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Abstract

We report the synthesis and biological activity of a library of aminoalcohol-derived macrocycles
from which robotnikinin (17), a binder to and inhibitor of Sonic Hedgehog, was derived. Using an
asymmetric alkylation to set a key stereocenter and an RCM reaction to close the macrocycle, we
were able to synthesize compounds for testing. High-throughput screening via small-molecule
microarray (SMM) technology led to the discovery of a compound capable of binding ShhN. Follow-
up chemistry led to a library of macrocycles with enhanced biological activity relative to the original
hit compounds. Differences in ring size and stereochemistry, leading to alterations in the mode of
binding, may account for differences in the degree of biological activity. These compounds are the
first ones reported that inhibit Shh signaling at the ShhN level.

Polyketide synthase-derived macrolactones are rich in structural diversity and biological
activity. Examples include pikromycin® and erythromycin? (inhibitors of bacterial protein
synthesis), enterobactin (inhibitor of bacterial iron transport),3 epothilones A, B, D (stabilizer
of microtubules),* and FK506 (inhibitor of PP2B phosphatase via its FKBP12 complex).>:6:7
We report here a synthesis of macrolactones that has yielded a powerful new small-molecule
probe of the Hedgehog signaling pathway, which plays key roles in development and
oncogenesis.

Our synthesis exploits 1,2-aminoalcohols as simple templates upon which 12-, 13- and 14-
membered macrocycles are built (Scheme 1). The pathway extends previous work, reported
by D. Lee et al., which also derived macrocyclic scaffolds from aminoalcohol templates, and
yields macrocycles that can be optimized with great facility when they are identified as hits in
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small-molecule screens.® We report herein a new asymmetric alkylation sequence to the
pathway, a modification that installs a stereogenic center bearing an amide side-chain on the
macrocycle scaffold and that resulted in a new scientific discovery. Starting from commercially
available y-unsaturated pentenoyl chloride, the Evans oxazolidinone,? and readily available
chiral 1,2-aminoalcohols, the target macrolactones were synthesized in nine steps. Following
an asymmetric alkylation with a-bromo-tert-butyl acetate, which proceeded with over 19:1
diastereoselectivity, the tert-butyl ester was cleaved with TFA. The resulting acid was
submitted to standard amine coupling conditions in the presence of a variety of amino alcohols.

In the initial application of the synthetic pathway, we loaded the resulting alcohol onto
polystyrene macrobeads.10 After cleaving the chiral auxiliary under standard conditions, the
resulting acid was coupled with a variety of commercially available 1,2-aminoalcohols.
Coupling reactions with acids of different chain lengths bearing terminal olefin groups yielded
the acyclic macrolactone precursors. Ring-closing metathesis reactions (RCMs)!! were used
in the macrocyclization step. Using the (encoded) one macrobead/one stock solution
approach2, 2070 compounds, including 12-, 13- and 14-membered macrocycles, were
synthesized (S.L.S., unpublished results).

The resulting compounds were arrayed onto microscope slides for small-molecule screening.
13 The resulting small-molecule microarrays (SMMs)14:15:16 \were screened for binding to
purified Sonic Hedgehog N-terminal peptide (ShhN). Elsewhere, we have described the results
of this screen that yielded 5, which displayed concentration-dependent binding to ShhN by
SPR with immobilized ShhN (Scheme 1)17. Encouraged by the ShhN-binding capacity of 5,
we adapted the chemistry described above to the solution-phase synthesis of a library of
additional analogs (Scheme 2). The synthetic sequence was similar to a previously reported
route,® but differed with respect to the introduction of an asymmetric alkylation early in the
sequence. After the removal of the oxazolidinone, subsequent amide and ester couplings
afforded an acyclic precursor poised for RCM. The RCM reaction resulted in two isolated
products, corresponding to the expected macrocyle along with an unexpected acyl
rearrangement isomer.” In an earlier study’, we also reported the mechanistic evaluation of
the most active compound from the library, named robotnikinin. Robotnikinin binds the
extracellular Sonic Hedgehog (Shh) protein and blocks Shh signaling in cell lines, human
primary Keratinocytes and a synthetic model of human skin. Shh pathway activity is rescued
by small-molecule agonists of Smoothened, which functions immediately downstream of the
Shh receptor, Patched. The structure of robotnikinin (17) and the synthetic pathway leading to
it and its analogs is shown in Scheme 2.

*The structure of the minor isomer in Scheme 2, resulting from acyl transfer during the hydrolysis of the chiral auxiliary, was characterized
by X-ray crystallography (CCDC 748267):

18
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Here, we describe the activity of the analogues in the Shh-LIGHT2 cell line (ATCC, Manassas
VA),18 which is an NIH3T3 line with a stably incorporated Gli-luciferase construct along with
zeocin and G418 resistance vectors to select for the transformed strains during normal
culturing. Gli-dependent transcription is a robust metric for Shh pathway activity, and Shh
pathway inhibitors have been shown to repress Gli activity in Shh-LIGHT2 cells.18 From the
library, robotnikinin (17) showed strong concentration-dependent Gli repression, as measured
with the Gli-luciferase construct of the Shh-LIGHT?2 cells, a characteristic of Shh pathway
inhibition.19 However, we hypothesized that if the interaction of robotnikinin was specific for
ShhN, closely related analogues would have similar activity, while library members having
differences in stereochemistry or ring size would have diminished abilities to suppress Gli
activity.

As illustrated in Figure 1, 5 showed limited ability to inhibit Gli expression, with an ECyax
reaching only 30% of the inhibitory capacity of cyclopamine. Modifications to the substituents
of the macrocyclic core resulted in a marked increase in activity, with an ECgg value 15 uM
and an ECax reaching 93% of the inhibitory capacity of cyclopamine. Decreasing the size of
the macrocycle from a 13-membered ring to a 12-memebered ring leads to robotnikinin (17),
the most active compound of the analogues. While the ECsq value of robotnikinin was
approximately 4 uM, both compounds retained similar abilities for maximum repression of
Gli activity (Figure 1, Table 1).

Strikingly, by inserting a single methylene unit into the scaffold of robotnikinin and reversing
the orientation of the two stereogenic centers, Gli suppression was ablated (compound 19,
Figure 1 and Figure 2). Furthermore, neither compound displayed differences in cytotoxicity
atany concentration (see supplementary information) as measured by Cell Titer Glo (Promega,
Madison, WI).

These findings motivated us to test stereochemically and skeletally related compounds in the
Shh-LIGHT2 Gli reporter assay. The stereochemical inverse of robotnikinin (2S, 6R) had
reduced activity with an ECax reaching only 60% of the inhibitory capacity of cyclopamine,
and an ECsgq of approximately 15 pM (Table 1). The corresponding 14-membered compound
(2S, 6R) had no detectable activity in the Shh-LIGHT?2 cell line at concentrations ranging from
3.9 uM to 125 pM. The 14-membered analogue of robotnikinin (2R, 6S) had no detectable Gli
repression.

We also investigated the effect of more subtle stereochemical alterations in the robotnikinin
scaffold in the context of Gli repression in the Shh-LIGHT2 line. When the stereochemistry
was altered to the (2R, 6R) configuration with the identical 12-membered ring size, the percent
cyclopamine ECax dropped to 68% from 91% with a similar ECsg value. Adding another
methylene unit to the macrolactone scaffold (2R, 6R) did not change the activity appreciably,
but the 14-membered macrolactone analogue (2R, 6R) had significantly decreased potency,
with an ECy,ax Only 37% of that of cyclopamine, and did not show a change in response with
a change in dose. The robotnikinin diastereomer (2S, 6S) displayed cytotoxicity at
concentrations above 16 pM in Shh-LIGHT?2 cells and only modest inhibitory activity at the
highest non-cytotoxic concentration. The related 13-membered macrolactone (2S, 6S) resulted
in a 5-fold decrease in the ECsp, from 4 uM to 20 uM, but only a modest 20% drop in the %
cyclopamine ECyax relative to robotnikinin. The 14-membered analogue (2S, 6S) was found
to be cytotoxic above 31 uM, and had poor solubility in SPR studies. The related compounds
without substituents at the 2-position featured relatively decreased potency, although at
extremely high concentrations several of these compounds displayed ECyax levels at
approximately 70% of cyclopamine’s ECax (Table 1).
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Many of the compounds like 1, and robotnikinin, bound purified ShhN in a stoichiometric
manner, as verified by surface plasmon resonance (SPR) experiments. Furthermore, the
apparent off-rate of robotnikinin was significantly longer than that of its (2S, 6R) 13-membered
homolog (see Figure 3). This may help explain why both compounds bind to ShhN, but one
lacks significant activity. For the remainder of the inactive compounds tested by SPR, 13-
membered (2S, 6R), 14-membered (2S, 6R), and 14-membered (2R, 6R), we observed was no
measurable affinity for ShhN. For the remainder of the compounds that were found to be active
in the Shh-LIGHT2 cell line, we observed dose-dependent affinity for the ShhN as measured
by SPR. This presents the possibility that, like robotnikinin, other compounds in this class
inhibit Gli activity by interfering with the ability of ShhN to interact effectively with its
receptor. Differences in ring size and stereochemistry leading to alterations in the nature and
conceivably location of the binding, may account for differences in the degree of biological
activity.

We hypothesize that the active compounds may perturb binding interactions between Shh and
its associated proteins so it cannot interact effectively with the Ptchi receptor (Figure 4).20 In
aprevious report, we established the use of the Ptch1 ™/~ cell line?!, as well as co-administration
with Smoothened agonists purmorphamine and SAG in various Shh-responsive cells for
robotnikinin.1” Studies in a constitutively active mouse embryonic fibroblast (MEF)
Ptch1~/~ cell line where both Ptch1 alleles are replaced with a p-galactosidase reporter under
control of Gli transcription, indicated that the compounds listed in Table 1 are not effective at
Glirepression without the intact Ptchl receptor (B.Z.S., L.F.P.and S.L.S., unpublished results).
Taken together, the data suggest that the compounds shown here to be active in the context of
Shh pathway inhibition may likely exert their effects at the Shh level. Further mechanistic
experiments to explore this possibility will be investigated in future efforts.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Investigating trends in activity. Appendage modifications, modifications to the
stereochemistry, and ring size dramatically influence the activity in the Shh-LIGHT2 cell line.
[*] ECinax denotes the percent activity of maximum inhibition rendered by cyclopamine.
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a) Structure of robotnikinin b) Structure of a robotnikinin analogue with an extra methylene
unit inserted in the macrocycle and stereogenic centers in the opposite configuration of
robotnikinin. ¢) and d) dose curves of robotnikinin and a robotnikinin analogue, respectively,
in an Shh-LIGHT2 cell line. ShhN represents ShhN-conditioned DMEM with 0.5% (v/v) calf
serum.
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Figure 3.

SPR curves. Robotnikinin (left) and its (n=1, 2S, 6R) isomer (right) are shown. All data are
background subtracted from DMSO. The difference in off-rates is significant. The curves were
generated from SPR experiments in PBS buffer with 5% (v/v) DMSO.
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The Shh pathway initiates with the Shh ligand biding to its receptor Patchedl (Ptchl), which
de-represses smoothened (Smo) and allows the active form of Gli2 to enter the nucleus and
activate target genes which include Glil and Ptchl. We have demonstrated that inhibition of
the Shh pathway can result from the binding of a small molecule to Shh.
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Scheme 1.

A synthesis pathway yielding an array of macrocyclic compounds. 12, 13 and 14-membered
macrocycles can be generated starting from simple, commercially available building blocks.
Note that both enantiomers of the chiral oxazolidinone® were used to construct macrocycles
with the R4 building block in both stereochemical orientations in the solid and solution phase
libraries. AML1 (5) was previously reported to bind purified ShhN based on small-molecule
microarray (SMM) experiments verified with surface plasmon resonance (SPR).
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Robotnikinin was synthesized via the indicated pathway. The synthesis was carried out in
solution phase with a 26% overall yield over 8 linear steps.
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