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Abstract

Growth mixture modelling, a less explored method in genetic research, addresses unobserved
heterogeneity in population samples. We applied this technique to longitudinal data of the
Framingham Heart Study. We examined systolic blood pressure (BP) measures in 1060 males from
692 families and detected three subclasses, which varied significantly in their developmental
trajectories over time. The first class consisted of 60 high-risk individuals with elevated BP early in
life and a steep increase over time. The second group of 131 individuals displayed first normal BP,
but showed a significant increase over time and reached high BP values late in their life time. The
largest group of 869 individuals could be considered a normative group with normal BP on all
exams. To identify genetic modulators for this phenotype, we tested 2,340 single-nucleotide
polymorphisms on chromosome 8 for association with the class membership probabilities of our
model. The probability of being in Class 1 was significantly associated with a very rare variant
(rs1445404) present in only four individuals from four different families located in the coding
region of the gene EYA (eyes absent homolog 1 in Drosophila) (p = 1.39 × 10-13). Mutations in EYA
are known to cause brachio-oto-renal syndrome, as well as isolated renal malformations. Renal
malformations could cause high BP early in life. This result awaits replication; however, it suggests
that analyzing genetic data stratified for high-risk subgroups defined by a unique development over
time could be useful for the detection of rare mutations in common multi-factorial diseases.

Background
Longitudinal data analysis in genetic research is a new
and emerging field with great potential. Genetic analysis
of cross-sectional data generally assumes homogeneity in
a sample with regard to the observed phenotype.

However, longitudinal follow-up on the outcome vari-
ables often suggests that, nevertheless, individuals may
differ in their development over time. These individual
differences may even cluster into distinct subgroups with
diverse environmental and genetic risk factors. A method
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that can be used to further explore this unobserved
heterogeneity is growth mixture modelling (GMM) [1-4].
In GMM, the assumption of a single average growth
curve is relaxed and different unobserved groups of
individuals or latent subclasses are allowed to vary in
their growth parameters, such as estimates of means,
variances, and covariate influences. This flexible model-
ling framework allows for growth curves that differ in
shape. Multi-level data, such as individuals nested in
families, can easily be integrated into this model.

The Framingham Heart Study is one of the largest
longitudinal clinical studies for which genetic material is
available [5]. This study followed families over more
than 50 years for common cardiac and metabolic
disorders such as hypertension, diabetes, obesity, and
heart disease. Current analyses have studied genetic and
environmental risk factors in this sample by assuming a
homogeneous population. In our study, we explore
possible heterogeneity in this sample by relaxing the
single-population assumption and allowing for para-
meter differences across unobserved subpopulations.
Using GMM on systolic blood pressure (SBP) measures
in 1060 males of the Original Cohort and the Offspring
Cohort in 692 families, we detected three subclasses that
varied significantly in their developmental trajectories.
The growth curve of the first class (n = 60 individuals)
was characterized by a high mean SBP early in life and an
early, steep slope. The second class (n = 131 individuals)
had a low mean SBP at a young age followed by a steep
increase in SBP over time. The third class (n = 869
individuals) could be conceptualized as a normative
class. Members of this subclass had low SBP at Exam 1
and the SBP remained low throughout the follow-up
exams. Because previous studies had suggested a risk
locus for high SBP in males on chromosome 8 in these
data [6], we tested 2340 single-nucleotide polymorph-
isms (SNPs) on this chromosome for association with
the class membership probabilities of our model. The
probability of being in Class 1 was significantly
associated with the coding SNP rs1445404 in the gene
EYA (eyes absent homolog 1 in Drosophila) (p = 3.07 ×
10-13). This very rare variant represents a miss-sense
mutation in exon 3 of the gene. The minor allele of this
SNP was present in only four individuals from four
different families. Mutations in EYA were found in
patients with brachio-oto-renal syndrome, as well as in
individuals with isolated renal malformations [7,8].
Renal malformations can cause high blood pressure
early in life. This result needs to be replicated, but it
suggests that analyzing genetic data stratified for high-
risk subgroups defined by a unique development over
time could give an advantage for the detection of high-
risk and rare mutations in common multi-factorial
diseases.

Methods
We used 1060 male individuals in 692 families from the
Original Cohort and the Offspring Cohort of the
Framingham Heart Study. SBP measured at four time
points and spanning about 30 years of follow-up was
used as outcome variable, whereas body mass index
(BMI) and treatment for hypertension (HTNRX) were
included in the model as time-varying covariates.
Individuals with missing values on the covariates were
excluded from the analysis, but missing values on the
outcome variable at any time point were estimated with
maximum-likelihood estimation under the assumption
of missing at random (MAR) [9]. We fitted a three-level
GMM by relaxing the assumption of identical parameter
values across all mixture groups. The model was
estimated by maximum likelihood using estimation-
maximization (EM) algorithm. The first level described
the variation over time, the second level described the
variation over individuals, and the third level described
the variation over families. Age was allowed to vary
across the cohorts at each time point. We tested the fit of
the model to the data by comparing the Bayesian
information criteria (BIC) of the different class solutions
for the non-nested models, with smaller BIC values
indicating a better model fit [10]. The entropy of the
classification and the posterior probability of belonging
to a single class were taken into consideration as well.
The analysis was performed with the computer software
program Mplus [11].

The three-level growth mixture model for systolic blood
pressure ytij for time point t, individual i, and pedigree j is
described as follows using the individual-level latent
class variable cij with K classes. The Level 1 model is
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where etij follows a first-order autocorrelation structure.
The Level 2 model is

b b uj c k j ijij01 0 0| = = + (2)

b b uij c k j ijij1 1 1| ,= = + (3)

where the u values are bivariate normal within latent
class. The Level 3 model is

b b vj c k k jij0 00 0| = = + (4)

b b vj c k k jij1 10 1| ,= = + (5)
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where the v values are bivariate normal within class and
uncorrelated with the u values. The latent class prob-
abilities follow a multinomial logistic regression with
random intercepts,
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where ζ is normally distributed.

The estimated class membership probability was then
used as phenotype in a quantitative trait (QT) associa-
tion analysis by testing one class against the other two
classes performed with the software program GOLD-
ENHELIX [12]. We tested 2340 SNPs on chromosome 8
for association with this phenotype. The significance of
association was tested with the correlation/trend regres-
sion test under the basic, allelic model. A cut-off value of
p < 10-8 was used for genome-wide significance. We then
performed 100,000 permutations of the data to evaluate
the significance of our finding.

Results
We identified three distinct subgroups in this data set
with regard to SBP development over time. The conven-
tional 1-class random effect (multilevel) growth model
was outperformed by a 2-class GMM in terms of BIC
(BIC = 35527 for the 1-class model versus BIC = 33847
for the 2-class model). A 3-class model gave the lowest
(best) BIC (BIC = 33845). In the 4-class model, BIC
increased (BIC = 33865). The entropy for the 3-class
model was not very high (entropy = 0.66). The classes
varied in mean, slope, and shape of the growth curves
(Figure 1). Class 1 consisted of 60 individuals with high
SBP values early in life and a steep growth curve. Class 2
included 131 individuals. Members of this class started
out with a low mean SBP, but developed a steep rise in
SBP later in life. Class 3 contained a normative group of
869 individuals. The SBP measures in this group were
normal and remained normal throughout follow-up.

Association analysis with SNPs on chromosome 8
revealed two signals with genome-wide significance.
The first one was an association between Class 1
membership probability and SNP rs1445404 located in
the third exon of the gene EYA (eyes absent homolog 1
in Drosophila) (p = 1.39 × 10-13, OR>8.1). A total of four
individuals, one homozygote and three heterozygotes
from four different families, had a rare C allele instead
of the wild-type G allele (6.6% of the individuals in
Class 1). This miss-sense mutation in exon 3 changes an

alanine to a proline at amino acid position 20 of the
protein, with likely consequences for the protein
structure and folding of the protein. The homozygous
individual and two of the heterozygous individuals
belonged to Class 1. Interestingly, one heterozygous
individual was assigned to Class 3; however, this
individual was the youngest in this group of mutation
carriers and the only one who was treated for hyperten-
sion as early as Exam 2. He also developed cardiac
disease at age 49. This longitudinal course could indicate
a misclassification due to very aggressive treatment of
SBP at a very early stage.

The second signal was an association between Class 1
membership and the SNP rs6601495 located in the
second exon of the gene RP1L1 (retinitis pigmentosa
1-like) (p = 3.8 × 10-13). This miss-sense mutation
changes serine to threonine at amino acid position 112.
Two individuals in this data set, one homozygote and
one heterozygote, carried the rare C allele and both were
members of Class 1. The homozygous individual was
also homozygous for the SNP rs1445404. Whereas the C
allele of this SNP is absent in the European and Asian
population, homozygotes and heterozygotes for this
variant are common among the Sub-Saharan African
population (allele frequency of the C allele: 0.86).
Whether this genomic variant indicates an ethnic
admixture in this data set remains to be explored.
Permutation testing with 100,000 permutations revealed
a permutation p-value of 0.0001 for the single-marker
permutation for marker rs1445404 and 0.0003 for
marker rs6601495, indicating that of 100,000

Figure 1
Growth curves of the three latent classes over time.
Age is on the x-axis. The mean systolic blood pressure (SBP)
is indicated on the y-axis.
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permutations of the phenotype, only 10 and 30
permutations, respectively, reached the same or better
results than indicated here. Permutation of the full
model taking all the markers on chromosome 8 into
account revealed a permutation p-value = 0.0044 for
marker rs1445404, and 0.0085 for marker rs6601495
after Bonferroni correction for multiple testing.

Discussion
We demonstrated here that GMM is a powerful tool to
address unobserved population substructure in long-
itudinal data sets. By assigning individuals into different
risk groups based on phenotype development over time,
we were able to identify rare genomic variants that were
present only in one group and absent in the others. Our
approach used a two-stage design, in which we first
defined class membership probabilities, and in a second
step performed a quantitative trait association analysis.
This approach may be biased. The low number of
individuals who carried the identified rare mutations
prohibited incorporating the genotype information of
the SNPs directly into the model. The fact that carriers of
these rare mutations were found only in one class and
not in the other classes, however, justified our approach.
Our study was limited by the very small size of the high-
risk group, which might lead to spurious associations. In
order to correctly interpret our finding, it would be
necessary to replicate the results in a larger sample.
Because statistical replication might require very large
data sets, given the very rare nature of the mutation, an
alternative approach would be a biological validation.
Functional consequences of the mutation could be
tested for by renal ultrasound or renal function tests in
the affected individuals. A further limitation of our
approach is the sensitivity to population stratification
and admixture.

Conclusion
GMM is a useful tool to detect subgroups in hetero-
geneous populations. We demonstrate here that family
structure can easily be incorporated into the model. We
successfully identified a high-risk group with steep
growth over time. Members of this latent class had
high blood pressure early in life with continuous steep
increase. The class membership probability showed
significant association with a rare mendelian variant in
a gene that is involved in renal development. However,
for correct interpretation of this result, replication in a
larger sample or biological validation would be essential.
Our approach may be a useful complement to the
commonly used case/control association design because
it provides more power to identify rare variants
associated with a severe phenotype.
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