0.76 (0.59,0.87)

σ1
2 0.62 (0.44,0.89) 2.91 (2.34,3.57) 2.95 (2.25,3.70) 0.71 (0.52.0.96)

σ2
2 1.46 (1.02,2.07) 4.05 (3.19,4.97) 3.92 (2.15,4.88) 0.82 (0.49,1.21)
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