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Abstract

To overcome the “spurious” association caused by population stratification in population-based
association studies, we propose a principal-component based method that can use both family and
unrelated samples at the same time. More specifically, we adapt the multivariate logistic model,
which is often used in segregation analysis and can allow for the family correlation structure, for
association analysis. To correct the effect of hidden population structure, the first ten principal-
components calculated from the matrix of marker genotype data are incorporated as covariates in
the model. To test for the association, the marker of interest is also incorporated as a covariate in
the model. We applied the proposed method to the second generation (i.e., the Offspring Cohort),
in the Genetic Analysis Workshop 16 Framingham Heart Study 50 k data set to evaluate the
performance of the method. Although there may have been difficulty in the convergence while
maximizing the likelihood function as indicated by a flat likelihood, the distribution of the empirical
p-values for the test statistic does show that the method has a correct type I error rate whenever
the variance-covariance matrix of the estimates can be computed.

Background
To overcome a potential problem (“spurious” associa-
tion) caused by population stratification in population-
based association studies, several methods have been
proposed recently. These approaches are favored because
unrelated case-control studies are considered more
powerful and easier for collecting DNA samples than
family-based studies.

The “Genomic Control” (GC) method adjusts the
standard chi-square statistic X2 to X2/l, where l can be
estimated by using genomic marker data, and the
adjusted statistic follows a chi-square distribution
[1-4]. When the sample arises from a population in
which population structure exists, the ordinary chi-
square statistic may follow a noncentral chi-square
distribution X2(δ) with noncentrality parameter δ. The
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GC method is dependent on the estimate of l, which is
dependent on the markers selected for controlling the
effect of population stratification and may result in
either a conservative or liberal test statistic [5,6].

Another approach, named “Structured Association” (SA),
is a Markov-chain Monte Carlo (MCMC)-based method
that uses independent genomic markers to infer the
number of subpopulations and the ancestry probabilities
of individuals from putative unstructured subpopula-
tions, and this inferred information is further used in the
test for association [5,7]. The method was also extended
to inferring the population structure while simulta-
neously estimating the model parameters and testing
for association [8]. However, when the number of
subpopulations is large, the SA method might be
computationally intensive.

Recently, principal-component analysis (PCA)-based
methods, which calculate the principal components of
marker genotype data to represent the genetic back-
ground, have been widely used in association studies
[6,9-13]. Specifically, Price et al. [12] proposed a method
of regressing both the phenotype and marker genotype
values on the principal components for unrelated data,
and association between the phenotype and the marker
is tested by using the residual correlation. More recently,
Zhu et al. [13] extended the method by allowing both
family and unrelated samples in the association test
while correcting for population stratification.

In this report, we propose a method to test the
association between a binary trait and a marker by
using a segregation model that allows for the family
correlation structure. We apply an idea similar to Zhu
et al.’s [13] to correct for the effect of population
stratification. We apply the method to the Genetic
Analysis Workshop 16 (GAW16) Framingham Heart
Study 50 k data set to evaluate the performance of the
method.

Methods
We use a regression model to specify a phenotype as a
function of the genotype of a single nucleotide
polymorphism (SNP) of interest. Because our focus is
on binary traits, we apply the usual approach of logistic
regression. We summarize the genotype data by a
principal-component analysis to extrapolate axes of
genetic variation that are defined as the top eigenvectors
of a covariance matrix between samples. In data sets
with population structure, axes of variation often have a
geographic interpretation [12]. Thus, incorporating
principal components in the model can reduce the
effect caused by population stratification by adjusting

the logit by an amount attributable to ancestry along
each axis.

PCA
Consider samples that include both family and unrelated
individuals. For simplicity, we only consider nuclear
families. Suppose our data contain Nf nuclear families,
Nd unrelated cases, and Nc unrelated controls. For
nuclear families, assume there are ki members in the ith

family with the first two (j = 1 or 2) being the father and

mother. Then we have in total N k N NT i d c
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individuals. Again for simplicity, we assume there are N
families with ki = 1 if i > Nf. In this way we define each
unrelated case or unrelated control as a separate family
of size one. That is, we have N = Nf + Nd+ Nc families. Let
yij be the binary trait value, taking on the value 0 if
unaffected and 1 if affected, for the jth individual in the
ith family. Let gij be the marker genotypic value of the jth

individual in the ith family, coded according to an
additive mode of inheritance. M diallelic markers are
genotyped. Let Xij = (xij1, xij2, ..., xijM) be a column vector
of the marker genotypic values for the jth individual in
the ith family with xijl = 0,1, or 2, corresponding to a
homozygote, the heterozygote, and the other homo-
zygote, l = 1,2, ...,MWe perform a PCA to summarize the
marker data, but for this we only use unrelated
individuals, i.e., the parents in each family and the
unrelated cases and controls, because a naive PCA with
all the available data will result in biased directions of
maximum variability for the data. Let
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denote the variance-covariance matrix of the marker data
for these unrelated individuals in our data, where X
denotes the overall mean of X. Let el be the lth

eigenvector corresponding to the lth largest eigenvalue
of Σ, l = 1, 2, ..., M. The lth principal component for
individual j of family i, tijl, can be calculated by tijl =
(Xij - X )Tel, where i = 1, 2, ..., N, j = 1, 2, ..., ki, and i = 1,
2, ..., M. In this study we only consider the first L = 10
principal components, as suggested by Zhu et al. [13]
and Price et al. [12] in our analysis.

A multivariate logistic model
Now we formulate the relationship between a binary
trait yij and a marker genotypic value of interest, gij, by
the following logistic model:
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where b0 is the intercept, bg represents the effect of the
genotype on the trait, and b1, ..., bL are the coefficients
for the first L principal components, which are used to
eliminate the effect caused by the population stratifica-
tion. We also introduce an index variable I, which is
defined as Iij = 1 if an individual’s markers are used to
calculate the principal components, and Iij = 0 otherwise.
This model can allow us to incorporate any other
covariates. The likelihood function of the multivariate
logistic model (MLM) of the ith family is [14]:
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where Bij = b0 + bggij + b1tij1+ bLtijL + bIIij, and δi1, δi2,
δi3 and δi4 are parameters that, respectively, measure
the association between parent 1 and offspring, parent 2
and offspring, sib-pairs, and spouse pairs. These δi
values take values in the range:
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The overall likelihood L is the product of the likelihoods
for all families, L Lii

N=
=∏ 1

We consider a marker and
the principal components as covariates. To estimate the
unknown parameters, we used the program SEGREG in
S.A.G.E. [15], which is based on maximum likelihood
estimate (MLE) methods. For simplicity, we set δi4 = 0,
i.e., husband and wife were assumed to be independent,
and we further assumed all the remaining δ values are
the same. Because our null hypothesis is no association,
H0: bg = 0, rather than testing for a major gene, we
maximized the likelihood function under the no major
gene model, i.e., we assumed a single multivariate

logistic distribution rather than a mixture of such
distributions, which would be necessary for segregation.
We used the Wald statistic to test the null hypothesis.

Application to the GAW16 Framingham Heart Study
50 k data set
We applied our method to the GAW16 Framingham
Heart Study 50 k data set. We only used the second
generation, i.e., the Offspring Cohort. The founders of
each family were included to calculate the principal
components. If no founder of a family was available, we
randomly chose one individual. The spouses of the
Offspring were treated as unrelated individuals. Hyper-
tension was defined based on the data at Examination
One. We defined an individual as affected if his/her
systolic blood pressure was greater than or equal to
140 mm Hg, or diastolic blood pressure was greater than
or equal to 90 mm Hg, or he/she was on medication, and
unaffected otherwise.

Results
Quality control
The GAW16 50 k Offspring Cohort Data Set includes
3,850 individuals. Among them, 1,170 individuals were
not genotyped and were not used for further analysis. Of
the remaining 2,680 individuals, 89 were under the age
of 18 and they were also removed because our analyzed
phenotype is hypertension. There are 48,028 markers
available, of which 6,051 have a missing genotyping rate
of over 10% and 8,163 have minor allele frequencies less
than 5%. Those 14,214 markers were dropped from any
further analysis. Our analysis results were thus based on
2,591 individuals and 33,811 markers.

The performance of the method
We calculated the principal components for each
individual using the remaining 33,811 markers using
the software FamCC [13]. The p-values of the association
test for all the SNPs were obtained using the software
SEGREG in S.A.G.E. [15]. We first used the model
without incorporating age, sex, and body mass index
(BMI). We identified seven markers whose maximization
of the likelihood function may not have converged using
SEGREG and their p-values are not reported. The
quantile-quantile (Q-Q) plot of the p-values for the
rest of markers can be found in Figure 1. The observed
distribution of p-values does not depart from that under
the null hypothesis, suggesting the proposed method has
a reasonable type I error rate. Notice that there is one
SNP, rs4084639, standing out alone from the rest of the
p-values. We next incorporated age, sex, and BMI as
covariates in the model. However, this created a flat
likelihood, so it is possible that non-convergence of the
maximization in SEGREG occurred for 22,027 markers.
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The Q-Q plot of the p-values for the markers with definite
converged maximization is presented in Figure 2. This Q-
Q plot does not show any substantial departure,
suggesting the type I error rate is reasonably controlled.
The most significant marker (rs4084639) in Figure 1 is
now no longer significant. Further correlation analysis
between rs4084639 and age, sex, and BMI indicates
rs4084639 is highly correlated with sex (correlation
coefficient = 0.99), suggesting that the highly significant
association between this SNP and hypertension identi-
fied in the first model is due to the strong correlation
between hypertension and sex. However, we did not
screen for Hardy-Weinberg equilibrium. A Hardy-Wein-
berg equilibrium screen would have eliminated the
marker rs4084639 from consideration. Furthermore,
most males were CG heterozygotes and most females
were GG homozygotes. A manual BLAST analysis shows
hits to both chromosome 1 and chromosome Y,
suggesting that this marker may amplify two non-
polymorphic regions in males and one non-poly-
morphic region in females. Although SEGREG suggested
the possibility of non-convergence for many of the
markers, when convergence was verified, type I error was
well controlled. To find the cause of possible non-
convergence problem in SEGREG, we repeated our
analyses after relaxing the convergence criteria in
SEGREG and fixing the ten principal-component covari-
ate coefficients at their values estimated under the null

hypothesis. This had little effect on the results; the
likelihood was still flat, indicating that the data are
insufficient to estimate all the covariates together with
the familial correlations.

Discussion
We proposed a novel association method that adopts the
idea of dealing with residual family correlations as has
been used for a segregation model for binary traits, but
without using the usual mixture distribution that is an
essential part of segregation analysis. Meanwhile, the
proposed method also incorporates the marker principal
components for controlling the effect of population
stratification in family data, as proposed by Zhu et al.
[13]. One advantage of the proposed method is the
flexibility of incorporating different kinds of family
correlation structure. Although SEGREG suggested the
possibility of non-convergence for many of the markers
in this study, when convergence was verified (i.e. there
was no difficulty in estimating the variance-covariance
matrix of the estimates), type I error was well controlled.
It is well known that when the number of parameters to
estimate is large, the likelihood function can be flat
around the MLE, as we found in our analysis when we
added age, sex, and BMI as covariates, and that there is
an increased computational burden (a single maximiza-
tion needed 6 minutes for the full model, while it

Figure 1
The Q-Q plot for the empirical p-values in the
model without incorporating age, sex, and BMI.
-log10(p-value) is plotted against its expected value under the
null hypothesis. A 45-degree line would be expected if the
results are due to chance alone.

Figure 2
The Q-Q plot for the empirical p-values in the model
incorporating age, sex and BMI. -log10(p-value) is plotted
against its expected value under the null hypothesis.
A 45-degree line would be expected if the results are due to
chance alone.
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needed only 3 minutes when age, sex, and BMI were not
incorporated, on the Intel Xeon 1.6 GHz cluster).
Although we described our methods using nuclear
families only, the methods could be generalized in an
obvious way to extended pedigrees. Indeed, the families
in the GAW16 Framingham Heart Study 50 k data set
Offspring Cohort (the second generation) were not
nuclear families, but rather a type of extended pedigrees.
Hence, our results could be thought of as pertaining to
extended pedigrees plus unrelated cases and controls.
Another program, UNPHASED [16], also analyzes
similar types of data, though its focus is on haplotype
data. This method does not handle population stratifica-
tion directly, but could do so in a similar manner. The
models in UNPHASED could incorporate covariates. For
instance, one could incorporate the principal compo-
nents in the model as “confounders” to adjust for the
population stratification. We used the first ten principal
components in our analysis. In the case that a popula-
tion is admixed with a relatively small number of
ancestral populations, ten principal components might
be excessive. On the other hand, in the case that a
population is admixed with a relatively large number of
ancestral populations, ten principal components might
not be enough. However, we can test whether a principal
component is significant in the model. If not, we drop it.

We only applied the proposed model to the GAW16
Framingham Heart Study 50 k data set. Because the
underlying disease model is unknown we are unable to
evaluate the power of the proposed method. Future
studies will also include power comparison with the
method proposed by Zhu et al. [13] as well as type I error
analysis under different admixed population samples
using simulations.

Conclusion
We propose an association method using a segregation
analysis based model to deal with family structure while
controlling for population structure. By analyzing a real
data set from the GAW16 Framingham Heart Study, we
showed that the method performs well in the sense of
controlling type I error rate, whenever we can be sure that
the maximization of the likelihood function is successful.

List of abbreviations used
BMI: Body mass index; GAW16: Genetic Analysis Work-
shop 16; GC: Genomic control; MCMC: Markov-chain
Monte Carlo; MLE: Maximum likelihood estimate; PCA:
Principal-component analysis; Q-Q: Quartile-quartile;
SA: Structured association.

Competing interests
The authors declare that they have no competing
interests.

Authors’ contributions
XZ and JA designed themethods. QF, TF, and YS performed
the data quality control. QF analyzed the data. QF, XZ,
and RCE interpreted the results and wrote the paper. All
authors read and approved the final manuscript.

Acknowledgements
The Genetic Analysis Workshops are supported by NIH grant R01
GM031575 from the National Institute of General Medical Sciences.

This work was supported by National Institutes of Health grants
HL074166 and HL086718 from National Heart, Lung, Blood Institute,
HG003054 from the National Human Genome Research Institute,
RR03655 from the National Center for Research Resources, GM-28356
from the National Institute of General Medical Sciences, and
P30CAD43703 from the National Cancer Institute.

This article has been published as part of BMC Proceedings Volume 3
Supplement 7, 2009: Genetic Analysis Workshop 16. The full contents of
the supplement are available online at http://www.biomedcentral.com/
1753-6561/3?issue=S7.

References
1. Delvin B and Roeder K: Genomic control for association

studies. Biometrics 1999, 55:997–1004.
2. Bacanu SA, Delvin B and Roeder K: The power of genomic

control. Am J Hum Genet 2000, 66:1933–1944.
3. Delvin B, Roeder K and Wasserman L: Genomic control, a new

approach to genetic-based association studies. Theor Popul Biol
2001, 60:155–166.

4. Reich DE and Goldstein DB: Detecting association in a case-
control study while correcting for population stratification.
Genet Epidemiol 2001, 20:4–14.

5. Prichard JK and Rosenberg NA: Use of unlinked genetic markers
to detect population stratification in association studies. Am J
Hum Genet 1999, 65:220–228.

6. Zhang SL, Zhu X and Zhao HY: On a semi-parametric test to
detect associations between quantitative traits and candi-
date genes using unrelated individuals. Genet Epidemiol 2003,
24:44–56.

7. Pritchard JK, Stephens M, Rosenberg NA and Donnelly P: Associa-
tion mapping in structured populations. Am J Hum Genet 2000,
67:170–181.

8. Satten GA, Flanders WD and Yang Q: Accounting for unmea-
sured population substructure in case-control studies of
genetic association using a novel latent-class model. Am J
Hum Genet 2001, 68:466–477.

9. Zhu X, Zhang SL, Zhao HY and Cooper RS: Association mapping,
using a mixture model for complex traits. Genet Epidemiol
2002, 23:181–196.

10. Chen HS, Zhu X, Zhao HY and Zhang SL: Qualitative semi-
parametric test for genetic associations in case-control
designs under structured populations. Ann Hum Genet 2003,
67:250–264.

11. Bauchet M, McEvoy B, Pearson LN, Quillen EE, Sarkisian T,
Hovhannesyan K, Deka R, Bradley DG and Shriver MD: Measuring
European population stratification with microarray geno-
type data. Am J Hum Genet 2007, 80:948–956.

12. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA and
Reich D: Principal components analysis corrects for stratifi-
cation in genome-wide association studies. Nat Genet 2006,
38:904–909.

13. Zhu X, Li S, Cooper RS and Elston RC: A unified association
analysis approach for family and unrelated samples correct-
ing for stratifications. Am J Hum Genet 2008, 82:352–365.

14. Karunaratne PM and Elston RC: A multivariate logistic model
(MLM) for analyzing binary family data. Am J Med Genet 1998,
76:428–437.

15. S.A.G.E. Statistical Analysis for Genetic Epidemiology.
http://darwin.cwru.edu/sage/.

16. Dudbridge F: Pedigree disequilibrium tests for multilocus
haplotype. Genet Epidemiol 2003, 25:115–121.

BMC Proceedings 2009, 3(Suppl 7):S104 http://www.biomedcentral.com/1753-6561/3/S7/S104

Page 5 of 5
(page number not for citation purposes)

http://www.biomedcentral.com/1753-6561/3?issue=S7
http://www.biomedcentral.com/1753-6561/3?issue=S7
http://www.ncbi.nlm.nih.gov/pubmed/11315092?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11315092?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10801388?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10801388?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11855950?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11855950?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11119293?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11119293?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10364535?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10364535?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12508255?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12508255?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12508255?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10827107?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10827107?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11170894?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11170894?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11170894?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12214310?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12214310?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12914577?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12914577?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12914577?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17436249?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17436249?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17436249?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16862161?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16862161?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18252216?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18252216?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18252216?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9556304?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9556304?dopt=Abstract
http://darwin.cwru.edu/sage/
http://www.ncbi.nlm.nih.gov/pubmed/12916020?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12916020?dopt=Abstract

	Abstract
	Background
	Methods
	PCA
	A multivariate logistic model
	Application to the GAW16 Framingham Heart Study 50 k data set

	Results
	Quality control
	The performance of the method

	Discussion
	Conclusion
	List of abbreviations used
	Competing interests
	Authors’ contributions
	Acknowledgements
	References

