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Dynamic instability, in which abrupt transitions occur between grow-
ing and shrinking states, is an intrinsic property of microtubules that
is regulated by both mechanics and specialized proteins. We discuss
a model of dynamic instability based on the popular idea that growth
is maintained by a cap at the tip of the fiber. The loss of this cap is
thought to trigger the transition from growth to shrinkage, called a
catastrophe. The model includes longitudinal interactions between
the terminal tubulins of each protofilament and ‘‘gating rescues’’
between neighboring protofilaments. These interactions allow indi-
vidual protofilaments to transiently shorten during a phase of overall
microtubule growth. The model reproduces the reported dependency
of the catastrophe rate on tubulin concentration, the time between
tubulin dilution and catastrophe, and the induction of microtubule
catastrophes by walking depolymerases. The model also reproduces
the comet tail distribution that is characteristic of proteins that bind
to the tips of growing microtubules.
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M icrotubules are microscopic tubes composed of an or-
dered lattice of �-�-tubulin dimers. The uniform

orientation of these dimers confers a polarity on micro-
tubules that enables directed intracellular transport. Microtu-
bules are also the main component of the mitotic spindle,
and they are therefore essential for cell division. Micro-
tubules self-assemble and exhibit an unusual behavior termed
dynamic instability (1). Dynamically unstable microtubules
undergo alternating periods of growth and shrinkage, with
rapid transitions between these states. The switch from
growth to shrinkage is called a catastrophe, and the reverse is
called a rescue. In the cell, dynamic instability is essential for
allowing the cytoskeleton to organize in response to cellular
cues (2).

Dynamic instability of the microtubule plus-end has been de-
scribed as a two-state system (growth and shrinkage) with stochastic
transitions between the two states (3, 4). The simplest version of this
model assumes constant switching probabilities and can be solved
analytically (5). More complicated models that include additional
dynamic states have been proposed after detailed observations of
microtubule dynamics in cell extracts (6).

Dynamic instability requires an increase in the chemical potential
of tubulins after assembly. This energy is provided by hydrolysis of
a GTP bound to tubulin. Specifically, tubulin loaded with GTP is
added at the tip of the microtubule (1), and the nucleotide is later
hydrolyzed to GDP within the fiber.

Several authors have attempted to explain dynamic instability as
an interplay between the addition of GTP-tubulin and hydrolysis of
GTP in the fiber lattice (1). It is commonly assumed that GTP
tubulins situated at the microtubule tip form a cap that stabilizes the
growing state. When the cap is lost or broken by hydrolysis, a
catastrophe follows. Numerous models based on this idea have been
proposed, which are either discrete (7, 8) or continuous (9), with
more detailed descriptions also incorporating the mechanical sta-
bility of the lattice (10, 11).

The different modeling approaches have distinct strengths and
weaknesses. The phenomenological model is simple and success-
fully reproduces dynamic instability, but provides no insight into the

underlying mechanisms that give rise to it. Therefore, it cannot
predict how the rates of dynamic transitions are influenced by
external regulatory factors. The detailed mechanical approaches
often lead to assumptions that cannot be measured experimentally,
such as interactions between protofilaments (12). Finally, the
continuous approach may not be appropriate if the number of GTP
subunits present in the cap is small, as has been suggested by
dilution experiments (13).

Future studies on microtubule organization would benefit
greatly from a simple, yet predictive, description of dynamic
instability, because changes in dynamics could then be linked
directly to the regulatory mechanisms of microtubule-
associated proteins (MAPs). Even in comparatively simple
cells, such as fission yeast, numerous mechanisms are known
to inf luence microtubule dynamic instability. The most fun-
damental is the limited abundance of tubulin; a growing
microtubule depletes the concentration of free tubulin, leading
to negative feedback between polymer mass and microtubule
growth (14). A second important effect is the encounter of
microtubule tips with the physical boundaries of the cell (15).
Besides these two basic processes, which arise from the
intrinsic properties of tubulin, dynamic instability is also
regulated by numerous MAPs. Ideally, a model would be
capable of providing a mechanistic link between these pro-
cesses and microtubule dynamics.

Fortunately, substantial quantitative data characterizing the
basic regulatory mechanisms have been obtained from in vitro
experiments. It has been shown, for instance, that the growth
speed and catastrophe time depend linearly on the concen-
tration of free tubulin (16). Similar experiments addressed the
effects of force on the frequency of catastrophes. The results
suggested that force increases the catastrophe rate indirectly
by lowering the rate at which GTP-tubulin is incorporated into
the microtubule tip. In other words, force has a similar effect
to reducing the free tubulin concentration (16). The mecha-
nisms by which MAPs alter the dynamic properties of micro-
tubules have not been determined in most cases (17). However,
it has been proposed that motors from the depolymerizing
kinesin-8 family induce catastrophes in a microtubule length-
dependent manner by walking processively to the plus end and
removing the terminal tubulin subunit (18, 19). These in vitro
data are supported by live-cell imaging experiments in Schizo-
saccharomyces pombe that indicate that kinesin-8 motors in-
duce catastrophe with a rate that depends on microtubule
length (20).

In this study we construct a model for microtubule dynamic
instability that quantitatively reproduces the continuous data from
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these experiments. We first describe and analyze a 1D model of
dynamic instability, which correctly reproduces the classical exper-
iments on microtubule growth (13, 16). The simplicity and analyt-
ical tractability of this model suggest a specific mechanism for
transitions between growth and shrinkage. The model most closely
matching the experimental data is extended to multiple protofila-
ments, allowing it to exhibit shortening excursions during periods of
overall growth (22, 30). The dispersion of protofilament lengths in
this model is consistent with the distribution of EB1 family protein
decorating tips of growing microtubules (23). Finally, the effect of
a kinesin-8 depolymerizing motor is studied and compared with
live-cell imaging experiments (20).

1D Model
The first model considers a simple 1D lattice composed of units
that exist in one of two states. For clarity, we refer here to the
association of the units with GDP or GTP, although we later
discuss that the two states could be of a different nature.
Shrinkage and rescue are not considered. The model predicts the
time of the catastrophe for a microtubule that is initially growing.
The addition of a GTP unit at the tip occurs with first-order
kinetics at rate g, with irreversible hydrolysis occurring at rate h
for any GTP unit (Fig. 1).

Finally, an important property of the model is the definition
of the pattern leading to catastrophe. Here, a catastrophe
occurs when all N terminal units are in the GDP state (Fig. 1).
This introduces the third and final parameter of the model: an
integer N, which we refer to as the coupling parameter. This
parameter ref lects the number of distinct changes that must
occur for a catastrophe to be initiated. In Results and Discus-
sion we describe in greater detail the experimental data used
to test this model.

Basic Regulation of Catastrophe
The first body of experiments is concerned with the inf luence
of free tubulin concentration or force on microtubule catas-
trophes. This effect is present in cells, where microtubules are
confined by the cell cortex and tubulin concentration is
constant over the lifetime of a typical microtubule. This
situation is achieved in vitro by nucleating microtubules from
seeds (24) and either modulating the tubulin concentration or
applying compressive forces on the microtubule tip. In both
cases, the catastrophe times are related linearly to the average
growth speeds (13, 16) (Fig. 2A).

A second body of information is given by dilution experi-
ments. Although this situation does not occur commonly in

vivo, these experiments are useful for elucidating the mecha-
nisms that lead to dynamic instability. In dilution experiments,
microtubules are first grown at a high tubulin concentration,
with a correspondingly high assembly rate vgrowth. The con-
centration of tubulin is then reduced rapidly, which leads to
induction of catastrophes by preventing further growth of the
microtubule. The time elapsed between dilution and catastro-
phe (catastrophe time) is recorded (Fig. 2B). These experi-
ments have shown that the mean catastrophe time is indepen-
dent of the growth speed before dilution (16, 25), and the
stabilizing cap at the tip of growing microtubules is short,
containing fewer than �40 GTP units (25, 26).

Fig. 1. The dynamics of the protective cap are determined by the addition
of GTP-loaded units (T) at the tip (Top) and hydrolysis of GTP to GDP (D).
Hydrolysis occurs spontaneously within the fiber for each T-unit indepen-
dently of its surroundings (Middle). Addition and spontaneous hydrolysis
occur stochastically with rates g and h, respectively. A protofilament under-
goes catastrophe as soon as the N-terminal units are in GDP configuration
(Bottom). Units outside of the region defined by the coupling parameter N are
not considered.

A B

C D

Fig. 2. Experimental measurements (A and B) and results of the 1D model for
several values of N (C and D). In A and C, the average catastrophe time is shown
for different microtubule speeds under conditions of constant growth. B and D
correspond to a dilution experiment, where assembly stops because monomers
suddenly become unavailable. This occurs either because the monomers have
been removed by dilution or the microtubule tip is stalled by pushing it against
a barrier. (A) Experimental data measured by application of a force (circles) or
variation of tubulin concentration (squares), and linear fit (dashed line) from ref.
16. (B)Histogramofcatastrophetimeobtainedafter thegrowthishaltedbyforce
(16). (Inset) Average catastrophe time as a function of growth speeds v0 before
stalling (16). (C) Catastrophe time calculated by averaging 1,000 simulations
(points) and derived analytically (lines). h � 0.002, 0.058, and 0.16 s�1 for N � 1,
2, and 3 respectively. Error bars are omitted for clarity. (D) Normalized catastro-
phe time distributions for v0 � 2.4 �m/min obtained from 1,000 simulations and
analytical fit (lines, � � 1, 1.32, and 2.3 for N � 1, 2 and, 3 respectively; see
MaterialsandMethods). (Insets) Thedependenceofaveragecatastrophetimeon
the growth speed before dilution.
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Results and Discussion
The 1D model was first tested for its ability to reproduce the
frequency of catastrophe for different microtubule growth
speeds. The model has three parameters: the growth rate g, the
hydrolysis rate h, and the coupling parameter N. However, g is
linked directly to the average growth speed vgrowth � g�, where
� � 8 nm is the length of one tubulin unit. The rate of hydrolysis
h was assumed constant under different microtubule growth
rates and was estimated for each model independently. It was
determined by fitting the catastrophe time of each model to that
observed for microtubules growing at a speed of 2.4 �m/s, thus
constraining all three curves in Fig. 2D to match the experimen-
tal data for this speed.

The results for N � {1, 2, 3} are shown on Fig. 2 C and D
and indicate that the correct (linear) functional dependence is
only obtained for a coupling parameter N � 2. Models with a
coupling parameter N other than 2 did not produce a linear
dependence (Fig. 2C). The stochastic simulations were verified
further by calculating an analytical expression for the mean
catastrophe time by treating the cap as a terminating Markov
chain (see Materials and Methods). The relationship is approx-
imately linear for N � 2 over the range of measured growth
rates, where h �� g.

Dilution experiments were simulated by applying a stepwise
reduction in the growth speed from vgrowth to zero, after the cap
was allowed to reach equilibrium (see Materials and Methods).
All three models successfully reproduced the independence of
the mean catastrophe rate after dilution on the growth speed
before dilution (Fig. 2D Inset). However, the model with a
coupling parameter of N � 1 provided a poor fit to the observed
distribution of catastrophe times, and although N � 3 repro-
duced the correct functional dependence, the closest fit was
again obtained for N � 2. In summary, the 1D model matched
the variations of catastrophe rates with tubulin concentration
only for N � 2. Because h is also constrained by the fitting
procedure, all parameters are determined.

Composite Microtubule Model. Although a 1D model may be
appropriate for describing the dynamics of actin-related fibers
(27), microtubules generally contain 13 protofilaments; there-
fore, we investigated whether the 1D model could be extended
to describe such a structure. Because it has been suggested that
the longitudinal bonds within protofilaments are strong com-
pared with the lateral interactions (12), we constructed a simple
composite model consisting of 13 laterally coupled 1D models
(Fig. 3A). For simplicity, the dynamics of each protofilament
were modeled with identical values of g, h, and N to the 1D model
described in the previous section, and tubulin units were added
to each protofilament independently during growth. During
shrinkage a protofilament can be rescued by an interaction with
a GTP tubulin subunit in a neighboring protofilament, a process
that we refer to as ‘‘gating rescue’’ (Fig. 3 B and C). A
catastrophe of the microtubule occurs if any one of the 13

protofilaments loses its cap and is not rescued by neighboring
protofilaments.

The composite model reproduced the dilution and steady-
state experiments (Fig. 4) and exhibits qualitatively identical
behavior to the 1D model, albeit with a shorter average catas-
trophe time for the same h. A close quantitative fit to the
experimental data can be recovered by decreasing the rate h by
approximately a factor of 2. We also note that the composite
model forces neighboring protofilaments to have similar length,
thus leading to coherent extensions that are consistent with sheet
structures that are observed in electron microscopy reconstruc-
tions of dynamic microtubules (29).

�TIP Tracking Tails and Shortening Excursions. Mal3 is the fission
yeast representative of the EB1 family of plus-tip proteins and
has been shown to recognize a structural feature of growing
microtubule ends (23). Mal3 localizes with an exponential
distribution that peaks at the tips of growing microtubules and
an extension that increases linearly with microtubule growth
speed (23). To test this idea further, we used stochastic simula-
tions to calculate the distribution of GTP units with respect to
the longest protofilament in the microtubule. The resulting
distributions are exponential for all simulated growth speeds,
and the length scale increases linearly with microtubule growth
speeds. The results are even in quantitative agreement with the
observed distribution of Mal3 (Fig. 4C), thus supporting the idea
that the localization of Mal3 indeed reflects the arrangements of
the protofilaments at the tip of the microtubules.

The composite model also exhibits shortening excursions
where the longest protofilament shortens during periods of
overall microtubule growth. Experiments with microtubules
grown against barriers under constant force have suggested that
shortening events of up to 40 nm can occur (22). The model is
in agreement with the magnitude of the backward steps, pre-

B

C

A

Fig. 3. Schematic representation of composite model and gating rescue
interactions. (A) Each protofilament is in contact with two neighbors. (B) GTP
units rescue neighboring shrinking protofilaments (black bar). Thus, the short-
lived shrinkage event will not affect the overall microtubule state. (C) The
shortest protofilament cannot be rescued by this mechanisms and conse-
quently will trigger a microtubule catastrophe.

A B

C D

Fig. 4. Results of the composite microtubule model and experimental
evidence (see also Fig. S1). (A and B) Catastrophes are calculated as described
in Fig. 2, except that the histogram in B is summed over a range of growth
speeds v0 � [0,3] �m/min. Each simulated data point is an average of 1,000
independent simulations. The hydrolysis parameter h is 0.029 s�1 for all
simulations. (C) Extension of �TIP proteins at the microtubule tip, as function
of growth speed. The experimental Mal3 comet size (squares; from ref. 23) can
be compared with the distribution of GTP units with respect to the longest
protofilament (black line), averaged from 8,000 simulations. (D) Excursion
length distribution for a microtubule growing at a rate g � 1 s�1. The best
exponential fit (line) yields a mean excursion length of 38 nm.
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dicting an average excursion length of 38 nm (Fig. 4D), but it
does not reproduce the frequency of these events.

Because there is some controversy over the design and inter-
pretation of micromechanical measurements of microtubule
dynamics (22, 30), these observations cannot yet be used as
strong criteria for evaluating models, although this situation is
likely to be resolved by future experiments.

Induction of Catastrophe by Kinesin-8. Although in vivo regulation
of microtubule dynamic instability by force or tubulin concen-
tration is essential, it is also desirable for a model to capture the
regulatory effects of MAPs. For example, the walking depoly-
merase kinesin-8 induces catastrophes in a length-dependent
manner (18, 19). The kinesin-8 is postulated to walk processively
toward the plus end of the microtubule and promote catastrophe
by removing tubulin subunits (Fig. 5A). To test this idea, we
added walking depolymerases to the model. The motor could
bind along the length of the microtubule to any protofilament
and unbind with the measured kinetics. Motors paused at the
microtuble tips, but could be pushed by subsequent motors.
Moreover, a pushed motor would break off with the associated
terminal tubulin, which promoted castastrope by shortening the
GTP cap. The effect of kinesin-8 produced a linear dependence
between the frequency of catastrophe and the length of the
microtubule (Fig. 5B), as observed from live-cell imaging in
fission yeast (20).

The analysis can also be verified further if g and h are set to
match the observed in vivo dynamics of microtubules, and if we
assume a motor speed of v �3 �m/min (18). In that case, the
length-dependent catastrophe rate (20) provides an estimate of
the number of kinesin-8 binding events at �100 s�1. However, if
we assume that there are �700 kinesin-8 molecules per cell [an
estimate obtained from budding yeast (31)], the number of
diffusional encounters between kinesin-8 molecules and a mi-
crotubule is expected to be �1,000 s�1. Because only a fraction
of the collision events may lead to attachment, the postulated
mechanism is indeed consistent with the known characteristics
of the system.

Conclusion
The model contains only three parameters. Remarkably, the
same set of parameters quantitatively reproduced the behavior
of microtubules from a compendium of experimental data.
Classical in vitro studies on microtubule catastrophes (13, 16)
were used to constrained all parameters: g is set by the rate of
microtubule growth; h is set by the catastrophe rate at a specific

speed, and N is set by the functional dependence of the catas-
trophe time on growth rate. The agreement with more recent
experiments (20, 22, 23) corroborates the underlying physical
model of catastrophes.

In particular, the coupling parameter N is critical to deter-
mining the dynamics of catastrophes: we could fit the data only
if N � 2. This potentially reflects an intrinsic feature of the
microtubule cap, but because the model is phenomenological in
nature several different mechanistic interpretations can be con-
sidered to apply to the microtubule tip. In recent work it has been
shown that the assembly of microtubules must also be related to
structural changes in the tubulin dimers (32, 33). An alternative
interpretation to the classical chemical kinetic view is therefore
that the coupling is mechanical in origin and is triggered by the
addition of another subunit. In this scenario, GTP hydrolysis
could occur after the conformational change associated with the
cap, without affecting the stability of the microtubule.

Walker et al. (13) used a similar 1D model that they called
coupled hydrolysis. However, they used N � 13, presumably
because it is the number of protofilaments in a typical microtu-
bule, and the model could not therefore fully explain the
experimental data. Assuming similarly that hydrolysis occurs fast
beyond N, the composite model with N � 2 multiplied by 13
protofilaments conforms to the upper bound of �40 for the
number of GTP units in growing tips of microtubules (13) and
is also consistent with the conclusion that a small cap is sufficient
to stabilize the fiber (34). Coupled hydrolysis was used subse-
quently in the ‘‘lateral cap model’’ (35). This model, however,
assumed helical growth of the microtubule and among other
things failed to match the linear dependence between growth
speed and catastrophe time.

The small N also implies that dynamic instability could be
influenced by a very small number of molecules. Consequently, the
regulation of microtubules by associated proteins should probably
be modeled discretely. The 1D and 3D models discussed here are
similar. They both reproduce the effect of tubulin concentration
and dilution on catastrophes and the effect of walking depoly-
merases. The 3D model extends the 1D model by incorporating a
gating rescue interaction between neighboring protofilaments. This
model exhibited backward excursions and provided a plausible
mechanism for the distribution of �TIP proteins (22, 23).

Although the gating rescue model is simple and could reflect the
essence of protofilament dynamics at the microtubule tip, it could
be extended to incorporate other aspects of the assembly process.
For example, in the composite model, the kinetics of each proto-
filament are identical but, in reality, these rates could differ between
protofilaments because of differing accessibility to the solvent or
mechanical coupling to neighboring protofilaments. It would also
be interesting to include the 3D mechanics that define the sheet-like
structure of microtubule ends. Despite its simplifications, the model
described here is already applicable to many problems involving
microtubule organization. For example, recent work on modeling
microtubule organization in fission yeast (36) showed that micro-
tubules are regulated mainly by force and the walking depolymerase
klp5/klp6, which is a heterodimer from the kinesin-8 family. Be-
cause the 1D and 3D models account for both of these effects, they
should accurately predict the behavior of microtubules in this
system, without requiring additional ad hoc parameters.

Microtubule rescues were not considered in the current model,
because they occur infrequently in vitro and are likely to be initiated
by MAPs by a mechanism that has not yet been identified exper-
imentally. However, rescues and pauses are likely to be important
for regulating microtubule dynamics in many cell types such as
cultured vertebrate cells or interphasic Xenopus egg extracts (6).
When further experimental data become available it should also be
possible to incorporate the effect of ‘‘stable’’ GTP remnants in the
microtubule lattice (37).

BA

Fig. 5. Induction of catastrophe by a walking depolymerase. (A) In the
model, depolymerizing kinesin such as kinesin-8 (18, 19) can bind anywhere on
the microtubule lattice with rate a. They walk processively to the plus end with
speed v. They stall at the plus end but are pushed by the motor that arrives
subsequently, upon which they detach, removing the terminal tubulin unit of
the microtubule, such that N � 1 hydrolysis events are now sufficient to induce
catastrophe. (B) Effect of the attachment rate a on the catastrophe rate. A
total of 700 kinesins are simulated with a speed v � 3 �m/min, and the fiber
growth speed is 1.5 �m/min. Different kinesin attachment rates are shown
(expressed in number of attachments per s and per unoccupied binding site).
For each attachment rate 5 � 104 simulations were averaged. The experimen-
tal curve (squares) was measured in S. pombe cells (20).
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The presented models are simple and mathematically tracta-
ble and agree well with many key experimental observations.
The effects caused by regulatory proteins, which upon binding
locally change the growth or the transition rates of GTP tubulin
can be included. They may therefore prove useful in studying the
modulation of dynamic instability, which is an essential element
of microtubule function in vivo.

Materials and Methods
Analysis of the Models. Assuming a small time scale �, the 1D model can be
approximated by a Markov chain (28) with 2N states, where N is the coupling
parameter. The transitions from one state to another depend only on the prob-
ability G � g� to add a GTP unit at the tip during the time step and the probability
H � h� to hydrolyze any GTP unit during the time step. It is thus possible to derive
the state diagram of the Markov chain (see for N � 2, Fig. 6) and its transition
matrix. In the model, the state corresponding to a catastrophe terminates the
chain and is called the absorbing state. In general, if it is the final element in the
state vector, the transition matrix can be written as

�P P0

0 1
� ,

where P is the square matrix of size (2N � 1) describing the transitions between
transient states, 1 is scalar and P0 is the vector containing the probabilities to
reach the absorbing state from each transient state in one step. The mean
number of steps before catastrophe is then M � �t (I � P)�1 1 (38), where � is
a vector of length (2N � 1) containing the initial probability of each transient
state, i is the identity matrix of size (2N � 1), and 1 is the vector [1,1,. . ., 1] of
size (2N � 1).

For example for N � 2, the state vector is [TT, DT, TD, DD], where DD is the
absorbing state. The transition matrix reads

�
�1 � H�2 �1 � H�H �1 � H�H H2

G�1 � H�2 �1 � H�HG � GH�1 � H� GH2 �

�1 � G��1 � H� �1 � G�H

0 G�1 � H� �1 � G��1 � H� H

0 0 0 1

�,

and for vanishing � we obtain the average catastrophe time T � �M:

T �
7 h2 � 12 gh � 3 g2

3 h2 �2 h � 3 g�
.

In the case where h �� g, the linear dependency between the catastrophe time
and the growth rate appears:

T �
g

3h2 .

The transition matrix for N � 3 and 4 and the average catastrophe time were
derived similarly.

Simulations. The models were simulated stochastically by using a fixed time
step � � 5 ms, generating trajectories for the Markov process illustrated on Fig.
6. A C�� implementation of the 1D model is available at www.cytosim.org.

To find the dependence of the catastrophe time on the growth speed, the
parameter g was varied while h was held constant. The value for h was
determined by fitting the catastrophe time of each model to the experimen-
tally observed value of 550 s for microtubules growing at a speed of 2.4 �m�s�1

(Fig. 2C).
To simulate the dilution experiments, g was set to 0 after 10 s of simulated

time, which is sufficient to reach a steady state for the cap size. To fit the
distribution of catastrophe time after dilution (Fig. 2D), we used the number
� of GTP units in the cap at dilution time. Because hydrolysis of different units
occur independently at rate h, the probability of a catastrophe after a time t
is p � (1 � e�ht)� . � is used as a fitting parameter to best match the distribution
of catastrophe time obtained numerically with the corresponding probability
density function �h (eht � 1)��1e��ht. The parameter h is known and as
expected, the fit-derived value of � is between 1 and N.

Walking Depolymerase. The 3D model was simulated in the presence of
depolymerizing kinesin-8 molecules. Each unbound kinesin molecule in the
simulation contributes a binding probability a � 10�4 s�1 per binding site on
the microtubule. Bound kinesin-8 molecules are simulated individually and
exclude each other on the microtubule lattice. They bind stochastically to
unoccupied sites with a rate a, and then move toward the plus end with an
average velocity v � 2vgrowth. The number of steps made by a kinesin for the
time interval � follows a Poisson law with parameter v�/�, but progression is
allowed only if the subsequent site is unoccupied. The kinesins walk proces-
sively toward the plus end, unbinding stochastically with realistic rate [one
event per 1,500 steps (18)]. They stall at the microtubule end, but if another
motor arrives subsequently, they detach, removing the terminal tubulin unit
with them (19). Microtubules are described with the composite 3D protofila-
ment model with N � 2, h � 0.029 s�1, and g � 3 s�1 (vgrowth �1.5 �m/min).
Similar results were obtained with the 1D model.

The number of binding events per unit time can be derived by fitting the
measured microtubule catastrophe rate using the model of kinesin-8 (Fig. 5B).
For a 10-�m-long microtubule, the total number of binding sites is � 10 �

13/0.008 � 16,000. For the attachment rate per binding site �10�5/s obtained
from the fit, the number of attachments should be �110 per s. However, we
can estimate the number of diffusional encounters for a Brownian process. For
this, the equation for first capture time 	W � 1/D � 0 (30) was solved in a
cylindrical geometry of length 10 �m and radius R � 2 �m with the boundary
conditions 	rW(R) � 0 (reflecting barrier at the cell membrane) and W(
) � 0
(absorbing barrier for one microtubule along the central axis). With 
 � 30 nm
and D � 10 �m2/s, the capture time from an initial position on the cylinder’s
edge is W(R) �0.7 s. With �700 proteins in the cell, 700/0.7 � 1,000 collision
events are possible per s. Although we cannot estimate the fraction of
collisions leading to attachment, this simple calculation sets the lower number
of molecules necessary to make this scenario possible.

ACKNOWLEDGMENTS. We thank Thomas Surrey, Christian Tischer, and Phil-
ipp Keller for critically reading the manuscript; Christian Tischer for sharing
unpublished data; and Pierre Connault for discussion. This work was sup-
ported by BioMS (Center for Modeling and Simulation in the Biosciences), the
Volkswagenstiftung, and Human Frontier Science Program Grant HFSP
RGY084.

Fig. 6. State transition diagram for the 1D model with N � 2. The rectangles
represent the possible states for the two terminal tubulin units, with transi-
tions indicated by arrows. The probabilities of each transition for a time � are
calculated from G � g � and H � h �, where g and h are the rates to grow and
hydrolyze, respectively. The state DD (in gray) is called the absorbing state,
because no transition leaves from it.
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