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ABSTRACT In the last decade, two tools, one drawn from
information theory and the other from artificial neural net-
works, have proven particularly useful in many different areas
of sequence analysis. The work presented herein indicates that
these two approaches can be joined in a general fashion to
produce a very powerful search engine that is capable of
locating members of a given nucleic acid sequence family in
either local or global sequence searches. This program can, in
turn, be queried for its definition of the motif under investi-
gation, ranking each base in context for its contribution to
membership in the motif family. In principle, the method used
can be applied to any binding motif, including both DNA and
RNA sequence families, given sufficient family size.

Gatlin (1) first recognized that the Shannon expression for
string entropy might prove useful in sequence analysis. This
function is a statistical average for the distribution of possible
characters at a particular position in a message. [Although it
shares the form of the Gibbs–Boltzman entropy function

2Sumi ~piln2 pi), [1]

it is independently derived and nonisomorphic with that
function (2, 3).] Gatlin insightfully proposed that this function,
originally developed to assay the fidelity with which strings
could be transmitted in noisy communication channels, was
also appropriate for the analogous transmission of string
information represented in the central dogma of genetics.
Schneider et al. (4) subsequently developed a redundancy
index (RI), based on this function, to profile a given family of
DNA-binding-site sequences. This index measured the reduc-
tion in Shannon entropy relative to the background DNA,
represented in the strings of the sequences belonging to a
particular motif.

Suppose we consider a simple example, a motif 3 bases long
with five known members of the family. These could be: ATG,
CTG, GTC, ATA, and ACA. For the first position, the pi values
are the observed base frequencies

pa 5 0.6, pc 5 0.2, pg 5 0.2, and pt 5 0.0. [2]

The Shannon entropy for this position would be:

2[0.6 p ln2(0.6)12 p 0.2 p ln2(0.2)] [3]

or 1.13 bits (a bit being the unit of information in a decision
between two equiprobable alternatives). For genomic base
ratios in Escherichia coli, A 5 C 5 G 5 T, the background
value for any position would be

2[4 p 0.25 p ln2(0.25)] [4]

or 2 bits. The entropy reduction, indicating the redundancy or
conservation above background, would be the difference or
0.87 bits. For the second and third positions in the example, the
corresponding difference values would be 1.28 and 1.03; and
the sum across all three positions of the motif would be 3.18
bits. In information theory terms, this would be the loss of
Shannon entropy in the fixation of the motif as represented in
the current sample. The degree of conservation at a particular
position within the motif is equated with the functional
importance of that position; in our example the order of
importance would be position 2, then position 3, and then
position 1. Thus it is the motif that is characterized in this
analysis, not particular members of the family.

One would also like to be able to rank individual members
of the family with respect to functionality. Somewhat later, a
ranking function (5), relying solely on sequence information
for a functional ordering of members of a motif, was developed
based on two factors, one to measure the importance within
the motif of each position (the Schneider redundancy index
above) and a second to measure how well that position was
filled with respect to a particular sequence, best assessed at
each position with the Berg–von Hippel (BvH) function (6).
Factoring the two was suggested by the need to improve the
performance of the Berg-von Hippel function on ‘spacer
positions’ within a motif (5, 6). The BvH function is

log[popt 1 1yN)y(pobs 1 1yN)], [5]

where popt is the frequency of the consensus base (e.g., 0.6 for
position 1 in the example), pobs is the frequency found in the
motif family for the first base in the sequence being examined
(say cytidine or C, pobs 5 0.2), N is the number of known family
members, 5. Accordingly, the overall index for a C in the first
position would then be 0.87 p 0.30 or 0.26. This index would
also be computed for the other positions and summed over the
three positions; the higher the total index, the worse the fit of
the query sequence to the family. For the five sequences of our
example, the totals would be 0, 0.26, 0.26, 0.14, and 0.65, and
the ranking would be 1 best, 4, 2 and 3, and 5 worst.

In parallel with these developments, neural networks, first
perceptrons (7) and later back-propagation neural networks
(8), were proving to be effective in searching for highly
divergent binding sites. Artificial neural networks are com-
puter programs that are designed to learn by example (an
input-expected output pair) to fit a given computer input to a
desired output by means of a number of weighted connections
between the input and the output. During training, these
weighted connections are continually adjusted until the pro-
gram can give the correct output for most or all of the input
examples, at which point the connection strengths are perma-
nently fixed. If the training has been sufficiently broad, the
program can then be used to evaluate additional new input
data. The training input to these networks, in the case at hand,
would most often be examples of the sequences of interest, i.e.,
sequences exemplifying a particular binding motif, contrasted
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with negative examples (nonmembers of the same size) drawn
from random sequence. The output would be a yes or no
decision on membership. In still other cases, the input might
be only the most important parts of the sequence motif or
possibly indices based on some significant aspect of the
sequence.

The work presented below attempts to meld these two lines
of research into a single general method. The method again
uses back-propagation neural networks as the search engine,
but in contrast to my earlier work (8, 9), uses the above-
mentioned ranking function evaluation of the sequences as
input in place of the sequences themselves. An additional
ranking function, based solely on Shannon entropy evalua-
tions, is also used as an alternative source of input. When
earlier problems are revisited with this method, the false
positive levels are reduced between 4- and 10-fold from what
was then the state of the art. In practice, this means that in
many searches the target sequence(s) can be located without
false positives. With the use of a numerical differentiation of
the weight matrix (see below), the neural network’s definition
of the motif (i.e., the weight it places on any particular base at
any position in making the correct classification) can be
determined.

METHODS

The product of the RI and BvH, computed at each position of
a sequence from a given motif, has been shown previously to
provide a strong correlation with the functionality of that
sequence as measured by DNA binding assays in vitro (5), being
able to predict relative affinities of motif family members with
correlations as high as 0.999. Both factors in this ranking
function treat each position within the sequence as being
independent of the other bases in the site, an assumption that
seems fairly well met, on average, in the few cases studied to
date. According to information theory (2), the greatest diver-
sity of expression is made possible by an alphabet in which each
letter is equiprobable and acts independently. Diversity pro-
vides the regulatory range in the nucleic acid binding se-
quences of regulatory proteins. (The assumption of positional
independence would be less palatable in the case of peptide
motifs where the joint occurrence of several amino acids may
be correlated in the establishment of an active site and is, also,
clearly abridged in certain specific cases of DNA binding sites.)

There are a few caveats associated with the use of this index.
One is that it cannot give a quantitative assessment of rare
mutant sequences. The base mutation would probably be
represented in the prototype group (the current known se-
quence members of the motif that are to serve as the training
definition of the motif) by a frequency of 0; another rare
mutation at a different position in another sequence might also
generate a frequency of 0. Both of these would get bad
rankings, but in the absence of real frequency data for them [if
added to the group, the assigned frequency would be 1y(N 1
1), whereas in nature the real frequency might be 1026 or
1028], they cannot be quantitatively ranked. A second caveat
has to do with symmetric or dyad repeat sequences. Investi-
gators frequently turn to the half-sequence in analyzing such
sites. While this is a legitimate manipulation for increasing the
sample size in determining the half-sequence consensus, it
results in an information loss in other applications, such as
ranking any sequence that is not perfectly symmetric. This
information loss due to averaging is often sufficient to destroy
strong correlations that would be seen by using the entire
sequences as opposed to disjoint half-sequences.

RI p BvH, the ranking function computed at each position
of a sequence of interest, is written

$@K 1 sumi(filn2fi)] p log[(fopt 1 1yN)y(fobs 1 1yN)]}. [6]

K in this function is the background entropy corrected for
sample size, approximately 2 for E. coli (4), as was calculated
in the example above. The frequencies, fi, are determined as in
the example above from the aligned sequences of the prototype
group for the given motif; the relative frequencies for the
occurrence of each of the four bases are determined separately
for each position of the motif. Fopt is the frequency found for
the consensus base at a given position, and fobs is the frequency
at which the base in the sequence of interest is found to occur
in the same position of the prototype group.

A computer program was written that takes sequence as
input, evaluates this function at each position within a window
corresponding to the size of the motif of interest by using the
prototype group’s frequencies, divides the range of resultant
index values into six qualitative levels from ‘‘very good’’ to
‘‘very bad’’ (attempts with 10 levels yielded no better perfor-
mance), and codes the result in binary form suitable as input
for a neural network. (There has been some discussion whether
fine or coarse coding of the neural network input is more
effective. In the coarse-coded example, level 5 might be written
‘‘0 1 0 0 0 0,’’ whereas the fine-coded equivalent would be
‘‘1 0 1’’; in binary, each position moving right to left represents
a higher power of ‘‘2’’ beginning with 0 power on the right; 5
is a 2 squared plus a 2 to the 0 power. Fine coding is more
compact, but it is also ambiguous, e.g., the rightmost position
is ‘‘X X 1’’ when the level expressed is 1, 3, 5, or 7; this
corresponds to a shared active input neuron among all of these
inputs. Both forms of coding are used in examples below and
both perform well.) The program then sums the function over
all positions of the window, grades that result on four levels
(attempts with seven levels did not improve performance), and
coarsely codes that result. For example, a promoter sequence
of 58 bases would be translated into 58 p 6 1 4, or 352
characters, of which 59 would be ones, representing active
input neurons in the case of coarse coding, the remainder being
zeros. Let us consider our earlier example. Suppose we were
to code our first sequence ATG for input to a network being
trained for this motif. The range of index values could be: .2 5
1 0 0 0 0 0; .1 5 0 1 0 0 0 0; .0.5 5 0 0 1 0 0 0; .0.3 5
0 0 0 1 0 0; .0.15 5 0 0 0 0 1 0; #0.15 5 0 0 0 0 0 1. In the
example, ATG has the consensus base for each position of the
motif and thus scores 0 for each position; with six-level coding,
this sequence would be represented as 0 0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 0 1 in the input file to the network. In that it is the best
possible sequence, its total value for the three positions would
also be the best code 0 0 0 1; so the complete entry for this
3-base sequence would be 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 1, requiring 22 input neurons, and the network
would be tasked to associate this input with an output of 1 0
for ‘‘yes’’, confirming motif membership. A random sequence
might read CGA with index values of 0.26, 0.90, and 0.14 and
a coding from above of 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0
(second worst total level) and this would be associated during
training with an output of 0 1 for ‘‘no,’’ not a member of the
motif family.

Note that all possible values for the ranking index can be
determined and stored as soon as the prototype group is
entered. There are only four possibilities for each position of
the window. One of these is called each time a base and its
position within the window are supplied until the window is
exhausted. The program then offsets the window by one base
and repeats the process until the sequence is exhausted. A
similar program can convert discreet examples, one line at a
time. (These programs and assistance in their use are available
to investigators at moneill@umbc.edu). The output of these
programs is used as the input file to train and test a back-
propagation neural network. The network would have 6 p
(motif length) 1 4 input neurons, 2 output neurons with 1 0
indicating a positive classification of the sequence and 0 1
indicating a negative classification.
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Back-propagation networks, as opposed to earlier per-
ceptrons, have an additional layer of neurons between the
input and the output layers. These neurons sum and revalue
the input from the first layer; the revaluation is nonlinear,
using a sigmoid transfer function, output 5 1y[1 1 exp(2sum
input)], and will output a value between zero and one to the
connection to the output neuron(s). This middle layer makes
it possible for these networks to fit nonlinear problems, which
is to say that these networks can take context (cross-correlation
in the input) into account in obtaining a solution. Various
numbers of interneurons were tested for optimal performance,
from 2 to 15, 8 being the final choice. Examples with fine
coding, using 6 bits to generate 10 or 11 levels and producing
a variable number of active input neurons per input base, are
also included for comparison.

The Introduction mentions a new ranking function as a
possible alternative to the RI p BvH function. This second
ranking function also calculates the RI2 at each position for
the prototype group as was done above. However, it then
recalculates the same index after the sequence under evalua-
tion has been added to the prototype group (RI1). As was the
case above, it uses the redundancy index of the prototype
group to assess the importance of that position to the motif and
it uses the difference in the redundancy index, before and after
the addition of the new sequence to the group, to evaluate how
well that position has been filled in the new sequence. The
function is therefore

RI2 p (RI12RI2), [7]

determined for each position and also summed over the entire
sequence. This can again be fine or coarse coded for 352 input
neurons in the subsequent neural network. Returning to our
example, we have found RI2 to be 0.87 for position 1, 1.28 for
position 2, and 1.03 for position 3. Suppose the query sequence
is CCG. Recalculating RI for each position with this sequence
added to the original 5, we find RI1 is 0.55, 1.07, and 1.07 for
position 1, 2, and 3, respectively, and the overall function values
are 0.87 p (20.32), 1.28 p (20.21), and 1.03 p (0.04) for a sum
of 20.506. For this index, the higher the index the more likely
that the query sequence is a member of the motif; negative
values mean that the query sequence has fallen below the
average for the members in the prototype group. The corre-
sponding network input code might be 0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 1 0 0, where first level on the right is best.

The promoter training and test files were drawn from the
same DNA sequences used in earlier work (8, 9), 41 promoters
of the 17-base-spacing class, 58 bases long, and 34 additional
test promoters of the same class. That is, these 41 promoters
constituted the prototype motif used in the evaluation and
coding of all inputs to the networks. This list was deliberately
not expanded to include hundreds of promoters to show what
a prototype group in line with some of the other large families
with relatively low RI values, such as the sites for E. coli
catabolite receptor protein, can be expected to produce good
results with this method. Investigators interested specifically in
genomic searches might wish to use prototype groups of the
maximum size possible. The training file itself consisted of the
coded version of the training file used earlier (9) which
included the 41 promoters permuted 1 base at a time in all
nonessential positions as positives, the phage P22 ant double
promoter-down mutants as negatives, and 10,833 prescreened
random sequences as negatives. Prescreening, using the best
earlier promoter-trained network, was necessary to remove the
one or two bona fide promoter sequences, created at random,
from the negative input set. Additional tests were run on
plasmid pBR322, all 4,306 possible 58-base regions in each
direction. Note that these networks only search for promoters
of the 17-base-spacing class.

The operator training file was drawn from five of the six
phage l operator sites as positive examples (the same five were
used to define the motif for coding purposes), reserving OL3
as a test site, plus 7,577 random sequences as negative exam-
ples; the test file in this case was drawn from the entire l
genomic sequence taken in both directions. Optimal training
was generally achieved in approximately a single pass through
the examples. Thus one could have a fully trained network
within minutes of completing the construction of the training
file. NEURALWARE PROFESSIONAL II PLUS was used in this work,
but the same result could be obtained with any standard
back-propagation network program in the public domain.

In a trained network, the network’s definition of the prob-
lem is distributed in a nonlinear fashion over, possibly, thou-
sands of weights. Generally, we cannot simply look at these
weights and intuit the network’s operation except in a very
qualitative sense. ‘‘Decompiling’’ a network describes the
attempt to apportion the degree to which the correct output
(classification) is dependent on each element of the input, on
each base in our case. Numerical differentiation effects this
decompiling by determining D output for a small D input
change, one base at a time. Numerical differentiation of the
weight matrix of a trained network was accomplished in each
case in the context of a particular test sequence. These
networks are not limited by an assumption that each base acts
independently. The normal output value was obtained for the
sequence. Since each base results in a single active input
neuron, representing the index evaluation level in the case of
coarse coding, each active input could be referred to a
particular base in the sequence (with the exception of the final
summation neuron). The weights (from the stored weight
matrix of the trained network) between the single active input
under consideration and the middle-layer neurons would be
reduced by 5%, with all other weights unchanged and then the
interneuron activations would be recalculated as would the
sum and transform function at the output neuron. The new
output value would be subtracted from the original output. (It
is necessary to keep the precision of the output value in mind
when performing these operations; the differences must be in
significant figures.) This whole procedure would be repeated
for each active input neuron in turn. A plot of the D value of
the output versus the active input neurons (specific bases)
shows the relative influence of each base on the reduction in
the output. There is in this no assumption of linearity, nor are
the transform functions limited to the linear regions of their
ranges in making these calculations. Thus, if it happens that a
trained network has the best operational definition of a
particular motif, that definition can be quantitatively exam-
ined.

RESULTS

The first objective was to develop trained networks that would
demonstrate an improved ability to classify DNA sequence
with respect to the 17-base-spacing-class promoter motif,
primarily with a goal of reducing the level of false positives. A
number of neural networks were trained with a training file
derived from the same group of sequences used in earlier work:
included were 41 promoter sequences, singly permuted as
described previously, as positive input; three sets of random
sequences, prescreened to eliminate promoter-like sequences,
as negative input; and the set of phage P22 ant promoters
containing the complete set of double promoter-down muta-
tions (10) described previously, as negative input. As described
above, these sequences were evaluated at each position by a
program; the coded evaluations contained the actual input of
the training file in the place of the bases they represent.
Typically, optimal training (average of 0.05% rms error be-
tween the actual network output and the desired output)
occurred at approximately one pass through the complete set
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of training examples. Table 1 shows the results obtained with
several distinct networks trained in this manner and tested on
34 previously unseen promoters and on sequences from
pBR322 and l.

Table 1 shows five independently trained networks. In the
first three networks, all sequence input was coded by the RI p

BvH function; in the last two networks, all sequence input was
coded with the function RI2 p (RI1 2 RI2). The coding was
either fine, over 10 or 11 levels, with 0 or 4 levels for the
sequence total (nets 1 and 4) or coarse, over 6 levels, with 4
levels for the total (nets 2, 3, and 5). The prototype group for
all coding was 41 promoter sequences in nets 2, 3, 4, and 5; for
net 1 the prototype group was collection of the same 41
promoters permuted at a single noncritical position each to
produce 5,412 ‘‘promoters.’’ The cutoff values for the first
output neuron on test sequences (above which membership in

the motif was affirmed) varied with the degree of training,
tending higher for longer training.

It can be seen that the recovery of true positives (known
promoters) averages 85% or better and the level of false
positives (sites not known to function as promoters but scoring
above the cutoff value) is 0.025% or less. When polled (a
technique that affords noise cancellation), these networks are
in agreement in finding all of the promoters of the 17-base-
spacing class in pBR322 and one false positive site, for an error
rate of 0.01%. It should be noted that these false positive levels
represent an upper limit in that an early transcript mapping
study (11) indicated possible additional minor promoters in
pBR322. The sequence of E. coli K12 (12) was also tested (data
not shown), using NW3 in the forward direction and NW2 in
the reverse direction, producing 2,746 and 2,640 hits, respec-
tively, with the cutoffs of Table 1. Subject to assumptions about
the relative frequency of 17-base-spacing-class promoters,
these numbers may fit comfortably with those cited above for
pBR322.

Although promoters constitute an important case, they are
atypical with respect to the relatively large number of examples
available even at the 41 sequence limit. The operators of phage
l may be more representative of the smaller sets that are
represented in many binding-sequence motifs. Table 2 shows
the results obtained in the first attempt with a network that was
trained with a training file in which half the sequences were
repeats of five of the operator sequences (missing OL3) and the
other half was 7,577 random sequences as negative examples,
all coarse-coded evaluations of the RI p BvH function for each
position of the sequence, graded in six levels and the total for
the whole sequence, graded in four levels. Training to below
the 0.05% rms error level was achieved in only 5,000 iterations.
The l genome was searched in both directions as the test of the
network. All operator sites, including OL3, were correctly
identified although the discrimination was high enough that
each was found on only one strand, symmetry notwithstanding.
There was a single other positive site at position 5,902 on the
first strand (this site alone was identified on both strands). It
should be noted that this additional positive site qualifies as a
member of the operator motif. Using in vitro affinity projec-
tions for repressor (13), one finds the site at position 5,902 on
a par with OR2; however, in the absence of cooperative effects,
the intrinsic affinities of OR2 and OR3 are too low to be
occupied by repressor in a mono-lysogen in vivo (14). Thus,

Table 1. Neural networks trained to recognize promoters of the 17-base-spacing class

Network Index
Index

codingylevels Prototype

No. test
promoters
.cutoff Sequence†

NW1 (14.5) RI p BvH Finey11, 4 41 promoters
13 permuted

(5,412 seq)

. 0.93
(28y34)

pBR .0.93 1, 4,135
pBR(c) .0.93 125, 1,226 4,278

NW2 (26) RI p BvH Coarsey6, 4 41 promoters
(41 seq)

.0.985
(28y34)

pBR .0.985 1, 4,135
pBR(c) .0.985 21, 125, 1226, 4278

NW3 (21) RI p BvH Coarsey6, 4 41 promoters
(41 seq)

.0.96
(29y34)

pBR .0.96 1, 4135
pBR(c) .0.96 21, 125, 1226, 4278

NW4 (192) RI2 p (RI1 2 RI2) Finey10, 0 41 promoters
(41 seq)

.0.80
(29y34)

pBR .0.80 1, 4135
pBR(c) .0.80 125, 532, 1056, 1226, 4278

NW5 (41.4) RI2 p (RI1 2 RI2) Coarsey6,4 41 promoters
(41 seq)

.0.77
(30y34)

pBR .0.77 1, 170, 3654, 4135
pBR(c) .0.77 125, 1056, 1226, 4278

Average result 29y34 1, 4135
85% TP 125, 1226, 4278, 1FP

Numbers listed after the network in parentheses are the training iterations in thousands. NW3 had 15 middle-layer neurons; all others had 8.
Learning rates and momentum values of the following networks: NW1, 0.5 and 0.2; NW2, 0.9 and 0.4; NW3, 0.6 and 0.4; NW4, 0.15 and 0.1; NW5,
0.6 and 0.4. Input neurons varied from 348 to 352. NW3 was tested on the first and last 16.4 kb of the l r strand (the B region was omitted to avoid
its many uncharted promoter sites) with performance virtually identical to that above for pBR322, 100% true positives (TP) and 0.024% false
positives (FP). Underlined coordinants indicate known promoters.
†pBR is the clockwise sequence of pBR322, beginning at position 25 to capture the tet promoter; pBR322(c) is the counterclockwise sequence
beginning at the EcoRI site. The cutoff values for the minimum network output designating a promoter are listed for each network.

Table 2. Neural network trained to recognize l operators

Network Index
Index

codingylevels Prototype Test

NWOp
(5)

RI p (BvH) Coarsey6, 4 5 operators
(5 seq-OL3)

.0.98

l l
(48,485 seq)
.0.98 5902,
35591,
35615,
35635,
37951,
37974

l r
(48,485 seq)
37998

Result 100% TP
0% FP*

See Discussion concerning sequence at position 5,902. Coordinates
are given to the left edge of the site on the first strand. The underlined
coordinates indicate known operator locations. NWOp had 106 input
neurons, 8 middle-layer neurons, and 2 output neurons. The learning
rate was 0.6 and the momentum was 0.4. The training file consisted of
2,000 copies of each of the five operator sequences plus 7,577 random
sequences. OR2 and OR3 were flipped in orientation in the prototype
group to maximize the redundancy index of that group; as a result, they
appear to be located on the wrong strand. In all training cases,
sequences were drawn from the training file in random order dictated
by a random number generator. TP, true positives; FP, false positives.
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though a legitimate member of the motif, the isolated site at
position 5,902 is likely to be nonfunctional. Subject to this
consideration, there were no false positives in a search of
97,000 bases.

Neural networks are often treated as ‘‘black boxes’’ that may
produce useful answers but whose workings are veiled in that
their solution is distributed over a large weight matrix (e.g.,
5,328 weights), which, in turn, is used in a nonlinear fashion.
To lift the veil, the first layer weights associated with a single
active input neuron were slightly perturbed and the corre-
sponding effect on the output was noted. In this way, one is
effectively taking the partial derivative of the output with
respect to one active input. When this is done successively for
all active inputs dictated by a particular input sequence, one
can determine the relative contributions of bases at given
positions to the output classification. One can, of course, also
compare different sequences. [It should be borne in mind that,
while one can make up mutant sequences, if the prototype
group does not contain solid frequency data on the muta-
tion(s), the evaluation cannot be precise.]

Fig. 1 contains the results of such a decompiling of two

networks (NW2 and NW3 from Table 1). The phage T7 A1
promoter was chosen as an example of a strong promoter and
the bla promoter of plasmid pBR322 was chosen as a relatively
weak promoter. When internally normalized to the maximum
value within a plot, the qualitative profile between distinct
networks (Fig. 1 A is T7A1 in NW2, B is T7A1 in NW3, C is
bla in NW2, and D is bla in NW3) is quite similar for both the
strong and the weak promoters (i.e., A is similar to B and C is
similar to D, even though these networks were independently
trained and had different numbers of middle layer neurons);
however, the scale factors are quite different for the two
promoters (e.g., 1.0 in B equals 0.000022, whereas 1.0 in D
equals 0.00372). In the network’s view, the bla promoter is
much more sensitive to change than the T7A1 promoter. Since
the positive y axis represents the net decrease in network
output with the reduction in weights on the input correspond-
ing, individually, to each base shown on the x axis, the positive
positions are those within the promoter that are most sensitive
to degradative change. In Fig.1 A, the largest values (most
sensitive to change) are those for canonical bases in the 235
and 210 sequence regions that, if changed, would produce the

FIG. 1. Promoter profiles generated by differentiating two promoter-trained networks. The y axis value represents the relative decrease in the
network output value of the first output neuron for a 5% decrease in the input weight associated with that particular position (base) on the x axis;
negative values would correspond to an increase in the network output value. All values have been normalized to the D maximum for each set of
data, defined as 1.0. in A. For T7A1 in NW2, the output value was 0.992433; the D maximum for any position was 0.000121. (B) For T7A1 in NW3,
the output value was 0.996465; the D maximum was 0.0000217. (C) For bla in NW2, the output value was 0.9850; the D maximum was 0.000338.
(D) For bla in NW3, the output value was 0.963631; the D maximum was 0.00372.
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most negative effect on promoter membership; conversely, the
highly negative bases, if changed, could substantially improve
membership status. Therefore, the higher the total, after
common normalization say to the T7 scale factor, the worse the
promoter; the total of all y values in Fig.1B is 4.7 for the T7A1
promoter and the total in Fig.1D, the same network and scale
factor, for bla is 128.6. These networks can be drastically
nonlinear in their operations. For example in NW3, changing
the second base of the 210 sequence of the T7A1 promoter
from ‘‘A’’ to ‘‘C’’ results in an output decrease of 0.003 to 0.993,
whereas the same change in the bla promoter drops the output
from 0.963 to 0.033, a nonpromoter classification.

DISCUSSION

Numerous ranking functions have been proposed over the
period since DNA sequences became available for analysis (5,
6, 15–17). However, only the RI p BvH function has been able
to produce correlation coefficients in the 0.96–0.999 range for
real data (5). A second closely related index does nearly as well
(this work and unpublished results). This index, RI2(RI1 2
RI2), again uses the redundancy index as an indicator of the
position’s importance but uses the redundancy index differ-
ence, before and after adding the test sequence to the proto-
type group, as the measure of how well the position is filled by
a particular base. Examples, NW4 and NW5 applying this index
to promoters, are provided in Table 1. Using either index to
preprocess sequence for neural network training and testing
was found to significantly reduce the false-positive level with-
out degrading the capture of true positives.

It is worth mentioning that there is some confusion about the
terms true positives and false positives. A method that captures
100% of the true sequences and has 10% false positives might
appear to be good if it meant that one would only get one
wrong answer for every 10 correct answers. However, that is
not what is meant. To evaluate capture of true positives, one
must have a known proven collection; if there are 100 se-
quences in the collection and 90 are correctly classified, the
yield is a 90% capture of true positives as all would expect.
However, false positives are not determined in the same way.
Since every base in DNA begins a sequence that is a potential
site, false positive frequencies are reported on a per-base-
searched basis. Therefore, in the example above, 100% true
positives per 10% false positives, a search of pBR322 would
find five promoters (one of which belongs to the 18-base-
spacing class) plus about 860 false positives, obviously not a
very useful method. Indeed, one can see that false-positive
levels of even 1% are still unacceptably high. Apparently
confusion over these terms has allowed a growing number of
essentially useless methods to see publication and has caused
at least one pair of reviewers to discard neural nets as
incapable of low false-positive levels (18).

The ingredient still missing in analyses of this type is that we
still do not know the explicit relationship between a motif’s
redundancy index and the number and range of sequence
examples likely to produce a successful classification network.
Clearly, as the redundancy index goes up, the number of
examples required goes down; the redundancy index of the l
operators is a healthy 16.75 bits even after reductions for small
sample size. The development of a useful rule must await the
study of many motifs by this method.

The differentiation of the trained networks gives one the
network’s evaluation, in the specific context of a particular
sequence example, of the sensitivity of each base within that
sequence to change, given the network’s current image of the
motif under study.

The methods developed in this report are general in their
application to any binding-sequence family. They have the
potential to work well even with small families if they are not
too divergent as seen in the operator case. Furthermore,
false-positive levels are brought down to a level at which
genomic searches may be feasible for many motifs, requiring
no other information than the motif family sequences.

I thank Dr. Peter H. von Hippel and Dr. Richard E. Wolf, Jr., for
their extensive insightful comments that contributed substantially to
the final form of this paper.
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