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Modern genomics technologies generate huge data sets creating a demand for systems level,
experimentally verified, analysis techniques. We examined the transcriptional response to DNA
damage in a human Tcell line (MOLT4) using microarrays. By measuring both mRNA accumulation
and degradation over a short time course, we were able to construct a mechanistic model of the
transcriptional response. The model predicted three dominant transcriptional activity profiles—an
early response controlled by NFjB and c-Jun, a delayed response controlled by p53, and a late
response related to cell cycle re-entry. The method also identified, with defined confidence limits,
the transcriptional targets associated with each activity. Experimental inhibition of NFjB, c-Jun and
p53 confirmed that target predictions were accurate. Model predictions directly explained 70% of
the 200 most significantly upregulated genes in the DNA-damage response. Genome-wide
transcriptional modelling (GWTM) requires no prior knowledge of either transcription factors or
their targets. GWTM is an economical and effective method for identifying the main transcriptional
activators in a complex response and confidently predicting their targets.
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Introduction

Establishing major gene regulatory networks in a cell and
modelling their interactions are key goals of systems biology
(Camacho and Collins, 2009; Carter et al, 2009). Prevailing
systems approaches usually aim to identify the components of
a network from the literature, connect them in a consensus-
based manner, and then map the intensities of interactions
onto this framework (Mo and Palsson, 2009). This has
advantage that the biological connections are experimentally
verified, and, particularly in single-cell organisms like yeast,
these approaches have led to excellent results (Liao et al, 2003;
Workman et al, 2006). In multicellular organisms, however,
modelling based primarily on documented network architec-
ture is subject to certain limitations. Summarizing from the
literature usually entails averaging evidence gathered from
different cell types and in different experimental contexts.
Molecules involved in multiple systems may be connected

differently and may have different effects in each individual
system. Network models built on this kind of data, although
useful, risk being unrepresentative of specific situations
in vivo.

An alternative approach is to identify connections within the
whole-genome experimental data gathered in a system-
specific manner using highly parallel genomics technologies
such as gene expression microarrays. The resulting large data
sets can then be analysed to reveal main expression patterns or
else the main sources of variability in the data. The most
commonly applied microarray analysis methods are generally
derived from classical multivariate analysis. Typically, analy-
sis of a data set will initially use statistical filtering (Welch
t-test, ANOVA, Limma) to provide an effective summary of the
main expression patterns in the transcriptome (Gentleman
et al, 2004; Smyth, 2004). Differentially expressed genes
can then be grouped into classes according to the similarity of
their expression patterns using supervised or unsupervised
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clustering, or else the main sources of variability in the data
can be detected and synthesized into principal components
(PCA). These classifications then serve as the basis for
identifying, often, large lists of genes with contrasting or
predictive patterns of expression.

Although these approaches have been widely and success-
fully applied for traditional single gene pathway studies,
high experimental costs and the lack of tools capable of
extracting more than basic information has generally restricted
interpretation of microarray data. Commonly, results are
limited to the identification of the most differentially expressed
genes in snapshots of an isolated, and often genetically
modified biological system. To realize the full potential of
microarrays and also of next-generation clonal sequencing
technologies, it is necessary to develop flexible and efficient
methods for using genome scale data to examine the
transcriptome as a whole. Several groups have begun this
task, applying Boolean and dynamic Bayesian network
tools to predict the connectivity and behaviour of theoretical
and specific biological systems (Husmeier, 2003; Zou and
Conzen, 2005; Dojer et al, 2006). However, a widely applicable
and experimentally verified method for genome wide tran-
scriptional analysis is yet to be established. Our first aim was,
therefore, to create a model capable of explaining as high a
proportion of an induced transcriptional network as possible,
solely on the basis of measurable data.

Lists of differentially expressed genes from microarray
experiments are frequently extensive. Typically only low
numbers of replicates (usually just three per condition)
are run, and so the application of conventional statistics
is seldom adequate to determine the extent to which
these gene lists are interpretable. Our second goal, therefore,
was to attribute a degree of confidence with which differential
gene expression can be described as biologically
meaningful.

We used the DNA-damage response in the MOLT4 human
T-ALL cell line as a model system. The cells show a normal
response to damage and die by apoptosis in a p53-dependent
manner (Barenco et al, 2006). We have previously shown that
by linking transcript levels measured in a time series after
induction of damage, a dynamic picture of network activity
can be created. We developed a mathematical modelling
approach called Hidden Variable Dynamic Modelling (HVDM)
(Barenco et al, 2006), available as an R package in
Bioconductor (Barenco et al, 2009). HVDM incorporates
RNA production and degradation terms and prior biological
knowledge, namely genes known to be targets of a specific
transcription factor, and deduces the activity of that transcrip-
tion factor from microarray data.

HVDM predictions were often surprising. Many p53 targets
were predicted accurately despite having quite different
transcript time profiles. The most likely explanation for these
findings was the effect of differential mRNA degradation rates.
Transcripts with a high degradation rate, or short half-life,
tend to track the shape of their activator more closely
than those transcripts that degrade slowly. The influence of
RNA degradation on transcript accumulation had received
little attention in a systems context in which emphasis is
typically put on mRNA production and activation. Recently,
however, it has been shown that RNA turnover rates are

central in shaping the response of yeast cells to different
stimuli (Shalem et al, 2008).

Therefore, in this study we used microarrays to estimate the
RNA degradation rates of all transcripts and used this
information to generate a new approach we call genome-wide
transcriptional modelling (GWTM). We applied GWTM to
dissect the transcriptional response to DNA damage into its
component activities, and identified, with confidence inter-
vals, the targets of each activity.

Results

Model System—the response of human MOLT4
cells to ionizing radiation

Ionizing radiation causes double-strand DNA breaks and
activates a complex transcriptional response in mammalian
cells. Irradiation-activated genes are involved in a variety of
cellular processes, including cell cycle arrest, apoptosis and
cell survival. The network centres on the transcription factor
and tumour suppressor, p53. We have previously modelled the
p53 network using HVDM, generating a ranked list of p53
targets which we verified experimentally using siRNA (Bare-
nco et al, 2006). This study also showed that many genes
activated in the irradiation response network are independent
of p53, or are co-regulated by another factor. We aimed to
explain the behaviour of as high a proportion of the response
as possible.

RNA degradation rates determine transcript time
profiles

Conventional methods for identifying the number of activities
involved in a complex transcriptional response are based
solely on transcript levels. We have shown previously that
clustering at this level is inefficient in identifying p53 targets in
a complex response (Barenco et al, 2006). During the dynamic
response to ionizing radiation, the rate of change of transcript
concentration is a function of its production and degradation
rates, and can be described by the following ordinary
differential equation.

dXjðtÞ
dt
¼ Bj þ SjfðtÞ � DjXjðtÞ

The first two terms on the right hand side of the equation are
production terms. The rate at which a gene j is produced can be
divided into a constant (or basal) transcription rate, Bj, and a
rate that varies during the response as a consequence of
transcription factor activity, f(t). As the activation profile of
a gene is potentially gene specific, we will attach to f(t) an
index, j. A transcription factor can act on multiple target
genes, but its effect on each gene will depend on specific
target gene sensitivity, Sj—for example, as a result of differing
affinity for the promoter. The total production rate of the
gene is, therefore, the sum of the constant term Bj and a time-
dependent term Sjfj(t). The third term is a degradation term.
mRNA molecules are degraded by nucleases at a rate, Dj.
We assume the overall degradation rate to be proportional
to transcript concentration Xj(t).
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Exploration of the theoretical effects of RNA degradation on
network modelling revealed that different transcript degrada-
tion rates could have a significant impact on the time profiles
of gene expression data (Figure 1). The higher the degradation
rate, the more the expression profile will tend to track the
activator profile. In contrast, lower degradation rates are
associated with comparatively slower responses.

Measuring transcript degradation rates allows
modelling of transcript production

We then hypothesized that knowledge of global RNA
degradation rates could be used to extract extensive hidden
information about gene networks from microarray data.

To obtain degradation rates that are as specific as possible
to our system, we measured them directly by activating the
DNA-damage response for 4 h, blocking the transcription using
actinomycin D, then running a microarray time course to
measure transcript levels at intervals over the following 6 h
(see Materials and methods and Supplementary information).

By measuring the degradation rate and transcript time
profile on microarrays, we experimentally quantified the
terms Dj and Xj(t) in our model equation above. From this
information we can also infer the first derivative dXj(t)/dt.
We then rearranged the model equation to collect these
known terms on the LHS of the equation.

GjðtÞ ¼
dXjðtÞ

dt
þ DjXjðtÞ ¼ Bj þ SjfjðtÞ

This creates an identifiable term, Gj, which is equivalent to
a compound production term for a given transcript at a given
time. Gj time profiles represent an affine transformation of
the activation profiles of individual genes, that is, the profile
may vary in amplitude or scale, but its shape remains the
same. This shape invariance can be exploited to group
genes together. Genes that share similar Gj profiles are likely
to be directly controlled by the same regulatory activity. Often,
but not exclusively, this could relate to active transcription
factors.

Generation of discrete Gj profiles from microarray
data

To generate Gj values for all changing transcripts, we used the
same transcript time series values used in HVDM (Barenco
et al, 2006). We assume that the damage response network is
in equilibrium before irradiation, that is, the rate of change of
its constituents is zero. Irradiating the cells disrupts the
equilibrium and activates various transcription factors,
including p53.

We defined Gj profiles above using a continuous frame-
work, but experiments only provide measurements at speci-
fied time points. Therefore, we devised a method to obtain
discrete Gj profiles. First, we calculated DjXj(t) by multiplying
each transcript expression level at every time point by the
corresponding transcript degradation rate measured indepen-
dently. Approximation of the first derivative at the measure-
ment points can be obtained using local Lagrange inter-
polation (see Mathematical methods section and (Barenco
et al, 2006)). Using this method, individual slope estimates are
linear combinations of the entries of Xj(t) and the first
derivative vector can be written as A.Xj(t), where A is a
square matrix containing the relevant coefficients. Therefore,
individual, discrete Gj profiles can be calculated using

GjðtÞ ¼ ðAþ DjIÞXjðtÞ

where I is the identity matrix. A entries only depend on the
time vector (in our case 0, 2, 4, 6, 8, 10, and 12) and some of
them are negative (see Materials and methods). A is not gene
specific and can be computed just once and then applied to all
gene time profiles. One profile of Gj values was generated for
each experimental replicate time series (Gj,r; r¼1, 2, 3).

Discovery of principal transcriptional activities
using a graph representation

We proceeded to cluster the data using a Gj profile composed
of three individual Gj,r profiles i.e. Gj¼[Gj,1,Gj,2,Gj,3] with
Pearson’s correlation coefficient (which is unaffected by affine
transformation of the underlying data). Genes that share a

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

A
ct

iv
ity

Time (h)

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10

E
xp

re
ss

io
n 

le
ve

l

Time (h)

Degradation rate=0.03
Degradation rate=0.9

A

B

Figure 1 Transcript degradation rates determine the shape of the response.
(A) The activity profile of a hypothetical transcription factor. (B) The
corresponding normalized responses of two target genes with different
degradation rates. At a higher degradation rate, the initial response and the
subsequent decay are swifter, and the transcript profile corresponds better to the
driving activity. In contrast, with a smaller degradation rate, the transcript
response profile is delayed and peaks later.
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similar activation profile will have a correlation coefficient
approaching 1. This should allow clustering of genes that share
similar activation profiles. However, the real situation is more
complicated because Gj is a composite production term. In the
case of genes that are co-activated by two or more transcription
factors, the Gj profile will represent a combination of the
corresponding activation profiles. If this ‘blurring’ is a
common occurrence, then clearly separated clusters are
unlikely to appear. In line with this, initial attempts to cluster
Gj profiles using K-means clustering with a Pearson correlation
coefficient did not identify sufficiently discrete activity profiles
(see Supplementary information).

Experimental variability and measurement imprecision also
confounded attempts at correlation. We observed that genes
expressed just above detection limits tend to have a high level
of noise, and that some degradation rates could not be
calculated with sufficient precision (for example, because of
very rapid degradation).

To solve these problems we applied a graph representation
to locate regions where the density of Gj profiles is high.
Graphical representation has previously been used in the
context of gene expression profiles clustering (Sharan and
Shamir, 2000). This has the advantage that it can overcome
noise, imprecision and blurring by identifying groups of genes
that are tightly associated with one another. We attached an
edge to any pair of genes correlation of which was above a
threshold, a (0.80). We then calculated the correlation
coefficient between each replicate Gj profile and excluded
genes with poorly correlated (bo0.45) replicates. We found
that this effectively excluded genes hampered by a high level
of noise.

Gj clustering identifies three global activities
in the MOLT4 DNA-damage response

Using the effective Bron–Kerbosch algorithm (Bron and
Kerbosch, 1973), we determined all maximal cliques in the
graph defined above. Cliques are groups constituent genes of
which are connected to every other gene in the clique.
Maximal cliques are those cliques that are not a subset of a
bigger clique. Maximal cliques having genes in common were
then merged. We call these entities merged cliques and only
considered those that comprised at least four genes. To check
the robustness of the method and find the optimal values for
the two parameters a and b, we systematically varied their
respective values (see Materials and methods). By construc-
tion, the merged cliques constitute tight clusters and are,
therefore, likely to correspond to the principal activities of the
response.

With a threshold value for a of 0.80 and b of 0.45, we found
three merged cliques, indicating that there are at least three
major global activity profiles in the DNA-damage response
network (Figure 2). Activity profiles were then obtained by
averaging the normalized profiles of its constituent genes.
Merged clique 1 consisted of 51 transcripts, and the shape of
the main activity corresponding to this first main clique is
indicative of a strong early response, the activity profile peaks
at 2 h and decays immediately afterwards (Figure 2A).
The activity profile of merged clique 2 (15 transcripts)
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Figure 2 The three main activities in the DNA-damage response network.
Individual activity profiles of the constituents of the merged cliques were
normalized to an average of zero and an s.d. value of one. Global activity pro-
files were obtained by averaging these normalized profiles. Within each
panel, individual curves represent a different replicate. (A) Global activity 1
corresponds to the activity of both NF-kB and c-Jun/AP-1, and has a rapid
onset and decline. (B) Global activity 2 corresponds to the activity of p53,
a transcription factor that is pivotal in the DNA-damage response network.
(C) Global activity 3 likely corresponds to the transcription of genes in cells
re-entering the cell cycle.
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indicates a strong response that peaks 4 h after irradiation and
then diminishes until reaching a plateau, at 8 h (Figure 2B).
The eight transcripts in merged clique 3 have a very distinctive
profile, which diminishes to a trough at 2 h and then increases
at a constant rate reaching the starting value at about 5 h
(Figure 2C). The three global activity profiles identified are
robust, in that the merged cliques that lead to their discovery
appear with a relatively wide range of values for these
parameters (see Materials and methods). The constituent
genes/transcripts of these cliques are provided in the
Supplementary information (Supplementary Tables I–III).

Identification of candidate transcription factors
using bioinformatics methods

We adopted a bioinformatics approach to identify cis-
regulatory domains, known transcription factor control and
functional composition and connectivity of the genes in each
merged clique (see Materials and methods).

Merged clique 1 (51 genes/transcripts)
We applied TRED (Jiang et al, 2007) to search for TF-binding
motifs shared by constituents of MC1 (see Bioinformatic
methods). This approach generated a clear enrichment of
NF-kB-binding sites in the promoters of genes from merged
clique 1 compared with a gene list derived from merged clique
2 (MC1 36% of screenable genes (n¼30) had a NF-kB-binding
site (matrix threshold 45) within 1000 bp (700 bp upstream
and 300 bp downstream) of the transcription start site
compared with 7% in MC2 (n¼57). Although GeneTrail
(Backes et al, 2007) failed to identify any known transcription
factors significantly associated with the list, analysis of Gene
Ontology categories using Ingenuity Pathway Analysis identi-
fied significant associations (Po0.05) with both NF-kB and the
c-Jun-containing AP1 complex (see Bioinformatic methods).
Included in these associations are RELBs, a constituent of the
NF-kB complex (Bours et al, 1994) and I-kBa (Brown et al,
1993), TNFAIP3 (Krikos et al, 1992), IER3 (Osawa et al, 2003),
and TRAF4 (Glauner et al, 2002) are NF-kB targets. c-Jun/AP-1
targets included c-Jun itself (Yazgan and Pfarr, 2002), CD69
(Castellanos et al, 1997), CD83 (Kim et al, 2004), TNFAIP3
(Hayakawa et al, 2004) and ATF3 (Lu et al, 2007). We
concluded that this clique is probably composed of targets
of two major transcriptional activities, controlled either
separately or together by the transcription factors c-Jun/AP-1
and NF-kB.

Merged clique 2 (15 genes/transcripts)
Gene Set Enrichment Analysis (GSEA) of MC2 using GeneTrail
(see Bioinformatic methods) revealed a strong enrichment of
p53 targets (and only p53 targets; P¼1.3357e�06). In fact
eleven are well known p53 targets: BTG2 (Rouault et al, 1996),
KIAA0247 (Staib et al, 2005), Fas (Li et al, 2004), CCNG1
(Bates et al, 1996), SESN1 (Velasco-Miguel et al, 1999),
TRIM22 (Obad et al, 2007), CDKN1A (Sugihara et al, 2004),
RPS27L (Li et al, 2007), DRAM (Kerley-Hamilton et al, 2007),
BIK (Marko et al, 2003) and TNFSF10B. TRED did not identify
an enrichment in p53-binding sites in the promoter regions,

but many p53 genes are regulated outside conventional
promoters (Wei et al, 2006). Ingenuity pathway analysis of
the gene ontology of components of this group also demon-
strated a significant (Po0.05) link with both the p53 pathway
and apoptosis. Combined with previous study (Barenco et al,
2006), this strongly suggested that clique 2 represents p53
activity. An additional gene in this list, ASCC3, was previously
predicted by HVDM and verified as p53 target after knockdown
experiments (Barenco et al, 2006).

Merged clique 3 (8 genes/probe sets)
This clique comprises eight genes. Although neither GeneTrail
nor TRED revealed enrichment for particular sequence motifs
or known transcription factor targets, Ingenuity Pathway
Analysis revealed that all these genes have a significant role
in the mitotic phase of the cell cycle (Po0.05). CDK1/CDC2
induces entry into the mitosis (Lee et al, 1988). The products of
three other genes are the microtubule-associated proteins,
NUSAP (Raemaekers et al, 2003; Ribbeck et al, 2007), TASTIN/
TROAP (Yang et al, 2008), both required for the mitotic-spindle
organization and assembly, and KIF2C/MCAK (Kim et al,
1997; Ganguly et al, 2008), a kinesin-related motor protein,
known to have an important role in spindle assembly and
correcting errors in mitotic chromosome alignment. Finally,
TOPK/PBK was also found in this clique, which is a MAPKK-
like mitotic kinase involved in the spindle midzone formation
and cytokinesis (Matsumoto et al, 2004; Abe et al, 2007).
These members suggest that the activity profile captured by
this merged clique is associated with the G2/M cell cycle phase
and cytokinesis. One of the responses associated with DNA
damage is cell cycle arrest at the G2/M transition (Vousden,
2000). This could explain the initial drop in transcript
concentration. The subsequent rise probably results from a
synchronized re-entry into the cell cycle of a surviving
subpopulation of irradiated cells.

Transcription factor target predictions using
global activity profiles

Two of the activity profiles we discovered were associated with
three distinct transcription factors. Having identified the likely
activities, we then developed a procedure to screen all the
differentially expressed genes to predict which were direct
targets of those activities. At first, we simply computed the
correlation coefficient between individual Gj profiles and
global activity profiles. Genes that yielded a high correlation
were deemed to be targets of the transcription factor
corresponding to these activities. However, we rejected this
approach on the grounds that the technical error associated
with expression measurements of individual genes was
insufficiently taken into account (see Supplementary informa-
tion). To overcome this problem, we devised a model-based
approach that allows for principled testing and ranking of
potential targets. It is noteworthy that although this decision
was taken purely on principle, it is more effective, in terms of
performance (see section ‘By incorporating known degrada-
tion rates, GWTM improves on existing methods’).

The equation for the model we used to fit each individual
gene expression Xj is shown below. The two parameters to be
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estimated are B0j and Sj:

Xj ¼ B
0

j þ Sjgj

where

gj ¼ ðAþ DjIÞf

and f is the global activity profile corresponding to the
transcription factor under review. A detailed technical
description of how we arrived at these formulas, along with
the physical interpretation of the various components of the
model can be found in the Supplementary information.

After screening (see Mathematical methods), this model
was applied to the 246 most significantly upregulated genes. In
the screening procedure, each gene was fitted with the model
above, replacing f with the global activity profile under review.
To be a predicted target a gene j had to fulfill two conditions.
First, either the model score, that is, the squared sum of the
residuals between model and data, had to be smaller than 100,
or that sum had to represent less than 30% of the one obtained
with the null model (that is, without a varying activation
term). Second, the sensitivity Sj had to be significantly
different from zero. As a measure of the robustness of this
important parameter, we used the Z-score (that is, the
reciprocal of the relative estimation error). Genes that passed
the model score condition with a sensitivity Z-score greater
than 6 were predicted to be targets. Each list of predicted genes
was ranked according to descending sensitivity Z-score.

This resulted in a list of 57 genes predicted to be targets of
NF-kB or c-Jun/AP-1, 93 genes were predicted to be targets of
p53, and 17 genes were associated with the cell cycle principal
activity (see Supplementary tables IV–VI). In total, predicted
genes covered 70% of the 200 most upregulated genes that
were screened in this procedure.

This screening step can also help to validate global activity
discovery of the previous step, especially if, in the context of a
less well-documented biological system, bioinformatic identi-
fication of those activities is more difficult. It may happen, for
example, that a given activity is divided in the clustering step
(see Supplementary information). In such cases however, it is
likely that the subsequently predicted target lists will overlap
in a significant manner. Such example is demonstrated in
the Supplementary information (Supplementary Figure S3).
In our case, the overlap between the three lists were minimal:
six genes were part of both the p53 and NF-kB or c-Jun/AP-1
predicted sets and another three were part of both the p53 and
cell cycle predicted sets. Generally speaking, having two steps
to generate predictions allows more flexibility and quality in
the outcome. This is detailed in the Supplementary informa-
tion section ‘Comparison of GWTM with Graph Based
Clustering of expression values’.

Experimental verification of GWTM predictions

To verify our predictions, we used independent knockdown
experiments for each of three transcription factors under
review to identify their targets. We carried out verifications at 2
or 4 h after IR. Although the majority of genes induced in this
time frame are likely to be direct targets, there remains a
possibility that the list contains a proportion of indirect
targets. MOLT4 cells were transfected with either siRNAc-Jun,

siRNAp53 or treated with BAY 11-7082, a specific inhibitor of
NF-kB (Pierce et al, 1997; Mori et al, 2002). After irradiation,
cells were assessed for the effectiveness of the knock down.
For NF-kB, using chromatin IP, we verified that the compound
inhibited nuclear localization and DNA binding of NF-kB.
(Figure 3A). We used western blots to evaluate the levels of
remaining c-Jun protein after transfection with siRNAc-Jun
following irradiation (Figure 3B). The effectiveness of
siRNAp53 in reducing p53 activity has been published
previously (Barenco et al, 2006).

Each of these experiments involved four microarrays and
the result was summarized into a verification Z-score (see
Supplementary information on how these verification scores
were obtained). The results of the screening and subsequent
verification are described below for each global activity profile
(Figure 4).

Global activity profile 1: NF-kB and c-Jun/AP-1
NF-kB activity was inhibited using the specific inhibitor, BAY
11-7082, after irradiation with 4-Gy g-irradiation. We then
calculated a Z-score that represents the degree to which BAY
11-7082 reduces irradiation-induced transcription of all target
genes. The resulting list of 69 genes (verification Z-score
threshold 42) was then compared with a ranked list of
69 predictions made by GWTM for activity profile 1. The
upregulation of 23 of the top 30 GWTM predictions was found
to be strongly inhibited as a result of NF-kB inhibition
(Figure 4, A1). About 56% of the total number of verified
genes were predicted in activity 1. If the verification threshold
was set to 4 (25 genes), this percentage was 64%. It was noted

Figure 3 Experimental inhibition of transcription factors identified by GWTM.
(A) Electrophoretic mobility shift assay showing precipitation of DNA bound
NF-kB (*) after irradiation (4 Gy; NT, not treated) in the presence (þ ) or absence
(�) of the specific NF-kB inhibitor BAY 11-7082 (C, control). (B) Western blot
showing levels of c-Jun before and after irradiation (5 Gy) in the presence or
absence of transfected siRNAc-Jun. (NT, not treated; HSP90, loading control).
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that BAY11-7082 also reduced, but to a lesser degree, the
upregulation of genes across the experiment, suggesting a
minor non-specific affect on transcription.

Bioinformatic analysis indicated that c-Jun/AP-1 was also
a potential activity responsible for global activity profile 1.
A Z-score was calculated representing the degree to which
siRNAc-Jun reduces irradiation-induced transcription of
all target genes. The resulting list of 26 genes (verification
Z-score threshold 42) was then compared with a ranked
list of 69 predictions made by GWTM for activity profile 1.
(Figure 4, A2). About 62% of total verified genes were
predicted in activity 1, this value increases to 92% if the
verification threshold is set to 3 (13 genes). This was a
particularly specific knockdown as no other activities
showed significant levels of reduction in response.

The subsequent analysis of transcripts, IR-induced upregu-
lation of which was inhibited by c-Jun knockdown revealed
that although a few of the global activity 1 transcripts were
direct c-Jun/AP-1 targets, many of the established NF-kB
targets were also partially reduced by c-Jun/AP-1 inhibition
(Figure 4, A2). This suggests that many of the genes in this
category are in fact co-regulated by NF-kB and c-Jun/AP-1.

Global activity profile 2: p53
The p53 activity was knocked down using siRNA for p53 after
irradiation with 5-Gy g-irradiation. The data for this knock-
down have been previously published (Barenco et al, 2006).

The resulting list of 95 transcripts knocked down by
siRNAp53 was then compared with a ranked list of the 93
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predictions made by GWTM for activity profile. Upregulation
of 42 of the top 50 GWTM predictions was found to be strongly
inhibited as a result p53 inhibition (Figure 4, B3); in total,
64% of the verified genes were also predicted. The overlaps
between verified and predicted genes are highly significant
given the relatively low number of such genes in the whole of a
microarray experiment; such high percentages (see also
Figure 8) are unlikely to be obtained by chance.

Cross-verifications
Although predictions of the genes associated with the third
principal activity were carried out, we did not run a
verification experiment for this set of genes, as a single
transcription factor could not be unequivocally identified in
this case. However, it is noteworthy that the verification scores
for the three transcriptions factors under review are, as should
be expected, generally poor for this particular set (Figure 4,
C1–C3 in contrast with, respectively, A1 and A2 and B3). The
same observation holds for the p53 targets verification scores
of which are poor for NF-kB (Figure 4; B1, contrast with A1)
and c-Jun/AP-1 (Figure 4; B2, contrast with A2). Conversely,
the predicted targets of the first principal activity show little
p53 inhibition (Figure 4; A3, contrast with B3).

Ranking of predictions is effective

Individual predictions in each category were ranked according
to descending robustness of the sensitivity parameter. This
ranking system is effective as the top genes in the lists tend also
to have the highest verification scores (Figure 4; A1, A2, B3).

Transcript degradation rates have a significant
effect on resulting expression profiles

Using GWTM predictions, measured degradation data and
experimental inhibition of the chief activities, we were able to
verify that degradation rates significantly contribute to
transcript time profiles as initially predicted (Figure 1). We
observed that transcripts with very different time profiles
could be targets of the same transcriptional activity. For
example, p21, DDB2 and CD38 are transcripts which peak at 4,
6 and 10 h respectively after irradiation, yet because their
degradation rates differ, they are in fact predicted and verified
targets of the same transcription factor, p53 (Figure 5A and B).

Similarly, transcripts with very similar profiles can be the
targets of different activities. Lymphotoxin-b (TNFSF3) and
RNF19B share a similar expression profile (Figure 5C), peaking
at 4 h and declining steadily to 12 h. GWTM using measured
degradation rates predicted correctly that despite these similar
profiles, Lymphotoxin-b is a target of NF-kB, whereas RNF19B
is a p53 target gene (Figure 5D).

The same observations can be made on a large scale. The
first 60 predicted targets of p53 tend to peak during a wide
range of time points (from 4 to 12 h after irradiation;
Figure 5E), whereas their activity profiles are more coherent
(Figure 5F). It is noteworthy, however, that a principled
approach to individual gene attribution to activities is indeed
necessary (see ‘Transcription factor target predictions using

global activity profiles’ section above), as lower ranked genes
(36–60) tend to have a noisier profile (Figure 5F).

By incorporating known degradation rates,
GWTM improves on existing methods

Although no previous knowledge of p53 targets was used in
the modelling, GWTM was successful in identifying verifiable
targets. When this list is compared with the list generated by
HVDM, we found that an overlap of more than 60% in the most
upregulated genes (33 of 50). The difference between the two
originates, in part, from a stricter filtering applied in GWTM
(see Materials and methods), which better identifies unreliable
measurement of transcript values. Unsurprisingly, excluded
genes had low, sometimes negative, verification scores. More
importantly, knowledge and incorporation of the degradation
rate permitted a re-ranking of predictions. Most of the
‘newcomers’ in the top 50 GWTM list are genes with a lower
dynamic range in the signal, which led to wider confidence
intervals in the HVDM estimation. Inclusion of the known
degradation rate caused a slight deterioration in the model fit,
but greatly improved the robustness of the sensitivity rate,
which we used in both methods to rank the predictions.
Overall, this change benefits the quality of predictions
(Figure 6, green curve). For the top 50 genes, the verification
scores are better (22% higher on average) and higher verifi-
cation scores tend to be ranked more accurately. If only the top
25 genes are compared, the verification scores are on average
30% higher with GWTM. This shows that taking into account
extra information, in the form of individual transcript degrada-
tion rates, can provide perceivable benefits for the prediction
quality. Finally, it is noteworthy that basing predictions and
ranking of putative targets only on the correlation coefficient
also delivers inferior results (Figure 6, red curve).

Main activity predictions cover a large majority of
the most upregulated genes in the DNA-damage
response system

The 246 radiation-responsive genes were ranked by descend-
ing upregulation Z-score. The transcriptional activity respon-
sible for more than 65% of these transcripts (Figure 7) could be
discovered using GWTM. This percentage improves for most
upregulated genes, with GWTM explaining 76% of the 100
most upregulated genes and 82% for the first 50 (Figure 8,
black curve).

In a similar manner, figures tend to be better when one
considers the proportion of predicted genes that are verified
(or the converse) through the complementary experiments
previously described. For example, 100% of the predicted
genes that are among the 50 most upregulated genes were also
verified, but that figure decreases as lower ranked genes are
included (Figure 8, green curve). Conversely, 87% of the
verified genes among the first 50 most upregulated genes were
correctly predicted by GWTM (Figure 8, red curve).

Discussion

We have created an analytical workflow for the analysis of
complex transcriptional data sets. GWTM uses a mathematical
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model to split the transcriptional response into its component
parts, then applies a clustering method to group transcripts
with similar behaviour. The factors controlling the predicted
activities were identified using bioinformatics and verified
experimentally. The method not only associates a target with
its controlling transcription factor but also defines the
confidence with which this association is made, allowing
subsequent analysis of a gene list to be prioritized in a rational
manner.

We have previously shown that by linking transcript levels
measured in a time series, a dynamic picture of network
activity can be created. We developed a mathematical
modelling approach called HVDM that incorporates RNA
production and degradation terms, and allows transcription
factor activity to be deduced from microarray data. We term
this activity the hidden variable because information needed
to derive it is hidden in the transcript values reported in the
array data. Derived activity profiles can then be used to predict
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and rank other putative targets of the same transcription
factor, thereby creating a quantitative model of a transcrip-
tional network. We applied HVDM to predict a ranked list of
p53 targets that were experimentally validated by depleting
cells of p53 using RNAi, with a high success rate.

HVDM, however, is limited to systems in which prior
information about transcript control is available, and can only
model one behaviour at a time. The key to the success of
GWTM was the observation that global measurement of
mRNA degradation rates could extract extensive hidden
information regarding the entire transcriptional network from
microarray data in the absence of prior biological knowledge

of the system. Recently, strong evidence has been presented
emphasizing on the importance of including degradation rates
when modelling gene expression profiles (Yang et al, 2003;
Perez-Ortin, 2007; Perez-Ortin et al, 2007; Molina-Navarro
et al, 2008). While studying the transcriptional response to
stress in yeast, Shalem et al (2008) found co-ordinated mRNA
production and degradation such that greater message stability
could lead to a sustained level of transcript despite a short
production period. Very recently, Matsushita et al (2009) have
demonstrated a critical role for an RNAse in regulating the
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immune response in mice through mediating mRNA
degradation of a set of inflammatory genes.

We used microarrays to measure the mRNA degradation
rates of all genes in the human T cell line, MOLT4, after
treatment with ionizing radiation. By incorporating degrada-
tion data into a rearranged HVDM model equation, we were
able to isolate production terms for all the transcripts. The time
course data yielded transcript production profiles, which we
are able to cluster on the basis of correlation. Then by applying a
graph representation, we identified three clusters of genes with
similar production profiles. By definition, transcript production
is controlled by transcription factors, either alone or in
combination. The three clusters were, therefore, likely to
correspond to three global activity profiles influencing transcript
production during the response to ionizing radiation.

We then used bioinformatics approaches to predict the
identity of the factors controlling the major activities. The two
most dominant activities contained genes known to be
regulated by NF-kB, c-Jun/AP-1 and p53. The first activity is
an early response that peaks 2 h after treatment with ionizing
radiation. The model was unable to distinguish between
NF-kB and c-Jun/AP-1 as candidate targets for this activity.
When we verified model predictions for activity 1 by inhibiting
NF-kB or c-Jun transcription factors using the NF-kB inhibitor,
BAY 11-7082, and siRNAcJun, respectively, in the context of
ionizing radiation, our results clearly showed a very high
degree of crosstalk between the two factors. With c-Jun itself
being a target of NF-kB, a likely explanation is that many of
these genes are targets of targets such that NF-kB activates
c-Jun, which activates its own targets. The kinetics of this
pathway must be rapid as GWTM recognizes this regulation as
one activity. It may be possible to separate these activities by
taking closer time points during the first 2 h after irradiation.

The data from IPA and GSEA indicated that the second
global activity identified by GWTM was controlled by p53, in
agreement with our previous results obtained using HVDM.
Examination of genes comprising the third global activity
seems to indicate a portion of cells re-entering the cell cycle in
the latter stages of the experiment. E2F is a possible candidate
for controlling this activity. However, it is not clear whether
this population represents cells surviving irradiation (unlikely
at the dose of irradiation applied), or cells aberrantly re-
entering cycle before undergoing apoptosis.

The generation of confidence limits for predictions means
that appropriate cutoffs can be applied when deciding the
importance or biological significance of transcriptional
changes in a microarray experiment. Overall, our results
predict the controlling dynamics behind the majority of genes
whose expression increases as a result of irradiation-induced
DNA damage. A total of 76 of the 100 most confidently
changing genes were assigned by the model to a controlling
factor and verified experimentally. This number falls, as would
be expected, with the addition of genes with lower confidence
of irradiation-induced change, or with lower confidence of
model prediction. Use of confidence limits can, therefore,
ensure the maximal cost–benefit analysis of microarray data
because although a lower than expected proportion of the
behaviour was explained by the model, additional experi-
ments could be performed to extend the proportion of
explicable behaviour.

Although it is ideal if the transcription factors controlling the
discovered activities can be identified, this may not always be
possible due to limitations in the bioinformatics databases.
However, by synthesizing the causes of a complex response
involving hundreds of genes to a considerably smaller number
of activities, the search for activators is substantially simpli-
fied. As GWTM attaches probability levels to each transcript in
an activity, it is possible to select on a rational basis the
strongest members of the group. If one can identify what
regulates this subgroup of targets it is likely to be the
transcription factor for all of them. Using this approach it
may even be possible to analyse co-regulated genes with
unknown transcription factors to identify common regulatory
motifs—akin to orphan receptors—where the binding domain
is known before the transcription factor that binds it.

Around 25% of the 200 most upregulated transcripts were
not explained by the model. Measurement error is a likely
explanation for some of these discrepancies. Many of the genes
at the lower end of the scale are expressed at lower levels in
which the limiting factor is the microarray detection technol-
ogy itself, and so there are uncertainties regarding gene
detection, whether transcripts really are upregulated and
whether they fit the model. One potential solution to this
problem could come with a switch to a less error-prone
technology. High throughput sequencing platforms, such as
the Illumina GAII, ABI SOLiD and Roche GS-FLX all generate
essentially digital signals, eliminating measurement errors
resulting from cross-hybridization. We predict that modelling
this type of data will lead to even more accurate models, and
we are currently investigating this possibility.

We noticed a number of highly upregulated transcripts
behaviour of which was also not predicted accurately by the
model, but which were knocked down by the verification
experiments. In the case of the most significantly changing
gene, IER3, there is biological evidence that co-regulation
between the NF-kB and p53 pathways may account for its
synergistic behaviour. This is probably also the case for several
other targets. Other hints to the importance of co-regulation
appear in some of the results presented in the Supplementary
information. For example, FAS, through distinct probe sets, is a
constituent of merged cliques 1 and 2 (see Supplementary
Tables I and II), and has indeed been shown to be the target of
NF-kB (Kuhnel et al, 2000), as well as p53. Similarly, of the six
genes that are predicted targets of global activity 1 and 2, two
(CD70 and PTP4A1) present good verification scores for NF-kB
and p53 dependence (Supplementary Tables IVand V). We are
exploring whether introducing another term to the model
could potentially account for such behaviour.

Other experimental methods like ChIP-Chip and ChIP-Seq,
which measure binding of transcription factors to regulatory
domains, are gaining in power and affordability, and are
revealing the complexity of gene regulation (Valouev et al,
2008; Visel et al, 2009). However, ChIP experiments are
typically static and require prior knowledge of the system.
Combining ChIP-seq data with data-driven modelling ap-
proaches, like GWTM, will allow us to identify targets for Chip-
seq, and to quantitatively relate transcriptional dynamics with
the kinetics of transcription factor binding. Together these
approaches could lead to a better understanding of how gene
networks are regulated in complex responses.
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In conclusion, the aim of GWTM is to maximize the
efficient and systematic use of genomics technologies like
microarrays. The approach can dissect complex transcrip-
tional responses into their major controlling activities and
identify the targets of each one. Furthermore, the method
does not require complex and expensive artificial model
systems, and only necessitates a short time course of
microarray data measuring transcript levels and degradation
rates. Our approach, therefore, offers a data-driven method
for accurately identifying gene network components, estab-
lishing their connectivity and quantifying the controlling
activities at the transcriptome level.

Materials and methods

Biological methods

Cell lines and reagents
Human MOLT4 cells (T cell acute lymphoblastic leukaemia) were
obtained from NIBSC, UK (CFARP011) and cultured in RPMI
supplemented with 10% FCS, L-glutamine and antibiotics. Functional
p53 phenotype was established as previously described (Barenco et al,
2006). For c-Jun downregulation verification experiments, the follow-
ing antibodies were used: anti-HSP90 (Cell Signaling Technology, ref.
4874) and anti-c-Jun (Santa Cruz Biotechnology, H-79). Proteins were
detected by enhanced chemiluminescence (ECLþ , GE Healthcare) and
quantified by densitometry.

Microarray time course
Three time courses of radiation-induced gene expression were
generated in an earlier experiment using MOLT4 cells. Data for these
experiments are available at ArrayExpress (E-MEXP-549).

Transcript degradation rate estimation
MOLT4 cells in log phase (1�106 cells per ml) were irradiated with
4-Gy irradiation at room temperature, at a dose rate of 2.45 Gy/min
using a 137Cs g-irradiator. After 4 h, actinomycin D (5mM) was added to
block transcription. Aliquots of culture were removed at hourly
intervals and RNA was extracted (TRIzol; Invitrogen). The quantity
and quality of RNA and cDNA were determined by Nanodrop
spectrophotometer and Bioanalyser 2100 (Agilent). Transcript levels
were determined at different time points using Affymetrix Human
U133A arrays.

Microarray data analysis
Microarray data was summarized using the MAS5 or PLIER algorithms
(Affymetrix). Signal distribution was assessed using Genespring 7.3
(Agilent), and log-transformed for normalization to the median.
Further analysis was conducted on raw, that is, non-log-transformed
data. The clustering algorithm was implemented using a mixture of R
code (filtering and individual activity profile computation) and Cþ þ
(graph theory algorithms and clustering) combined with a scripting
language (Python). The degradation rate computation and screening
procedure were implemented in R. Data are available in MAGE-ML
format through ArrayExpress (E-MEXP-2176 for the c-Jun down-
regulation experiment, E-MEXP-2177 for the NF-kB inhibition
experiment and E-MEXP-2179 for the degradation rate measurement
experiment).

Inhibition of NF-kB activity
MOLT4 cells in log phase (1�106 cells per ml) were pre-treated for 2 h
with the I-kBa phosphorylation inhibitor BAY 11-7082 (Calbiochem) at
5mM concentration, and the control samples with corresponding

volume of DMSO. Cells were then irradiated with 4 Gy irradiation at
room temperature, at a dose rate of 2.45 Gy/min using a 137Cs
g-irradiator. Cells were collected 2 h after irradiation and RNA was
extracted (TRIzol; Invitrogen). The quantity and quality of RNA and
cDNA were determined by Nanodrop spectrophotometer and Bioana-
lyser 2100 (Agilent). Affymetrix human U133A arrays were hybridized
as standard (www.affymetrix.com). Array quality was determined
using R and Affymetrix Expression Console file values.

Preparation of nuclear extracts and gel shift to confirm
NF-kB downregulation
Inhibition of NF-kB activation by BAY 11-7082 was confirmed by
electrophoretic-mobility shift assay (EMSA) on nuclear extracts
prepared from aliquots collected 5, 15, 30, 40, 50, 60, 80 and
100 min after irradiation. Nuclei were prepared from the irradiated
cells by washing the collected cells twice in 500 ml hypotonic buffer,
followed by lysis in hypotonic buffer (10 mM Tris–HCl (pH 7.8), 5 mM
KCl, 2 mM MgCl2, 1 mM DTT, complete protease inhibitors (Roche
Diagnostics)), supplemented with 0.25% IGEPAL CA-630 (Sigma), for
5 min on ice. Nuclei were pelleted (600 g/15 min/41C), washed twice
with 500ml of hypotonic buffer, pelleted again (600 g/15 min/41C), and
suspended in two volumes of hypotonic buffer containing 0.3 M NaCl.
The suspension was kept on ice for 30 min and agitated occasionally.
Finally, nuclei were pelleted and the supernatant was used directly for
EMSA (600 g, 15 min at 41C). Nuclear extracts of Jurkat cells,
stimulated with TPA (phorbol, 12-myristate, 13-acetate) and calcium
ionophore (Active Motif), were used as positive control.

Nuclear extracts (5 mg) were incubated with a 32P-labelled 22-mer
double-stranded oligonucleotide (50-AGTTGAGGGGACTTTCCCAGGC-30)
containing the NF-kB consensus sequence (underlined) and 1mg of
poly(dI �dC) (Amersham Biosciences) in binding buffer (10 mM Tris–
HCl, 100 mM NaCl, 2 mM EDTA, 4% (w/v) Ficoll, 1 mM DTT), for
30 min at 301C. DNA probes were prepared by end-labelling both
strands of the oligonucleotide using [g-32P]ATP (Amersham Bios-
ciences) and T4 polynucleotide kinase (New England Biolabs). A 100-
fold excess of non-radioactive probe was used as a control to
specifically compete for binding. A double-stranded mutated oligonu-
cleotide (50-AGTTGAGATCACTGGGACAGGC-30) was also used to
examine the specificity of binding of NF-kB to the DNA (data not
shown). Reaction mixtures were loaded onto a 4% non-denaturing
acrylamide gel. Gels were run in 0.5� Tris–acetate buffer for 1 h at
110 V, dried and exposed to PhosphorImager screen.

Inhibition of c-Jun/AP-1 activity
Cells were transfected with 100 nM siRNAc-Jun (Santa Cruz Biotech-
nology, sc-44204) using electroporation. At 48 h after transfection,
cells were irradiated with 5-Gy irradiation and incubated at 371C for
2 h. They were then collected and RNA and protein were prepared and
processed for microarray analysis and western blot verification,
respectively. Affymetrix Gene Array 1.0 ST arrays were hybridized as
standard (www.affymetrix.com).

Bioinformatic methods

To identify the transcription factors responsible for each controlling
activity, we took advantage of several bioinformatics resources.
First, we analysed the promoter regions of model predicted genes
using a matrix search for known transcription factor binding motifs
(TRED; http://rulai.cshl.edu/cgi-bin/TRED/tred.cgi?process¼home).
Second, we carried out GSEA using GeneTrail (based on the
TRANSFAC database) (http://genetrail.bioinf.uni-sb.de/) on genes in
both merged cliques, and in lists of model-predicted genes associated
with cliques, for enrichment in target genes for known transcription
factors. Next we analysed the same gene lists for their gene ontology
category and for significant associations with known biochemical
pathways using the commercially available package Ingenuity Path-
way Analysis and the freely available DAVID.
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Mathematical methods

Degradation rate measurement from microarray data
Typically gene turnover rates are measured over a short time span
(Yang et al, 2003). Reasoning that this would be problematic in
estimating slow decaying transcripts with sufficient precision, we
decided to extend the period up to 6 h after transcription blocking. This
in turn caused problems with fast-decaying transcripts. The latter were
afflicted by a ‘tailing-off’ effect. We solved this problem by using a
model incorporating a curvature term, allowing for a much better fit of
the data (see Supplementary information).

In standard microarray experiments, overall gene expression is
assumed to be constant across experimental conditions and individual
microarrays are normalized accordingly to some central statistic, such
as the trimmed average or the median. In the context in which the
overall quantity of RNA can only diminish because its production has
been turned off, this type of normalization cannot be carried out.
Instead, we used an iterative procedure to normalize individual chips
to the slower decaying genes, assuming a small fraction of the latter
had a degradation rate close to zero (see Supplementary information
for more details). A similar procedure was used in the study by Yang
et al (2003).

First derivative estimation from data
A detailed description of the way we obtained the matrix A mentioned
in the results section is given in the Supplementary information
of the study by Barenco et al (2006). We give here a simple example
to illustrate how we arrive at this matrix. Imagine we are given
two time points x(t1) and x(t3) and want to estimate the slope x0

at the intermediate time point between these two (t2). The simplest
way is to simply taking the slope of the line passing through these
points:

x0ðt2Þ �
xðt3Þ � xðt1Þ

t3 � t1

which can be rewritten as:

x0ðt2Þ �
1

t3 � t1
xðt3Þ �

1

t3 � t1
xðt1Þ

Thus, this estimation is a linear combination of the function values
weighted by coefficients that depend only on the time intervals
between the points. This can be generalized to using more time points
to estimate the slope at an intermediate point. In this case, a
polynomial of degree n�1 is used for the fit. Interestingly, the nature
of the estimation is unchanged; it is still a linear combination of the
function values and the coefficients involved depend only on the time
intervals between points. Thus, these coefficients can be stored and re-
used for different function values. In our case, we arrived at the
following matrix A, which is applicable to our case in which, using
seven measurements regularly spaced between 0 and 12 h, we want to
estimate the first derivative at the same time points.

A ¼

0 0 0 0 0 0 0

� 17
36

1
4

1
4 � 1

36 0 0 0
31
144 � 2

3
1
4

2
9 � 1

48 0 0

0 1
24 � 1

3 0 1
3 � 1

24 0

0 0 1
24 � 1

3 0 1
3

1
24

0 0 0 1
12 � 1

2
1
4

1
6

0 0 0 0 1
4 �1 3

4

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

It should be noted that all the rows in this matrix sum up to 0, and
that the first row of A is filled with zeros as we suppose that the net rate
of change of every transcript is still nil at the moment (t¼0) in which
we apply the stimulus.

Pre-clustering filtering
Two broad criteria were used to select genes; first, they had to be
upregulated and present in the expression time course, and the

degradation rate measurement had to be sufficiently precise. To fulfill
the first set of criteria, the upregulation Z-score with respect to the 0 h
time point had to be greater than 1.5 in at least one of the six
observations and the detection P-value smaller than 0.1 in one time
point at least. For the second criterium, we considered only those
genes with a sufficient goodness-of-fit. The sum of the squared
residuals between model and data (in the degradation experiment)
was compared to a chi-squared distribution with a number of degrees
of freedom corresponding to the difference between the data and
parameter count (recall we have two possible models). If the P-value
(corresponding to the right tail of the distribution) was less than
0.01, the gene was not retained. Furthermore, we only kept those
genes which had a sufficient signal intensity in the degradation
experiment, this was achieved by retaining only those with an
intercept, as determined by the model, greater than five. After this
filtering, 828 individual activity profiles were retained.

Influence of clustering parameters
The objective of the clustering procedure is two-fold. First, we want to
obtain as many distinct principal activities as possible; and second, we
want the underlying merged cliques to include as many constituent
genes as possible to increase the robustness of the corresponding
principal activity profile, because it is obtained by averaging the
normalized individual activity profiles. We varied systematically two
clustering parameters to achieve these aims.

An edge is drawn between two individual genes if the correla-
tion between their individual activity profiles is above a certain
threshold, a. This is the first parameter. Choosing a high value of a
tends to reduce the overall connectivity of the graph and thus satisfies
the first objective (more distinct merged cliques). However, a reduced
connectivity also reduces the size of the merged cliques, in contra-
diction with the second aim. Conversely, a low value of a increases the
connectivity of the graph and thus tends to increase the size of the
cliques. However, too low a value for this parameter can have the effect
of agglomerating groups of genes that should not be linked. This was
the case in particular for the genes associated with the first two
activities.

We reasoned that this could be due to two possible effects. First,
genes that are co-regulated by two distinct activities can create
‘bridges’ between cliques. Second, genes that are hampered by a high
level of noise could also create this bridging. Although nothing can be
done against the first effect, the second possibility was handled by
introducing a second parameter, b. Genes for which smaller inter-
replicate correlation coefficient was below b were excluded from
the analysis. Thus, a high value of b can counteract a low value for a.
It should be noted that increasing b will, all other things being equal,
diminish the size of merged cliques.

To determine appropriate values for a and b, we varied them
systematically, observing the resulting number of merged cliques,
their size and their composition. We noticed that four merged cliques
emerged, but that too low a value for a (0.75), whichever value
was chosen for b, caused two important merged cliques (corres-
ponding to activities 1 and 2 in the main paper) to agglomerate into
one. These four merged cliques were found, in varying size and
composition, over a range of couple of values for these two param-
eters (for example, (0.77, 0.75), (0.8, 0.45), and (0.83, 0.3)).
We determined the ‘optimal’ couple of parameters (0.8, 0.45) by
choosing the situation in which the size of these four main cliques
was larger.

Next we looked for enriched GO terms for each of the four merged
cliques (see main article). Although for three of these main cliques it
was easy to identify the underlying activity, we could not find enriched
terms for the fourth. This set of genes was also very heterogeneous. We
thus proceeded to check whether there was a more technical
explanation behind the appearance of this fourth clique and found
out that the expression profiles of genes in that merged clique were all
highly correlated with the rescaling factors in the experiment. This
merged clique being a clear technical artefact caused by probe
saturation, we eliminated it. Further, we also eliminated from the
subsequent screening all those genes for which expression values were
too highly correlated with the scaling factors.
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Filtering the genes before screening
Before screening the genes against each of the three activity profiles,
we performed the following filtering steps. We retained only those
genes that are significantly upregulated; we applied the Benjamini–
Hochberg criteria (with controlled false discovery rate of 5%) on the
maximal upregulation P-value computed on all six time time points
after system activation following the control time point (Benjamini and
Hochberg, 1995). Similarly, only those genes that were detected at
least once (Affymetrix, P-valueo0.1) during the time course were
retained. Next, to avoid a biased degradation rate measurement, we
kept only those genes for which the intercept value calculated on the
degradation time course was between 5 and 1500. We reasoned that
outside this range the degradation rate was more likely to be
underestimated because of compression effects. Finally, we noticed
that some genes were highly correlated with the scaling factors used in
the experiment. To eliminate them, we retained only those for which
correlation with these scaling factors was smaller than 0.6. In total, 246
genes were retained for the screening.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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