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Abstract

We applied a penalized regression approach to single-nucleotide polymorphisms in regions on
chromosomes 1, 6, and 9 of the North American Rheumatoid Arthritis Consortium data. Results
were compared with a standard single-locus association test. Overall, the penalized regression
approach did not appear to offer any advantage with respect to either detection or localization of
disease-associated polymorphisms, compared with the single-locus approach.

Background
Penalized regression approaches are an attractive option for
the analysis of large numbers of predictor variables (such as
genotypes at many genetic loci) that may influence a
response variable (such as disease status). Most genome-
wide studies use single-locus association tests such as the
Cochran-Armitage trend test, or, equivalently, logistic regres-
sion with a single predictor variable (encoding the effect of a
particular locus) included in the regression equation at any
given time. Theoretically, regression methods allow the
simultaneous inclusion of several different variables in the
regression equation, e.g., variables coding for genotype rather
than allele effects (thusmodeling “dominance"), or variables
that encode effects at several different loci. However, standard
regressionmethods fail when the sample size (the number of
people) is small compared to the number of predictors.

Standard linear regression can be formulated as finding
the vector b of parameter estimates (regression coeffi-
cients) bj (j = 1,...,p) at p predictors that minimizes the
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where, for person i, yi is a quantitative outcome variable
and xij is a predictor variable (such as a genotype variable
taking values 0, 1, or 2 according to the number of risk
alleles at locus j). In penalized regression, one minimizes
this function subject to a constraint on the coefficients

such as β j
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Lagrange multipliers suggests that this problem may be
re-formulated as minimizing
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where g(b0, b)corresponds to the original sum of squared
differences, h(l, b)is a penalty term, and l is a tuning
parameter (or vector of parameters) that controls the
strength of penalization. Ridge regression [1] uses a so-
called L2 penalty
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producing coefficients that are scaled down or “shrunk”
towards zero and prediction models that often perform
better that least-squares owing to a bias-variance trade-
off [2]. All predictors remain in the model, some with
small coefficients. The lasso [3],
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uses an L1 penalty, resulting in both shrinkage and
variable selection, in that many of the coefficients
become set to zero. Zou and Hastie [2] proposed a
penalty h(l1, l2, b)that is a convex combination of the
lasso and ridge penalties

h( , , ) ,λ λ β λ β λ β1 2 2 2
2

1 1
= +

which they termed the naïve elastic net. However, this
method can over-shrink the coefficients and performs
poorly unless either l1 or l2 is close to 0. Zou and Hastie
[2] therefore instead proposed using a modified version
of the elastic net that essentially scales up the naïve
elastic net coefficients by a factor of (1 + l2).

The naïve and modified elastic net approaches enjoy a
grouping property whereby predictors that are highly
correlated tend to have similar coefficient estimates [2].
An alternative penalization method that enjoys a similar
property is the group lasso [4], which minimizes the
objective function f(b0, b) = g(b0, b) + h(l, b) with
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(i.e., half the sum of squared differences) and penalty
term
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Here, the predictors are divided into G groups (g = 1,...,
G) and fg and lgindicate the first and last predictor in
group g. The penalty term in the group lasso is
intermediate between the L1 penalty of the lasso and
the L2 penalty used in ridge regression and, as pointed
out by Wu and Lange [5], provides a natural coupling
between parameters in the same group. Wu and Lange
[5] actually propose an alternative approach, which is to
minimize the objective function f(b0, b) = g(b0, b) + h(l,
b), with g(b0, b) equal to either half the sum of squared
differences as above (denoted l2 regression) or to
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(denoted l1 regression), with the

penalty term taking the form
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This is similar in form to the naïve elastic net penalty,
except that, like the group lasso, it uses ||bg||2 instead of
β g 2

2
in the group-specific penalty controlled by l2.

Penalization is an attractive option in genetic studies
because it allows the grouping of predictors that relate to
the same genetic variant or region, and also because we
genuinely expect the vast majority of loci to have regression
coefficient 0. Although originally developed for quantita-
tive outcomes, penalization methods have been extended
to deal with binary outcomes (such as disease). Penaliza-
tion is achieved by minimizing an objective function f(b0,
b) = g(b0, b) + h(l, b) with the penalization term h(l, b)
taking one of the forms above, and g(b0, b)equalling minus
one [6] or two [7] times the log likelihood of the data.
Software implementations include the R package “glmnet”,
which fits the lasso or elastic-net regularization path for
linear, logistic, and multinomial regression models, and
the R package “grplasso,” which fits a variant of the group
lasso approach for binary outcome data.

Methods
Data
We analyzed the North American Rheumatoid Arthritis
Consortium (NARAC) data, consisting of 868 rheuma-
toid arthritis (RA) cases and 1194 controls genotyped at
545,080 single-nucleotide polymorphisms (SNPs) across
22 autosomal chromosomes. These data were recently
used in combination with additional samples [8] to
perform genome-wide association analysis, confirming
previously proposed associations between disease and
variants in HLA and PTPN22, and also reporting a new
locus on chromosome 9. We therefore focused on these
regions for application of our penalized regression
approach.
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Quality control
We used the software PLINK [9] to perform basic quality
control checks. SNPs were excluded based on a SNP
genotype call rate of <95%, minor allele frequency <1%,
and Hardy-Weinberg equilibrium (HWE) p-value < 10-7.
We also removed individuals with >5% missing geno-
types. We used multidimensional scaling of the Genetic
Analysis Workshop (GAW) 16 data, together with
publicly available HapMap data on 210 unrelated
individuals from four populations, to confirm that the
individuals from the GAW data had European ancestry
and were not related.

Single-locus analysis
We used PLINK to perform a Cochran-Armitage trend
test at each SNP. Unlike Plenge et al. [8], we made no
attempt to correct for population stratification, as we
wished to compare our single-locus results with those
from group lasso penalized regression, which does not
(in its current software implementation) allow inclusion
of additional covariates such as principal-component
scores from an eigenvector analysis [10].

Penalized regression analysis using
the group lasso procedure
We applied the group lasso procedure proposed by Meier
et al. [6] implemented in the R package “grplasso” to
SNP data in the three regions of association (chromo-
somes 1, 6, and 9) detected by Plenge et al. [8]. Because
the software required data to be available at all predictor
variables, PLINK was first used to impute any missing
genotypes on the basis of linkage disequilibrium (LD)
patterns with observed genotypes. We chose this
particular penalization approach and software because
it is one of the few available methods that deal with
binary (case/control) as opposed to quantitative out-
comes, and because we were attracted by the natural
coupling of parameters that could potentially be
achieved through use of the group lasso penalty term.

Consideration of groups of predictors simultaneously
could be useful if one wished to include more than one
predictor per SNP (e.g., to model genotype effects rather
than allelic effects, or interactions only in the presence of
main effects) or to impose some other grouping based
on (for example) biological function. However, in our
analyses, we used only a single predictor variable per
locus (coded 0, 1, or 2 according to the number of
variant alleles), and thus each SNP formed a group by
itself.

The group lasso estimator [6] is defined as the minimizer
b of the convex function
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where l(b0, b) is the logistic regression log-likelihood
function and the function s df dfg g( ) = is used to
rescale the penalty with respect to dimensionality of the
parameter vector for group g (not relevant here). The
choice of the tuning parameter l controls the amount of
penalization. A natural way to estimate l is to use cross-
validation [5], however this can be very time consuming,
particularly when coupled with the bootstrapping
approach that we describe below. Instead we used the
simpler proposal by Meier et al. [6] to take l equal to log
(G), where G is the number of groups, in our case the
number of SNPs to be fitted in the model. Thus, l varied
from log(1000) = 6.9 to log(7000) = 8.85 in the results
described below.

The output from a penalized regression procedure consists
of an estimated regression coefficient for each predictor in
the model: model selection is performed by estimation
rather than hypothesis testing [5]. Because we do not have
any measure of the variability of the estimated coefficient,
interpretation of the importance or significance of any
particular predictor can be problematic. Ideally, we would
like to present results in the form of a significance test for
each coefficient in order to perform comparisons with
standard single-locus tests of association. To address this
limitation, we used a bootstrap: the penalized regression
procedure was performed 50 times on 50 different
bootstrap replicates constructed by selecting observations
(people) with replacement from the original sample. This
allowed us to estimate the variance of each regression
coefficient. We then constructed a z-score at each locus by
dividing the observed regression coefficient by its estimated
standard error, and converted this to a p-value, assuming
the z-score to be normally distributed. This procedure is
not, strictly speaking, correct, because penalized regression
does not enjoy the asymptotic properties of standard
regression procedures: shrinkage of the regression coeffi-
cients means their distribution cannot be assumed to be
asymptotically normal. However, we hoped that this
procedure would provide us with a ballpark estimate of
the relative significance of the regression coefficients
(relative to one another), even if the exact significance
levels could not be considered reliable.

Results
Figure 1 shows the results from the bootstrap-penalized
regression procedure (left panels) as compared with a
standard single-locus analysis (right panels), using
windows of 1000 markers around the locations of
significant associations detected by Plenge et al. [8].
Analysis of a single region (1000 markers, 50 bootstrap
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replicates, and a single value of l) took between 10 and
12 hours; this increased significantly with the number of
markers (e.g., up to 3 weeks when using 5000-7000
markers). The penalized regression procedure did not
appear to offer any great advantage over the single-locus
analysis with respect to either detection or localization of
the putatively associated polymorphisms. We also
examined the value of the estimated penalized regression
coefficient at each SNP (for which no bootstrapping was
required) when using windows of either 1000, 2000,
5000, or 7000 SNPs (data not shown). Again, no clear
advantage over single-locus analysis, with respect to
either detection or localization of putative causal
variants, was observed.

Discussion
Penalization approaches are an appealing alternative to
standard regression techniques for analysis of large
numbers of predictor variables in the context of
genome-wide association studies. Use of such techniques

is just beginning to emerge: ridge regression [11] has
been used for distinguishing between causative and non-
causative variants for quantitative phenotypes, and
penalized logistic and least angle regression have been
used for identifying gene-gene interactions in binary
traits [7,12]. A closely-related Bayesian penalized regres-
sion procedure [13] has also been suggested for genome-
wide and/or fine-mapping studies. Although, theoreti-
cally, the simultaneous inclusion of many markers across
the genome in a single regression analysis has some
appeal (on account of the reduction in residual variance
that can be achieved), it is unclear whether one would
genuinely expect this to improve upon single-locus
analysis with respect to detection of disease-associated
polymorphisms. A more promising application is the
fine-mapping problem, in which one is interested in
determining from a smaller (although still potentially
large) set of strongly correlated predictors in a region,
which ones drive the association and are thus potentially
causal or lie close to causal variant(s). Simulations

Figure 1
Results from bootstrap penalized regression and single-locus logistic regression (trend test) analysis. Results are
shown in terms of -log(p-value). The blue points correspond to the best SNPs using the grplasso method and the red point
corresponds to the best SNP from the single-locus analysis.

BMC Proceedings 2009, 3(Suppl 7):S61 http://www.biomedcentral.com/1753-6561/3/S7/S61

Page 4 of 5
(page number not for citation purposes)



suggest that penalized regression may offer some
improvement over single-locus methods in this regard
[11,13], although interpretation is complicated by
difficulties in defining criteria for “true” and “false”
detections in this context. In the analyses described here,
we did not find the group lasso approach to offer any
advantage over single-locus methods with respect to
either detection, or localization, of disease-associated
polymorphisms. Single-locus analysis provided a clear
and localized signal of association, whereas the pena-
lized approach generated a number of somewhat
isolated signals, some with unusually small p-values,
across the regions investigated. Further investigation
(data not shown) suggests that use of a higher penalty
may produce better results: ideally one might wish to use
cross-validation to choose the best value of l from a
range of possible values; however, this is likely to be
prohibitively time-consuming on a genome-wide scale.
Further investigation of alternative penalization algo-
rithms and of methods for choosing penalization
parameters and assessing significance is warranted.
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