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Animal development is a fascinating process: starting from a
single fertilized egg, an embryo grows and embryonic cells
progressively differentiate into the diverse cell types and
organs that make up an adult body. All this happens
autonomously according to an intrinsic blueprint of develop-
ment written in the four-letter alphabet of the genomic DNA
sequence.

The genome not only encodes all developmentally impor-
tant genes, but also carries the information necessary to
specify the spatio-temporal patterns of gene expression. The
gene-regulatory information is contained within the sequence
of defined genomic regions, so-called cis-regulatory modules
(CRMs) or enhancers. These elements retain their cell-type
specific activity even when placed into an artificial context, for
example when combined with a minimal promoter to drive
expression of a reporter gene in transgenic animals (Arnone
and Davidson, 1997).

CRMs contain binding sites for specific sets of transcription
factors (TFs) and are generally thought to integrate the bound
factors’ regulatory cues, such that enhancer activity depends
on the appropriate expression of the respective TFs. The
simplicity of this model is attractive and it has indeed been
shown that removing TFs or disrupting their binding sites by
specific mutations impairs enhancer function (Arnone and
Davidson, 1997). Despite its apparent simplicity, this model
implies an underlying regulatory code that determines the
exact requirements for enhancer function. A strong argument
for the existence of this code would be the demonstration that
enhancer activity can be predicted solely from the enhancers’
TF-binding patterns. Ideally, enhancers with known activities
could be used to learn rules that would be able to correctly
predict the activity of novel enhancers.

In a recent study, Eileen Furlong and colleagues follow
exactly this line of reasoning to show that the combinatorial
binding of TFs is highly predictive of spatio-temporal enhancer
activity in vivo (Zinzen et al, 2009).

Using ChIP-chip assays (chromatin immunoprecipitation
combined with microarray analysis), they determine the
genome-wide distribution of DNA-binding sites for five key
TFs of mesoderm and muscle development in the Drosophila
embryo: Twist, Tinman, Mef2, Bagpipe, and Biniou (Figure 1).

At five time points during embryogenesis, they find a total of
19 522 binding sites that cluster into 8008 CRMs. Among this
extensive set of CRMs, 310 overlap with known enhancers, for
which independent data about their activity are available. Of
these, 87 fall into one of five exclusive mesodermal expression
categories: early mesoderm, visceral (gut) muscle, somatic
muscle (analogous to the vertebrate skeletal muscle), and the
combined categories mesoderm and somatic muscle, and
visceral and somatic muscle.

Using an established machine learning method (a support
vector machine (SVM)), the authors predict the category of a
CRM solely based on the patterns of TF occupancy as
estimated by ChIP-peak heights. First, they test the approach
on the 310 known CRMs: they exclude each CRM in turn for
testing, train the SVM on the remaining ones, and evaluate
whether the category for the test CRM is correctly predicted.
This leave-one-out cross-validation protocol works surprisingly
well, demonstrating that the SVM is able to learn rules from the
ChIP data that are sufficiently general to correctly predict the
activity of previously unseen CRMs. Indeed, when the authors
apply the trained SVMs to all 8008 CRMs and test in vivo
several predictions from each expression category, 71% of the
predictions turn out to be exactly correct: the enhancers drive
expression of transgenic reporters specifically in the predicted
regions and not in other mesodermal tissues. The success rate
even reaches 86% for enhancers that are exclusively active in
the early mesoderm.

The predictions in each category are characterized on
average by rather simple signatures: predicted mesodermal
enhancers exhibit strong binding of Twist, while enhancers
predicted to be active in visceral muscles are predominantly
bound by Biniou. Interestingly, the dominant factors corre-
spond to the respective known key regulators of these tissues,
showing that the unbiased data-driven approach correctly
recapitulates the results from genetic experiments (Furlong,
2004). Successful predictions (especially of the early meso-
derm category) often largely match the factors’ expression
domains, reminiscent of single input modules suggesting that
additionally bound factors might be neutral or might merely
tune the activity. This might indicate that mesodermal/muscle
CRMs differ from those in the early Drosophila embryo, for
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which predictions of activity relied on TF concentrations and
DNA-binding affinities, possibly because these CRMs need to
read TF gradients (e.g. Janssens et al, 2006; Segal et al, 2008).

Despite the simple average signatures, neither the known
mesodermal CRMs nor the validated predictions show uniform
binding profiles. Although all visceral muscle enhancers are
bound by Biniou, some are also strongly bound by other
factors. For example, two CRMs are bound by Twist but are
nevertheless predicted correctly to show activity in visceral
muscles but not in the early mesoderm. On the one hand, this
suggests that the regulatory code is complex, flexible and not
merely additive. On the other hand, the success of the
predictions implies the existence of common features in
enhancers with similar activities: if each enhancer reached
activity through entirely different means, predictions that rely
on common features would not be possible.

The accuracy of the predictions is especially surprising
considering the simplicity of the approach, which relies
exclusively on TF occupancy data and does not take into
account multiple binding sites for one TF, nor the arrange-
ments of binding sites, i.e. their order and spacing, or any
feature of the CRM sequence. In addition, it appears that
scoring TF binding only qualitatively (i.e. binary bound versus
non-bound) performs almost as well.

There are several possible interpretations to this observa-
tion, with different implications for our understanding of
CRMs and their functional architecture. Features such as
binding site arrangement might simply not be relevant in the
context of this class of enhancers as would be expected, for
example, from the billboard enhancer model (Arnosti and
Kulkarni, 2005). Alternatively, they could be crucial for TF
binding, but not for activity once the factors are bound. Lastly,
they might contribute to future improvements of such
approaches. We anticipate improvements, for example, when
larger training sets will become available or when more TFs
will be profiled. For example, 23% of the known mesodermal/
muscle enhancers were excluded from this study as they
appeared not to be bound by any of the surveyed TFs, and the
authors speculate that predictions for somatic muscles might
improve once characteristic TFs are included.

Given that TF binding predicts enhancer function, how far
are we from reading enhancer activity directly from the DNA
sequence? This study confirms the prevalent observation that
many binding sites (but not all) coincide with conserved

TF-binding motifs. However, it also highlights some of the
limitations of sequence-based predictions: enhancer activity
seems to strongly depend on the dynamics of DNA binding,
which is neither reflected in the DNA sequence nor simply
explained by changes in TF expression. Nevertheless,
sequence-based analyses have been successful in identifying
enhancers driving expression in Drosophila muscle founder
cells (Philippakis et al, 2006), and if we manage to bridge the
gap between sequence and TF binding, we might soon be able
to predict enhancer activity from the sequence in mesodermal
or other defined cell types.

The study by the Furlong group makes us confident that a
regulatory code exists and determines spatio-temporal
enhancer activity. Given the availability of in vivo binding
data for an increasing number of TFs (Celniker et al, 2009;
MacArthur et al, 2009), similar approaches might in the future
help map the majority of functional enhancers and explain
the molecular basis of cell-type specific gene expression,
differentiation, and development.
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Figure 1 Predicting the expression category for a CRM based on its temporal transcription factor binding profile. Peak heights for five factors at five developmental time
points (15 conditions total) are sufficient to predict the expression category of a mesodermal enhancer with a 470% success rate. Shown is a schematic representation
of the temporal binding profile of a single CRM and a support vector machine (SVM) used for the predictions, as well as the categories mesoderm, somatic muscle, and
visceral muscle with example expression patterns. Photomicrographs reproduced from Zinzen et al (2009).
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