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ABSTRACT It is shown that the sequence-ordering ten-
dencies induced by design into different fast-folding, ther-
mally stable native structures interfere. This interference
results in a type of quasiorthogonality between optimal native
structures, which divides sequence space into fast-folding,
thermally stable families surrounded by slow-folding, low
stability shells. A concrete example of this effect is provided
by using a simple a carbon type model in which a complete
correspondence is established between sequence and struc-
ture. It is speculated that gaps can occur in the space of
protein-like sequences separating the sequence families and
resulting in a mechanism for stability and diversity of protein
sequence information.

According to energy landscape principles (1–11), proteins are
distinguished from nonfolding amino acid sequences by having
a rugged but funnel-like configurational energy landscape. In
the simplest possible picture, this landscape is locally rugged
with barriers among many local minima, whereas globally the
landscape has an overall energy gradient that guides the chain
toward its native configuration. When this gradient is domi-
nant, the landscape is a deep funnel that allows the protein to
fold on physiological timescales.

To design sequences with funnel-like landscapes focused on
a particular target structure, it is therefore necessary to
stabilize the target energetically against the ensemble of
misfolded configurations (12–20). However, when a sequence
has been designed into a predetermined structure, there is no
guarantee that by slightly altering this structure and redesign-
ing the sequence, one may arrive at a new sequence with better
properties. Thus, to obtain the most optimal sequence–
structure combinations, it is necessary to anneal sequence and
structure together (17–21). This results in sequence–structure
combinations that could be called the modes of design for a
polymer with the 20 letter amino acid code, and ideally,
proteins correspond to such combinations.

To be more precise, a mode of design corresponds to a
compact native structure for which, once a sequence has been
optimally designed into it, one cannot obtain a less frustrated
sequence by changing a small part of the structure and
redesigning the sequence. Thus, when a mutation is applied to
a minimally frustrated sequence, it always increases frustra-
tion, although in most cases it does not substantially change the
folded structure. This results in a picture of sequence space as
being populated by families, each folding to a particular coarse
grained structure and each surrounded by a shell of increas-
ingly frustrated sequences.

One of the goals of this paper is to explain how this situation
occurs. We show that to achieve minimal frustration, the
modes are driven apart, or ‘‘orthogonalized,’’ very much like
the orthogonalization of memories in a neural network (22–

24). Specifically, because the fastest-folding, most stable se-
quences are those that minimize the energy of one highly
connected compact structure against all the others, the energy
of a minimally frustrated sequence placed into the folded
structure of the wrong sequence family will have one of the
worst possible energies. Hence, the sequences and structures
of the minimally frustrated modes tend to be mutually dissim-
ilar.

We demonstrate the emergence of this orthogonality prop-
erty in a simple a carbon-type model of proteins (20) (Fig. 1),
in which we have previously established a complete correspon-
dence between sequence and structure (Fig. 2) and have
determined both the folding times and folding temperatures of
the sequences. The model is quite convenient to illustrate how
structure information is stored in proteins, and the simple
hydropathic interaction rule (26–29) is already sufficient to
produce two minimally frustrated sequence families.

We parameterize the level of fast folding and stability of a
sequence by the degree of frustration minimization (6, 7, 31)
as measured by the ratio of folding to glass temperatures (6–8)

L~p! 5
Tf

Tg
. [1]

The negative of this parameter, 2L(p), can be used to define
a landscape in sequence space, and we show that this landscape
has pronounced valleys or frustration minima, each containing
a family of sequences and each family folding to a different
coarse grained compact structure. Once again, these are
structures for which, once a sequence has been optimally
designed into them, one cannot obtain a less frustrated se-
quence by altering a small part of the structure and redesigning
the sequence. Each optimal target structure is associated with
a famility of sequences that fold to it, and each family is
characterized by a different tendency for ordering the residues.
Because the optimal structures are substantially different, the
ordering tendencies of different families must oppose, or
contrast each other in the way that residues are patterned
within a sequence. This results in a matrix of similarity
parameters xmn(p), which defines the degree of sequence
ordering toward one minimally frustrated sequence class (m)
and against another (n). Large values of xmn(p) are associated
with class m, and large values of xnm(p) are correspond to
occupying class n. For intermediate values of this parameter,
cancellation occurs between the ordering tendencies m and n,
in the sense that the sequences corresponding to such regions
of sequence space are highly frustrated. This produces a
frustration barrier, e.g., a region of frustrated sequences
between each pair of minimally frustrated families. Any step-
wise mutational path between one minimally frustrated se-
quence family and another (32) must then visit a region of slow
or nonfolding sequences. This property will be clearly dem-
onstrated for the example presented in this paper.The publication costs of this article were defrayed in part by page charge
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In the case of real proteins, the sequences in these high
frustration regions are much less likely to meet physiological
requirements on foldability (of course, real physiological
requirements can be much more extensive than this; refs.
32–34). If the sequences in these regions do not meet the
physiological criteria, then they cannot participate in bio-
chemical processes, which means that they will be physio-
logically excluded. If the requirement is sufficient, the region
between two families will be completely excluded, which cuts
sequence space into separate fast-folding, stable parts. This
provides a mechanism for partitioning protein sequence
information into evolutionarily stable (31, 33), biochemically
useful (foldable) subsets.

Stability to Mutations. Implicit in the concept of sequence
design is the idea that proteins must exceed a certain level
of fast folding and stability to function in biochemical
processes. The frustration function L(p) (which measures
this ability) separates sequences, independent of length, into
two distinct regimes (6–8). In the frustrated regime, L̃ , 1,
the energy gap DE between native and non-native (mis-
folded) configurations cannot be distinguished from the
characteristic energy barriers dE between misfolded struc-
tures (5). This means that below the collapse (coil-globule)
temperature, the chain exists in a superposition of long-lived,
misfolded traps. For a frustrated sequence, the misfolded
structures are substantially different from the native state,

and because the energy bias DE is weak, any small rear-
rangement of the sequence can drastically alter its native
structure. In the low frustration regime, L is substantially
greater than 1, and the energy gap between native and
misfolded states is larger than the characteristic energy
barriers between them. Furthermore, the configuration
space of the chain is energetically correlated with the native
structure (2, 9) so it is much less likely for a random mutation
to cause any significant damage to the energy funnel (5, 20).

According to this ‘‘evolutionary’’ selection principle, a
threshold value L0 can be introduced to describe the physio-

FIG. 1. Illustration of the folding process for a sequence of
hydrophobic (H) and polar (P) beads that has one nearest neighbor
HOH chain bond (Top) out of a possible six. All sequences in this
model contain seven H (dark beads) and nine P (light beads) ‘‘resi-
dues.’’ Nearest neighbor residues along the chain are connected by
freely jointed string bonds of finite minimum and maximum extension
(i.e., a square well potential). Cross chain contacts between pairs of H
residues are strongly attractive unless the residues are nearest neigh-
bors in sequence. All other (non-nearest neighbor) pairs of residues
interact as hard beads, and all nearest neighbors in sequence interact
according to the string potential. The sequences fold into structures
with an ordered hydrophobic core surrounded by a liquid-like halo of
P residues.

FIG. 2. The 15 ground-state core structures that emerge from all
of the 11,440 HP sequences of the type described in Fig. 1. Only H
residues and HOH string bonds are shown. The pair of numbers at the
lower right of each structure are (respectively) the number of sequen-
tial H-segments and the number of HOH string bonds contained in the
sequence folding to the structure. The symmetry of the core is
abbreviated by the terms n0 n1, n1/2, and FRUST (i.e., frustrated). The
ground-state core geometry of any sequence is uniquely determined by
set of internally clamped sequential H-segments along its length (e.g.,
the geometry n0 3 3 corresponds to all permutations of the four
fragments (HOH . . . HOH . . . HOH . . . H). The number of
sequences folding to a particular geometry is given by the total number
of permutations, which do not break, create, or extend the length of
the sequential H-segments.
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logical criteria needed to be met for sequences to be biochem-
ically useful, such that for physiologically allowed proteins

L~p! . L0. [2]

A crude calculation shows that L0 should be somewhere around
L0;1.5 for single folding domain proteins (45, 46). Of course, this
in itself does not stabilize any structure because it does not
eliminate the possibility to evolve from one native structure into
another along a pathway on which every sequence meets the
requirement. Stability appears when we consider that single
folding domain proteins correspond to valleys (local minima) in
the landscape 2L(p), and because the folded structures corre-
sponding to separate valleys are substantially different, the se-
quence-ordering tendencies induced by design into these struc-
tures must oppose each other, so that every stepwise mutational
path between one sequence family and another must encounter
a region where the sequence-ordering tendencies counteract and
the criteria L(p) . L0 may not be met.

To be more precise, consider two native configurations n0
and n1 of sequences p0 and p1 with nearly equal degrees of
frustration

L~p0! i L~p1! [3]

but with low structural similarity, such that

Q~n0,n1! , Q~n0,n0!, Q~n1,n1!, [4]

where Q(n0,n1) is the number of cross chain contacts common
to n0 and n1. Furthermore, assume that p0 and p1 are the least
frustrated sequences folding to n0 and n1 respectively. We can
then define a sequence similarity parameter x(p) to measure
the degree of ordering toward p1 and away from p0. For
simplicity, we define x(p0) 5 0 and x(p1) 5 1. The similarity
parameter allows us to prescribe a minimal frustration path
p(x) in sequence space, such that p(x) is the least frustrated
sequence having the similarity parameter value x [hence p(0)
5 p0 and p(1) 5 p1]. For example, in the a carbon model
discussed below, there are two sequence ordering tendencies,
characterized by the sequences 1 0 0 1 0 1 0 1 0 1 0 0 1 0 0 1
and 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 (where 1 and 0 stand respec-
tively for H and P residues). In this situation, the similarity
parameter x corresponds to the degree of clustering of the H
residues. More generally, x(p) is a matrix xmn(p), but for two
families x01 5 x, x10 5 1 2 x, and xnn 5 1.

To complete this picture, we can interpret functions of x in
terms of the minimal frustration path p(x), for example

L~x! 5 L@p~x!# [5]

Q~x! 5 Q@n~x!,n1#, [6]

where

n~x! 5 n@p~x!#. [7]

It is clear now, that if we attempt to evolve p0 into p1, the most
optimal trajectory from the standpoint of equation (2) is along
the minimal frustration path. Nevertheless, even along this
path, a region of frustrated sequences will be encountered at
some x 5 xm where the sequence-ordering tendencies com-
pletely counteract, and hence lose the capacity to fold se-
quences efficiently. Thus, because p(x) is the best path, a gap
will occur, completely separating the sequence families, when
the requirement L0 exceeds L(xm).

Protein Model. In the following sections, we present a simple
concrete example of this effect in the a carbon model of
proteins described in Figs. 1 and 2. The model is essentially a
continuum version of the HP model (26); however, the residues
also are allowed to approach each other more closely when
they are nearest neighbors in sequence (i.e., along the chain)

than through contacts across the chain. Thus, there are two
types of interaction potentials present in the chain. The cross
chain (nonlocal) interactions between hydrophobic residues
are determined by a short range Morse potential (similar to the
Van der Walls potential). All cross chain interactions between
other pairs of species (HP, PP) are determined by the hard
core of this potential. The chain-bonded (local) interactions
are defined by a ‘‘square well’’ potential. The effect of this
potential is similar to having hard beads tethered together by
string. The string bond minimum approach radius is one-half
the cross chain hard core radius, which results in two structural
mechanisms for maximizing the number of favorable energetic
connections in the core. The first mechanism is dominated by
the local interactions, and the second by nonlocal interactions.
These correspond to the core structures n1 and n0 shown in
Fig. 2. More explicit details of the model are described in a
recent article (20).

The basic effect of protein folding captured by this model is
that, as the chain folds, it is forced to have a clearly defined inside
(core) and outside (surface) determined by the twofold identity
of its residues. The hydrophobicity of small, single folding domain
proteins is peaked around one-half so that roughly one-half the
residues are forced into the core. Lower hydrophobicity results in
nonfolding sequences, whereas higher hydrophobicity leads to
aggregation. We thus use a fraction of 7⁄16 hydrophobic residues
consistent with these observations (30). This level of represen-
tation of proteins is similar in spirit to many other minimalist
models (3, 5, 26, 31, 35–44).

An important feature of this model is that the ground-state
core geometry and energy of a sequence is determined
uniquely by the set of internally clamped sequential H-
segments along its length (such as, HOH . . . HOHOH . . . H
. . . H) and not by permutations of the segments within a
sequence. For example, the sequence HOHOH . . . H . . . H
. . . HOH folds into exactly the same hydrophobic core geom-
etry as HOH . . . HOHOH . . . H . . . H.† For sequences that
fold to the same core geometry, this is roughly true for both
the folding temperature Tf and the folding time tf. Because the
P residue chain segments can always access a significant
number of configurations when the H residues are clamped in
the ground-state, changing the length of these P-segments
should contribute mainly to the very early stages of folding and
has been seen only in the fastest folding sequences. In testing
different mutations of these fast-folding sequences, we find
only a small spread in Tf and tf within sequence families.
Hence, we take the folding parameters to be essentially
invariant of permutations that do not break, create, or extend
the length of the H-segments, and we only calculate the folding
temperature Tf and the folding time tf for one sequence folding
to each of the 15 core structures.

For convenience we represent the degree of frustration
minimization by the following function

l~x! 5 F1 1 logFt~x,Tf!

t0
GG21

, [8]

where t0 5 min[t(p,Tf)] is the minimum folding time for all 15
representative sequences, and t(p,Tf) is the folding time mea-
sured at the folding temperature. The function in the denom-

inator of this expression Tf logFt~x, Tf!

t0
Gis roughly the differ-

ence between the typical energy barrier encountered in folding
the sequence and the typical energy barrier for the fastest

†The two example sequences have different arrangements of polar
loop segments, and different backbone traces through the core, but
the core nevertheless has exactly the same shape or geometry.
Furthermore, different topologies of the chain can accommodate
exactly the same geometry of hydrophobic core residues.
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folding sequence.‡ l(x) therefore is strongly correlated with
the ratio of folding to glass temperatures L(x), but the func-
tional form of this equation causes the degree of frustration
minimization l(p) to vary between the limits 0 and 1 [rather
than 0 and ` as with L(x)].

l(x) is plotted in terms of the similarity parameter x in Fig.
3. As expected, all three functions l(x), Tf(x), and t(x,Tf)
exhibit two regions of minimal frustration (large l, Tf, and
tf

21) between 0 # x #
1
2

(small sequence clustering) and 5
6

# x
#1 (large sequence clustering). The minimally frustrated
sequences in these two frustration valley regions fold to the n0
and n1 structures. The valley regions are separated by a
‘‘barrier’’ or saddle region at x [ xm 5 2

3
. The least frustrated

sequences from this barrier region fold to the FRUST geom-
etry 2 4 (Fig. 2).

Stable Modes of the Model. The two minimally frustrated
sequence families in this model fold to structures that favor
either the local (chain bonded) or nonlocal (cross chain)
interactions. The first family occurs due to the fact that the
mutual cross chain exposure of H residues can be maximized
by minimizing the number of sequential HOH bonds. Accord-
ing to the interaction rule, H residues can interact across the
chain only when they are not nearest neighbors in sequence.
Thus, sequences like

p~0! 5 1 0 0 1 0 1 0 1 0 1 0 0 1 0 0 1, [9]

(where 1 (0) stand for H (P) residues) maximize the number
of available energetic cross chain contacts between H residues.
As discussed above, the similarity parameter x(p) is the frac-
tion of possible HOH bonds. The ground state core symmetry
for these small x sequences is the n0 structure. This symmetry
is stable even when some of the H residues are joined together
into sequential segments. However, when three or more se-

quential H residues occur within a sequence, interference is
introduced between the local and nonlocal interactions, and
the ground-state symmetry is broken (see Fig. 2, FRUST 1 2).

As we increase x, so that H residues are steadily bonded
together into segments, a new mode develops to maximize
energetic connectivity. This second mode occurs due to the
fact that residues connected by nearest neighbor (string) bonds
can approach each other more closely along the chain (the
string bond hard core radius is 0.4) than across the chain
(cross-chain hard core radius ; 0.75), and therefore the core
is able to compact itself into a smaller globule to increase cross
chain contacts. This second mechanism operates in sequences
with a nearly homogeneous grouping of H residues,

p~1! 5 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0, [10]

which fold to the n1 core structure. Although this sequence
family corresponds to a frustration minima, it is very small,
leading to a much lower sequence entropy (logarithm of the
number of sequences) (ref. 19) (Fig. 4).

Again, because the two minimal frustration sequence fam-
ilies are dissimilar in the way that H residues are distributed in
sequence, a substantial number of exchange mutations (two to
three) are required to change a sequence folding to n0 into a
sequence folding to n1. If we take a stepwise mutational
trajectory between n0 and n1 along the least frustrated path, we
must pass through a region where the sequences fold ;10 times
slower, whereas if we do not take this path, the situation is
much worse. If sequences are required to fold faster, and be
more stable than those at the cusp l(2⁄3) in the frustration
function, i.e., if l0, exceeds l(2

3
), then all the sequences between

the two families folding to n0 and n1 are excluded (Fig. 4). If
these were real proteins, this would mean that the sequences
could not continuously evolve from one structure into the
other, i.e., we would always encounter a region of sequences
that do not fold on the order of physiological timescales.

DISCUSSION

The results of this model suggest that the sequence space of
single folding domain proteins is split into mutually dissimilar,
low frustration families folding to mutually dissimilar native

‡The folding times in this model vary between ;106 and .108 Monte
Carlo steps and the folding temperatures between ,0.1 and 0.95,
where the inequalities indicate the limits on the capacity of our
simulations.

FIG. 3. Plot of the function 2l(x). The frustration maximum
occurs at x [ xm 5 2

3
, and all of the data points correspond to the

minimally frustrated sequences p(x) with similarity parameter value x.
The fastest folding sequence at xm folds ;10 times slower than
sequences in the n0 and n1 regions of this plot—for typical sequences
at xm the situation is much worse. If ‘‘physiological’’ sequences are
required to have 2l̃ , 2l(xm) (dotted line) to be considered
biochemically useful, a ‘‘nonfolding’’ gap opens up in sequence space
between the two sequence families folding to the n0 and n1 core
geometries.

FIG. 4. Bar graph schematic of the model sequence space. The
shaded areas correspond to sequence families folding to the n0 and n1
core geometries. The height of each shaded bar is the logarithm of the
number of sequences log N(x) folding to the structure type at x. The
unshaded (excluded) region contains only frustrated FRUST se-
quences. When l0 passes below the frustration maxima in Fig. 3, this
unshaded region is physiologically excluded. A spontaneous double or
triple exchange mutation is required to mutate across the gap.
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structures. The principle by which this situation emerges is the
design requirement of minimal frustration, which allows effi-
cient folding of sequences into their functional (native) struc-
tures. Each family is characterized by a particular tendency for
ordering the residues, which results naturally in a matrix of
similarity parameters, xmÞn to describe the geometry of se-
quence space (ref. 48). Minimal frustration is expressed in the
sense that one of these parameters can be large, whereas the
rest are small, in other words, in a type of orthogonality
(dissimilarity) property. At intermediate values of the param-
eters, the sequence-ordering tendencies of pairs of families
counteract each other, resulting in saddle regions of frustrated
sequences. If the physiological requirement on folding ability
exceeds the folding ability of sequences in these frustrated
regions, all the sequences within them will be excluded from
biochemical processes, resulting in a mechanism for evolution-
arily stable partitioning of sequence information into biochem-
ically useful subsets.

Although we have focused on a highly simplified model, we
have taken into account a fundamental ingredient of the
protein self interactions—the coupling between local and
nonlocal interactions—which allows for two different mecha-
nisms for maximizing energetic connectivity. It is certain that
much more elaborate effects exist in proteins due to the
complex interactions between different amino acids. However,
the fact that this model is capable of capturing a clear
mechanism for evolutionary stability lends credit to its com-
parison with proteins. Finally, it is important to point out that,
although the minimal frustration path between sequence
families is the most optimal path from the standpoint of
equation (2), real population dynamics will explore a much
wider region of sequence space.
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