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Abstract
Bath-applied membrane-permeant Ca2+ indicators offer access to network function with single-cell
resolution. A barrier to wider and more efficient use of this technique is the difficulty of extracting
fluorescence signals from the active constituents of the network under study. Here we present a
method for semi-automatic region of interest (ROI) detection that exploits the spatially compact,
slowly time-varying character of the somatic signals that these indicators typically produce. First,
the image series is differenced to eliminate static and very slowly varying fluorescence values, and
then the differenced image series undergoes low-pass filtering in the spatial domain, to eliminate
temporally isolated fluctuations in brightness. This processed image series is then thresholded so that
pixel regions of fluctuating brightness are set to white, while all other regions are set to black. Binary
images are averaged, and then subjected to iterative thresholding to extract ROIs associated with
both dim and bright cells. The original image series is then analyzed using the generated ROIs, after
which the end-user rejects spurious signals. These methods are applied to respiratory networks in
the neonate rat tilted sagittal slab preparation, and to simulations with signal-to-noise ratios ranging
between 1.0 – 0.2. Simulations established that algorithm performance degraded gracefully with
increasing noise. Because signal extraction is the necessary first step in the analysis of time-varying
Ca2+ signals, semi-automated ROI detection frees the researcher to focus on the next step: selecting
traces of interest from the relatively complete set generated using these methods.
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Introduction
Optical recording of neuronal activity has been in use for a generation now, starting with
voltage-sensitive dyes (Cohen et al., 1974), Ca2+ indicators (Grynkiewicz, Poenie et al. 1985),
and more recently genetically encoded fluorescent sensors (Palmer and Tsien, 2006). Perhaps
the simplest way to sample network activity using fluorescent indicators is by bath application
of membrane-permeant high-affinity Ca2+ indicators that change fluorescence amplitude (such
as Calcium-Green AM or fluo-4 AM) to a slice preparation (Yuste and Konnerth, 2005), which
loads cells at or near the surface of the tissue sample (Funke et al., 2007), whose activity is
recorded as a series of images.
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With these dyes, changes in fluorescence accompanying changes in intracellular Ca2+

([Ca2+]i) can be detected in the raw image series, and their salience can be enhanced by simple
filtering, such as subtraction of the first image from the rest of the images in the series. By
these methods, the activity of a large number of neurons can be recorded in parallel (Takahashi
et al., 2007), confronting the experimenter with the task of identifying and extracting the signals
of interest.

In general, the process of extracting neuronal signals from a series of images showing localized
time-varying changes in brightness is done by hand: a region of interest (ROI) is defined on
the screen using a tool that allows a user to draw a box or circle around regions of the image
where brightness is seen to fluctuate. The disadvantages of this approach are: it is time-
consuming; it is difficult to tightly fit the ROI to the area from which optical signal is to be
extracted, and it is prone to produce different results depending on who does the analysis.

Manual analysis becomes still more difficult as sampling rate increases via the use of sensitive
but noisy electron-multiplier CCDs, and/or binning of CCD elements, which lowers spatial
resolution. Thus, increased temporal resolution comes at the cost of reduced image quality,
and gives rise to very large image series, rendering the task of manual ROI detection still more
difficult.

The problem of automatic generation of ROIs around regions in which Ca2+ transients occur
has been addressed by others (Ikegaya et al., 2005), but not in detail. The specific problem of
fitting ROIs to somatic Ca2+ signals is a special case of the more general problem of image
change detection (Radke et al., 2005), in which changes in fluorescence as a function of time
in an otherwise static image series are targeted. We apply our methods to the activity of
medullary networks responsible for respiratory rhythm generation, recorded in vitro from a
neonate rat tilted slab preparation (Barnes et al., 2007; Mellen, 2008). This preparation provides
access to medullary networks involved in respiratory rhythm generation, as well as phrenic
motor output, recorded from ventral roots C1–C4, which serves as the criterion signal for the
identification of optically recorded respiratory neurons. The methods we have developed are
designed to minimize the likelihood of missing neurons active in the field of view, at the cost
of generating false positives, which the user can reject manually.

Methods
Brainstem preparation

In accordance with methods approved by the Institutional Animal Care and Use Committee,
neonate Sprague-Dawley rat pups (P0–P4) were anesthetized with isoflurane, and, according
to methods described elsewhere (Barnes et al., 2007; Mellen, 2008), the neuraxis was isolated,
in chilled aCSF made up of (in mM) 128.0 NaCl, 3.0 KCl, 1.5 CaCl2, 1.0 MgSO4, 21.0
NaHCO3, 0.5 NaH2PO4, and 30.0 glucose, equilibrated with 95% O2-5% CO2, and a thick
sagittal slab was cut (Mellen, 2008), exposing respiratory networks at the surface, with the
highest concentration of respiratory neurons ventral, dorsal, and caudal to the facial nucleus
(VIIn), and approximately 500 µm caudally in the pre-Bötzinger Complex (preBötC). The
preparation was then incubated for 2 hours in an aerated solution containing the high affinity
cell-permeant Ca2+ indicator fluo-4 AM (50 µg, Kd= 350 nM; Invitrogen), or the lower affinity
fluo-8L (50 µg, Kd= 1.86 µM, ABD Bioquest), solubilized in 25 µL of the surfactant pluronic
F-127 (2g/10 ml DMSO; Invitrogen), and diluted in 750 µL aCSF for a final concentration of
60 µM. The preparation, stabilized on a Sylgard block was then transferred to the recording
chamber (JG 23 W/HP, Warner Instruments, Hamden CT), mounted on an upright microscope
(Axioskop 2, Zeiss instruments), which in turn was mounted on a digital translation stage
(MT-2000, Sutter Instruments, Novato CA). The preparation was perfused at 4 ml/min with
aCSF warmed to 27° C and aerated with a 95%-5% O2-CO2 gas mixture. Synaptic blockade
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was obtained by perfusing the preparation with the AMPA receptor blocker 6-cyano-7-
nitroquinoxaline-2,3-dione (CNQX; 20 µM), the NMDA receptor blocker 2-amino-5-
phosphopentanoic acid (APV; 20 µM), the GABAA receptor blocker bicucculine (10 µM), and
the glycine receptor blocker strychnine (1 µM).

Data acquisition
Respiratory activity was recorded extracellularly from ventral root C2 at 1 kHz, and optical
signals, visualized using an upright microscope (Axioskop 2 FS, Carl Zeiss AG, Oberkochen,
DE) through 10X or 20X water-immersion lenses (Achroplan 20x/0.5W/0; Achroplan 10x/0.3
W Ph1, Carl Zeiss AG, Oberkochen, DE), illuminated using a xenon arc lamp (Lambda DG-4,
Sutter Instruments, Novato CA) and filtered (480 nm excitation / 505 nm long-pass dichroic
mirror / 535 emission; Chroma Technology Corp., Rockingham VT). Images were recorded
using an electron- multiplier CCD camera (EM-CCD 9100-13, Hamamatsu Corp, Bridgewater
NJ) in a 826 × 826 µm (10 X) or 413 × 413 µm (20 X) area, with pixel sizes of 1.6 µm (10 X
and 20 X with 2 × 2 binning) or 0.8 µm (20 X, 1 × 1 binning). At these spatial resolutions,
pixels/soma were roughly 160 (20X, 1×1) and 40 (20X, 2×2 or 10X, 1×1). The camera was
operated in normal and electron multiplier mode. In normal mode, noise was minimized due
to very low dark current and noise read-out (0.69 MHz pixel clock, 8 electron readout noise),
and long integration times, and spatial resolution was maximized (1 × 1 binning) at the cost of
a low sampling rate (3 Hz). In electron multiplier mode, speed was maximized (30 Hz), at the
cost of spatial resolution (2 × 2 binning), higher noise read-out (11 MHz pixel clock, 25 electron
readout noise), and excess noise due to noise associated with the multiplication register (see
http://sales.hamamatsu.com/assets/pdf/hpspdf/e_imagemtec.pdf for details). These two modes
of operation are referred to henceforth as low-noise, and high-noise. Images were captured
using a frame grabber (Active Silicon PHX-D48CL, Chelmsford MA), and written to hard
drive using image acquisition software developed in LabView (National Instruments, Austin
TX) as a directory of tag image files (TIF). Motor output was digitized at 1 kHz and written
to disk using an A/D board (PCI-MIO-16XE-10, National Instruments, Austin TX). To ensure
accurate synchronization of voltage and optical recordings, the 1 kHz voltage acquisition time-
base was used to trigger image acquisition, so that an image was acquired with every nth voltage
sample, to obtain image sampling rates of 3–30 Hz.

ROI generation
All data were analyzed on a generic personal computer equipped with a 2.4 GHz single core
processor and 4 GB RAM running Microsoft Windows XP (SP2), using an application
developed in LabView (National Instruments, Austin TX). While we were able to take
advantage of the image-processing subroutines included in this development package, all these
subroutines reduce to matrix manipulations, and thus could straight-forwardly be implemented
in development environments such as MatLab (MathWorks Inc., Novi MI). Implementing
these routines in the widely-used Java-based image processing environment Image-J would be
complicated by memory use limitations for Java-based applications running in a 32-bit
Windows environment. In our experience, large image series are difficult to work with using
Image-J because of these memory limitations. An overview of the processing steps that follow
is shown in figure 1.

Qualitatively, the methods we have developed minimize background fluorescence, and apply
both spatial and temporal averaging to enhance the salience of somatic Ca2+ transients, while
minimizing other sources of variation in pixel values. These filtering steps are used to
automatically extract ROIs; once the ROIs are generated, the ROIs are used to extract
luminance changes in the raw image series associated with those regions.
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To eliminate static or slow variation in pixel values over each image, for every image in the
series, we subtract the target image Aj (Figure 2 A) from an image obtained at a lag T (the
subtracted image); the result of this filtering is denoted as the differenced image Dj in what
follows.

To preserve the relatively slow Ca2+ transients in the differenced image, the lag between target
and subtracted image should be greater than the indicator’s peak-to-baseline time-course (for
a high-affinity indicator like fluo-4, > 1 s), so as to minimize the likelihood that the subtracted
and the target frames contain a signal generated by the same event. It should be stressed that
if the interval between target and subtracted image is too short, signal detection is impacted;
but not if the interval is too long, since in general, fluorescence signals separated by longer
delays will be unrelated. Thus the lag between target and subtracted frame used here (1.5 s),
which was chosen for fluo-4, worked well for the lower affinity indicator fluo-8L, which has
a faster signal roll-off.

In the resulting differenced image, slowly changing and static fluorescence signals are
eliminated, and faster pixel values fluctuations are accentuated. These faster pixel fluctuations
in part also reflect shot noise, which leads to pixel value fluctuations uncorrelated image-to-
image. We strongly attenuate these by taking a 0.5 s moving average of the target image prior
to differencing. In addition, the subtracted image undergoes a 1 s moving average low-pass
filtering, which is intended to mitigate not only shot noise, but also to reduce the signal related
to intracellular Ca2+ dynamics, since the goal is to enhance the Ca2+-related fluorescence
fluctuations in the target. If the low-pass filtering of target and subtracted image were identical
then the differenced image would give equal weight to the target and subtracted image Ca2+

transients. By applying a larger smoothing window to the subtracted image, the physiologically
relevant Ca2+ transients in the target are given greater salience by attenuation of the subtracted
image’s Ca2+ transients, so that only the slowly varying and static fluorescence values in the
target image are removed. The size of the moving average window must be adjusted to the
Ca2+ signal roll-off of the indicator being used, with smaller moving average windows selected
for lower affinity indicators. It should be noted that all these filtering approaches are subject
to edge effects, since images at the beginning and the end of the series cannot be processed in
the same way as images in the middle of the series. Thus at the edges of the image series, the
lag between target and subtracted image increase (decrease) from 0 (n) to n (0), where n
represents the number of images spanned by the lag between target and subtracted images. A
similar increase / decrease of the moving average window size is also implemented. Finally, a
simple unweighted moving average window is used here, which has no effect on signal phase;
better results may be obtainable using other low-pass filtering approaches. Because all of these
filtering steps serve the purpose of generating ROIs, which are then applied to the raw image
series, any phase-shifts caused by the filter used to generate the ROIs is without importance.

In the resulting differenced image series, all areas of the image where fluorescence values are
constant or slowly changing have near zero intensity values (grey), In regions of changing
fluorescence, pixel values are high (going towards white) during Ca2+ influx; and then take on
negative values (going towards black) thereafter (Figure 2 B).

In much the same way that Ca2+ signals of interest can be distinguished from both slower and
faster components of the optical signal in the time domain, they can also be distinguished
spatially: neuronal activity gives rise to elevated [Ca2+]i throughout the soma, thus, signals of
interest occur over contiguous pixels, whereas changes in pixel values due to noise will be
spatially uncorrelated. For the purpose of facilitating ROI detection therefore, spatial low-pass
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filtering is applied to the differenced image series, with the goal of accentuating regions where
contiguous pixels are either near-white or near-black, while attenuating isolated pixels whose
values are far from the image mean. To this end, pixel values are recalculated based on the
values of neighboring pixels, using a square pixel kernel (Kij) of sizes 3×3, 5×5 and 7×7,
centered on the pixel of interest (Pxij). The basic operations used are erosion (E), which sets a
given pixel’s value to the minimum value of its neighbors; and dilation (D), which sets a given
pixel’s value to maximum of its neighbors. These simple operations are combined in
opening (O) and closing (C) functions, which consists of erosion followed by dilation, and
dilation followed by erosion, respectively.

Opening does not significantly alter the morphology of shapes spanning many pixels, since
bright borders reduced by erosion are restored by dilation, but isolated pixels far from the mean
that are set to the mean by erosion do not reappear after the dilation, thus O eliminates isolated
bright pixels. By similar logic, closing eliminates dark pixels. Here, spatial averaging is
achieved using the proper opening (POPEN) function, which consists of a series of openings
and closings, in which for a given image, each pixel is set to the lesser of either the pixel value
of the unfiltered image, or the value of that same pixel after having undergone sequential
opening, closing, and opening:

or

In the resulting image, active regions can clearly be distinguished from background (Figure
2C).

After having undergone a differencing, as well as spatial and temporal low-pass filtering, each
image is transformed from a gray-scale image to a binary (B) image by setting pixels with
values close to the mean to black (−255), and values far from the mean to white (255), using
an ad hoc threshold of 1.3 times the image’s standard deviation (Figure 2 D):

This black-and-white image again undergoes low-pass POPEN spatial filtering, which
preserves grouped white pixels associated with neuronal activity, but eliminates isolated white
pixels.

When all the binary images obtained in this manner are averaged pixel-by pixel, a gray-scale
image is generated in which inactive regions are black, weak and/or infrequent Ca2+ transients
show up as close to black, while strong and/or frequent Ca2+ transients show up as near to
white (Figure 3 A). Because regions of interest are generated from a simplified, black and white
version of this grey scale image, the grey scale image must be thresholded. The problem is that
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a threshold set high enough to identify two bright cells close together (as in the upper right-
hand corner of Figure 3 A) would miss dimmer cells; conversely, a threshold set low enough
to detect dim cells (as in the top left corner of Figure 3 A) would merge bright cells close
together. Thus, for an image series containing both bright and dim cells no single threshold
will work. This problem is apparent when the luminance profile of one row of pixels in this
image is examined (Figure 3 B).

In order to pick out all peaks, the averaged image is thresholded sequentially. The lowest
threshold used is set at the bottom 5% of the dynamic range of the averaged binary images,
and the highest is just above the brightest pixel value in that image, and 5–80 thresholds are
used. Images generated by neighboring pairs of thresholds are compared, starting from the
lowest two, and ending with the highest two. For each image, all pixels below threshold are
set to black, and all pixels above threshold are set to white. Using subroutines provided as part
of the development environment used here (LabView IMAQ; National Instruments, Austin
TX) each convex, bounded, hole-free white region -- referred to henceforth as a blob
(Lindeberg, 1994) -- is detected, and a descriptor containing the perimeter and location of each
blob is generated and stored to an array for subsequent comparison.

With each pair of thresholds, there are the same or fewer blobs in the binary image obtained
with the higher threshold than in the one obtained with the lower threshold (Figure 3 B). The
strategy is to retain blobs that are captured by the lower threshold, but missed by the upper
threshold in each pair-wise comparison of thresholds. These blobs are identified by mapping
the center of mass of blobs identified using the upper threshold onto the perimeter of blobs
identified using the lower threshold.

By only retaining lower threshold blobs whose perimeter does not encompass the center of
mass of a higher threshold blob, luminance peaks are identified (Figure 3 C). The descriptors
associated with these lower threshold blobs are converted to ROIs, that is to say, into an array
of masks, which when applied to an image set pixel values outside of the mask to zero, allowing
for sampling of pixel values in a circumscribed portion of the image.

Signal Extraction and storage
Once candidate ROIs have been generated, they are applied to the raw image series: mean
luminance values of pixels within each ROI are measured in every image in the image stack.
Because optical signals generated by the Ca2+ indicator used here do not provide estimates of
[Ca2+]i in absolute terms, we focus our analysis on peak times rather than peak amplitudes,
treating our signals in much the same way as extracellular recordings are treated. To facilitate
peak detection, and to generate reasonably compact figures in which peaks can clearly be
detected, traces associated with each ROI are subjected to high-pass filtering as follows: each
trace is subjected to a 14 s moving average to eliminate physiologically interesting transients
from the signal but retain slow fluctuations in luminance associated with photobleaching. This
low-pass filtered signal is then subtracted from the raw signal, to obtain a high-pass filtered
version of the signal (Figure 6 C). At higher sampling rates, in which tissue movement and/or
arc-lamp flicker contribute to variation in fluorescence (Movie 2, Supplemental Materials),
low-pass filtering is achieved by taking a 0.1 s moving average of intensity values.

To estimate the amplitude of fluorescence changes associated intracellular Ca2+ fluxes as a
ratio of other sources of fluorescence (ΔF/F), other groups use the first frame of the image
series as the estimator of F, and ΔF is calculated as the difference between all subsequent
images and the first image (Beltran-Parrazal et al., 2006), thus:
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Consistent with our lagged differencing approach to signal extraction, rather than use the static
luminance values of the first frame, we estimate F using the mean of the 14 s moving average
(Fslow) calculated for the high-pass filtering described above as our estimator of F, and use the
high- or band-passed raw image (Ffiltered) as ΔF thus:

For Fslow constant or stationary, Fslow ≈ F0. We set the scale bar height to the difference between
baseline and the trace maximum, and then divide or multiply that height so that it is scaled to
1% of ΔF/F. In either case, ΔF/F does not allow estimation of [Ca2+]i, but it does provide a
way of comparing signal amplitude within and across datasets. In order to assess whether the
observed ΔF/F approaches the maximum obtainable with a given indicator, after loading tissue
using standard methods, application of aCSF with 15 mM [K+]o can be used to elicit a brief
epoch of maximal fluorescence. If maximal fluorescence is associated with low ΔF/F, different
loading methods or indicators should be tested.

Simulation
A basic question about this algorithm’s performance that can not be tested using real data is
the number of units missed (type 2 error), since the actual number of neurons in the field of
view is unknown. To address this question we generated a 300 element image series, containing
18 units whose luminance varied with time.

In order to approximate the spatial distribution and morphology found in actual data, the image
series was generated using a single frame from a 20 X dataset, thresholded to generate a binary
image in which the brightest regions in the image (typically associated with dead or dying cells
no longer able to buffer Ca2+) were set to white and all other parts of the image set to black,
resulting in 18 white blobs on a black ground (Figure 6 Ai, Aii). A 300 frame image series was
then constructed using this binary image. In each image, pixels in black regions of the binary
image were assigned random values, scaled to fall within 45% of the image type’s dynamic
range (16 bits). In each image, pixels contained within the white blobs were assigned values
designed to approximate Ca2+ transients. This was done using two 300 element template arrays.
The first array contained the signal obtained from a single ROI in an actual dataset, consisting
of 33 respiratory cycles, recorded over 100 s at 3 Hz. The second array contained two bursts
from the first array, separated by baseline activity, simulated by random pixel values falling
within the 15% of the two bursts’ amplitude. These two arrays were used to simulate the signals
of a periodically active and sparsely active cell respectively, and each array was scaled so that
signal values ranged between −0.5 and 0.5. In each simulation, for each frame in the image
series, all pixels within all the white blobs of the binary image were assigned a value as follows:

Where for frame i in an image series, each pixel (x,y) in the white blobs was assigned a value
Si(x,y), which was the sum of the value si obtained from the ith element of the signal array,
and a noise term ξ(x,y), obtained from a uniform distribution of random numbers falling
between [−0.5,0.5].

In order to vary the signal-to-noise ratio, a term m was incorporated:
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where m varied between 1 and 2.5 in increments of 0.25. By dividing the signal term and
multiplying the noise term by the same variable m, the signal to noise ratio (S/N) was reduced,
but the dynamic range of Si(x,y) was kept constant. So as to match the dynamic range of pixel
values assigned to the white blobs to pixel values assigned to the black ground, values within
the white blobs were values were then scaled so that they also fell within 45% of the image
type’s dynamic range (16 bits).

For each simulation, the signal-to-noise ratio for each value of m was estimated by the ratio:

Thus, for the values of m used here, S/N varied between 1 and 0.16.

Algorithm performance at varying levels of noise was quantified by measuring type 1 (false
positive) and type 2 (false negative) errors. Type 1 error was estimated by taking the ratio of
ROIs that picked out “cells” to the total number of ROIs generated; type 2 error was estimated
by taking the ratio of identified “cells” to the actual number of “cells” in the simulation. Curves
were fitted to these data using the “sigmoid fit” function within Origin (OriginLab Corp.,
Northampton MA).

An executable version of this software can be obtained by contacting the Corresponding
Author.

Results
The software was tested using a low-noise, high-spatial resolution dataset acquired at 3 fps,
and then on a series of low-spatial resolution, noisy datasets obtained at 30 fps.

In the first case, we analyzed: 90 s of activity, acquired at 3 fps at 200× magnification (Movie
1, Supplemental Materials), from the caudal pole of the facial nucleus (VIIn) (Figure 4 B,
inset). This first dataset was used to determine the sensitivity of ROI detection to analysis
parameters. We varied the size of the spatial averaging kernel (3×3, 5×5, and 7×7), and for
each kernel size, we varied the number of thresholding steps (5, 10, 20, 40, and 80 steps). We
found the highest number of respiratory neurons using 80 threshold steps and a 3×3 kernel,
resulting in 58 ROIs. Although the number of respiratory neurons identified in this dataset
increased with the number of thresholds, nearly 50% of the respiratory neurons identified with
80 thresholds were found using 5 thresholds (Figure 4 A left). Further, as the number of
thresholds increased, the ratio of ROIs associated with respiration-modulated signals to ROIs
arising from extraneous signals decreased steeply (Figure 4 A right). Cell-permeant AM ester
dyes load not only neurons of interest, but also other neurons and glia, which were correctly
identified by the algorithm. Thus, this graph over-estimates type 1 error associated with the
signal processing methods described here.

Execution time is strongly dependent on threshold number, ranging from 238±15 s for 5
threshold steps, to 778 ± 79 s for 80 threshold steps, and as the number of false positives
increases, the time taken by the end-user to select traces to be saved increases as well. Choice
of binning also impacted software performance: although the largest number of ROIs were
detected with 3×3 binning, the number of respiratory neurons identified using 7×7 binning
closely matched those identified using the more sensitive 3×3 binning (figure 4 A), and the
number of false positives was lower with 7×7 binning at all threshold levels.
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Taken together, these findings suggest that this algorithm’s performance is relatively
insensitive to choice of kernel, but more sensitive to the number of thresholds used. The lack
of sensitivity to choice of kernel may be due to the magnification used here. Certainly, as the
number of pixels spanning a soma increases, the size of the smoothing kernel would need to
be increased. For magnifications of 65× or greater, the usefulness of the methods described
here will likely decrease, as the field of view will only contain a handful of cells, obviating the
need for automated ROI detection.

The recording was made at the caudal pole of the facial nucleus (Figure 4 B inset). Traces
reveal respiratory modulation at a variety of phases (Figure 4 C). The high threshold number
used to generate these traces allows resolution of units close to one another; traces generated
by the tightly clustered ROIs contained in the dotted rectangle at the center of 4 B are indicated
by arrows. Because these traces all differ slightly from one another, we present them here as
separate units, but cannot rule out that some of the traces are generated by a common unit.
Using fewer thresholds or changing the spatial averaging would likely lead to fewer ROIs,
raising the probability of type 2 error.

To establish that these methods can detect a cell even if it is intermittently active or active only
once in a recording epoch, ROIs obtained from the same network under conditions of synaptic
blockade are shown (Figure 4 F; black-filled, dotted white ROI outlines Figure 4 B). Thus,
while the behavior under study here generates periodic optical signals, these methods are not
restricted to rhythmically active networks.

To test whether these methods remain viable as image quality degrades, we applied them to
four image series obtained at 30 frames per second for 500 seconds with lower spatial resolution
due to 2×2 binning, with a less favorable signal-to-noise ratio due to electron multiplication,
and with a lower-affinity indicator (fluo-8L, Kd= 1.86 µm). These datasets of 15,000 images
were processed with 3×3 binning, using 40 thresholds, and generating traces in 2 hours and 13
minutes ± 8 minutes.

In Figure 5 A, one of the datasets, and the ROIs associated with 13 respiration-modulated cells
are shown. Of the 13 good traces, 2 ROIs are most likely from a single unit (Figure 5 A arrow);
this is supported by the close match between the associated traces (Figure 5 B, arrows). It is
worth noting that the ROI traces do not match perfectly (Figure 5 B, boxes). As with the earlier
dataset, respiration-modulated ROIs constitute roughly 10% of the total number of ROIs
detected (figure 5 A inset panel). To facilitate detection of respiratory modulation, the traces
shown in Figure 5 B have been filtered. The top trace in Figure 5 C shows a portion of one
optical trace (dotted box, Figure 5 B, second optical trace from the bottom) raw (Figure 5 C
top), high-pass filtered (Figure 5 C middle) and band-pass filtered (Figure 5 C bottom). Because
changes in Ca2+ indicator intensity is relatively slow (due to the relatively high Ca2+ affinity
of the dyes used here), high-frequency luminance fluctuations are likely due to arc-lamp flicker
(See Movie Clip 2, Supplemental Materials), and are attenuated here using low-pass filtering.
The superimposed high-pass and band-pass filtered traces of one inspiratory burst (dotted box,
Figure 5 C right) reveals close correspondence in peak times (Figure 5 C left). Because arc-
lamp jitter will be the same across the image, it can likely be corrected using deconvolution
techniques, obviating the need for low-pass filtering.

Simulated datasets were generated based on a 20X image of Ca2+-loaded tissue (Figure 6 Ai)
converted to a binary image (Figure 6 Aii), which was used to generate image series with
transient noisy luminance fluctuations (Figure 6 Aiii). Luminance fluctuations were obtained
from an actual optical recording of an inspiratory neuron to which increasing levels of noise
were added in successive simulations (rhythmic activity, Figure 6 Bi). In order to simulate an
optical recording from a sparsely active neuron, two peaks from the first dataset were
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incorporated into a dataset which otherwise contained noisy baseline activity with increasing
amounts of noise (sparse activity; Figure 6 Bii).

The signal to noise ratios were varied between 1.0 and 0.16. With the exception of the low
threshold cut-off used on the summed image, ROIs for all simulated datasets were generated
using the same parameters: spatial averaging was carried out with 7×7 binning, temporal
averaging was applied over 2 images, and 40 thresholds were used. As noise levels increased,
when we held the minimum threshold at 5% of the summed image’s luminance range, the
number of false positives increased steeply. As the number of false positives increased, it
became ambiguous whether correct identification of “cells” was due to the algorithm, or was
occurring by chance. To clarify this issue, the minimum threshold was increased from 5% up
to 30% of the summed image’s luminance (bar graphs, Figure 6 C). By this means, false
positives were kept as low as possible; at lowest S/N large numbers of false positives could
not be prevented however.

In the simulation of rhythmic activity, although type 2 error stayed low for S/N values ranging
from 1.0 – 0.33, at S/N=0.33, type 1 error showed a sharp increase (Figure 6 Ci). At S/N=0.25
(Movie Clip 3, Supplemental Materials), 12/18 of simulated cells were identified, but the
number of false positives increased steeply. At lower S/N algorithm performance fell off,
effectively defining the lower bound on signals analyzable with these methods. These
simulations suggest that that these methods are robust over a range of S/N values, but that as
noise increases past a certain point, performance deteriorates sharply. A comparison of movies
from actual optical recordings (Movie Clip 1 and Movie Clip 2, Supplemental Materials) and
the movie of the simulated data reveals that most of the units discernible in the real data are
brighter than those in the simulation. Although algorithm performance on sparse data was
qualitatively similar, type 2 error increased at lower noise levels, but then leveled off (Figure
6 Cii). This discrepancy may be due to the fact that the two bursts in the sparse dataset both
reached the maximum amplitude (0.5), whereas in the rhythmic simulation, only one of the
peaks reached this amplitude, while the other 32 peaks were smaller. Because of how
differenced images were thresholded to generate binary images, this amplitude difference could
account for why type 2 error was lower in the sparse simulation than in the rhythmic simulation
at low S/N.

Discussion
We describe here methods for automated detection of cellular activity in neural tissue loaded
with membrane-permeable Ca2+ indicators. The premise of this approach is that it is easier and
quicker for the experimenter to identify a cell of interest from a plot of fluorescence variation
as a function of time, than from the time-varying fluorescence itself apparent in the raw or
high-pass filtered play-back of a series of images acquired by a CCD camera.

In extracting neuronal signals from an image series, there are two possible sources of error:
false positives (type 1 error), and false negatives (type 2 error). Minimizing these two kinds of
error is achieved by proper selection of the number of thresholds, which can be identified
iteratively by comparing the results from successively larger number of thresholds.

Multiple thresholds are used to pick out local luminance maxima in the summed image,
associated with fluorescence emitted by cells in the tissue recorded from. With too few
thresholds, cells close together will be contained in a single ROI (type 2 error), since the
luminance trough separating them will be missed. With too many thresholds, a single cell will
generate multiple ROIs (type 1 error), because of small differences in brightness within the
region spanning the cell’s soma in the summed image. Another important parameter is the
value of the lowest threshold: if the lowest threshold is set too high, dim cells will be missed
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(type 2 error); if it is set too low, ROIs will be assigned to local maxima generated by noise
(type 1 error).

Selection of proper threshold number should be arrived at iteratively. In our experience, for a
given magnification and indicator, there is typically a range of thresholds over which the
number of ROIs generated are similar. In our use of these methods, this is the signal-processing
parameterization we look for in analyzing data, since it defines filtering and thresholding values
that fit the data. As S/N deteriorates, the number of ROIs identified becomes increasingly
sensitive to parameterization; in our simulations at low S/N, slight changes in minimal
threshold or number of thresholds generated dramatic changes in ROI numbers, because there
were no well-formed peaks in the luminance landscape for the algorithm to pick out.

With membrane permeant indicators such as those used here, neurons of interest are loaded,
but so are neurons involved in behaviors other than those under study, as are glia. Signals from
these sources will also generate ROIs and thus will give rise to false positives that must be
excluded using criteria that depend on the behavior or the question under study. This problem
presents itself irrespective of how ROIs are generated. In the context of the system under study
here, identification of respiratory neurons can be done by inspection, but is facilitated by online
calculation of a burst-triggered average, using inspiratory drive recorded from the phrenic
nerve as the reference signal. Our operating assumption is that the rapid Ca2+ influx
accompanying action potentials is not seen in glia, thus we exclude signals that are slowly-
varying and smooth, on suspicion that these signals are glial in origin. In addition, cells whose
Ca2+ signals show marked increases in amplitude are also excluded, as this likely reflects
intracellular Ca2+ homeostasis failure.

Because of how candidate ROIs are generated, the methods described here will degrade as the
number of frames in the image series decreases, since as binary images are averaged noise is
attenuated; conversely, a cell that is active only once will be less and less likely to generate an
ROI as the recording epoch lengthens, since its activity will fade from the averaged image.
Practically speaking, these limitations are not insurmountable. In the first instance, generically,
as sample number decreases, the ability to distinguish between signal and noise decreases, thus
regardless of how one analyses the data this problem arises and can be solved by acquiring
more samples; in the second instance, our methods identified a cell active once in 180 s (Figure
4 F), thus only cells with very low levels of activity are likely to be missed.

A key component of our method is spatial averaging. Our exploration of kernel size suggests
that on one hand, the cost of choosing a kernel that is too small is an increase in type 1 error,
and in conjunction with too many thresholds, the generation of multiple ROIs for a given soma.
On the other hand, too much spatial averaging leads to type 2 error. Thus, for the data acquired
with 2×2 binning resolution, only the 3×3 kernel captured all regions where somatic signal
could be seen. For these data, if one compares pixels/kernel (9) to pixels/soma (~40), this
suggests that kernel area should not greatly exceed 0.25 of soma area. In image series acquired
at higher spatial resolution (1×1 binning, 20X), results were less sensitive to smoothing kernel
size: in these data, the program identified very close to the same number of ROIs at 7×7 binning
as with 3×3 binning. Under these conditions, pixels/kernel=49, and pixels/soma ≈ 160,
resulting in a ratio of kernel area/soma area of 0.3. Thus at pixels/soma values different than
those studied here, a kernel whose area is 0.2–0.3 of the area of a typical soma is a good initial
choice. A modification to this algorithm that may save computation time without impacting
performance would be to spatiotemporally bin images according to signal time-course and ROI
size. After ROI selection, the image series can be reanalyzed at full spatiotemporal resolution.

By applying these methods to simulated datasets, we were able to show that our methods are
relatively robust to type 2 error (false negatives), generating similar results over a range of
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noise levels; as the S/N ratio fell below 0.4, however performance deteriorated steeply.
Nonetheless, the algorithm detected some units at all noise levels. If the lowest threshold
applied to the summed image was kept fixed, type 2 error is reduced but at the cost of much
higher type 1 error (data not shown); if robust criteria exist for excluding false positives (as is
the case for the identification of respiration-modulated neurons), then the algorithm can be
applied to data with low S/N. It should be stressed that even at low noise levels, 1/18 units
were missed. Although with more careful choice of kernel, number of thresholds, and lowest
threshold cut-off, the algorithm will perform perfectly, when working with real data, prior
knowledge of the actual number of units in the data is not available, so we chose to test the
algorithm’s performance using a reasonable rather than optimal parameter set, since this is
closer to normal operating conditions.

These simulations are particularly useful because they provide a benchmark against which
optimizations of the methods described here, or qualitatively different methods can be
measured. Because these methods worked similarly for simulated sparse and rhythmic activity,
these simulations suggest that the methods described here will detect sparsely active networks
as well as rhythmically active networks.

When using these methods on real data however, it cannot be excluded that a subset of signals
will remain undetected by any automated approach to their detection, and that some subset of
automatically generated ROIs will be associated with cells that should be excluded from the
analysis (dead/unhealthy cells; glia). These errors are (at least in part) irreducibly ambiguous
however, as the experimenter generally does not know more about the neuronal activity under
study than the optical signals provide. An advantage of automated detection is that insofar as
the program errs, it errs without bias, based on the parameters selected for the processing of
the image series. One source of error is inappropriate parameterization, another is the subjective
process of choosing which cells to reject, add, merge, or split. These decisions will likely be
made differently by each individual attempting to analyze the data, and are likely an important
source of error in the analysis of optical data, irrespective of how ROIs are generated. The
methods described here reduce the burden of analyzing optical data, but do not eliminate the
risk of error associated with inappropriate inclusion or exclusion criteria applied to signals
obtained with automatically generated ROIs. .

Do these methods have general applicability? We have used this program under rather narrow
conditions, namely for the analysis of cells labeled by bath application of membrane-permeant
Ca2+ indicators that change in intensity and not wavelength as a function of [Ca2+]i. Other
loading methods, such as pressure ejection (Garaschuk et al., 2006; Koshiya and Smith,
1999; Stosiek et al., 2003); electroporation (Bonnot et al., 2005) or ballistic delivery (Kettunen
et al., 2002) will likely generate signals in a three-dimensional volume of tissue; depending on
the technology used to acquire the images, this could lead to stronger diffuse signal and hence
a deterioration in performance. In addition, other classes of indicators, such as ratiometric
Ca2+ indicators (such as Fura-2), or voltage sensitive indicators (such as di-4-ANEPPS) have
not been tested here and may generate different results. Here, we have tested our methods on
optical signals obtained at different spatial resolutions, sampling rates, with low- and high-
affinity indicators, and with different spatio-temporal characteristics. Thus, we have shown
that the utility of these methods is neither restricted to the spatially dispersed, coupled, rhythmic
activity characteristic of respiratory networks, nor to data acquired at narrowly specified spatio-
temporal resolutions, nor to indicators with similar kinetics.

Although this software was developed to analyze the rhythmic activity generated by the
relatively sparse networks involved in respiratory rhythm generation, using a particular class
of indicators and dye-loading methodology, these methods may have more general use.
Assuming that neurons are healthy and well-loaded with indicator, the ubiquitous biophysical
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properties (low [Ca2+]i levels or hyperpolarized Vm during quiescence; rapid and large
Ca2+influx or depolarized Vm during action potentials) responsible for the optical signals we
record will generally produce the somatic signals our algorithms are designed to detect, albeit
with different temporal characteristics and/or sign.

Because in ventrolateral medulla, respiratory networks are heterogeneous, and in-terdigitated
by neurons that show no respiratory modulation, optical recording using membrane permeant
Ca2+ indicators is an attractive option that has been pursued by numerous groups both in the
neonate (Barnes et al., 2007; Eugenin et al., 2006; Funke et al., 2007; Hartelt et al., 2008;
Koshiya and Smith, 1999; Onimaru and Homma, 2003; Potts and Paton, 2006; Ruangkittisakul
et al., 2008), as well as the embryo (Thoby-Brisson et al., 2005). By enabling simultaneous
recording from network constituents, progress in understanding the functional organization of
these physiologically critical networks can accelerate, as has occurred in other systems (Ohki
et al., 2005; Ohki et al., 2006). Unfortunately, as temporal resolution and camera sensitivity
provide ever richer datasets, the burden of their analysis increases as well. It is hoped that these
methods will facilitate that process.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
Thanks to Dr. Andrew Charles, Dr. Mike Baca, Dr. Luis Beltran-Parrazal, Dr. Jean-Rene Cazalets and Dr. Myriam
Antri for providing sample data. Thanks to Dr. Rhonda Dzakpasu for her comments on this manuscript. This work
was supported by National Institutes of Health grant HL068007.

References
Barnes BJ, Tuong CM, Mellen NM. Functional imaging reveals respiratory network activity during

hypoxic and opioid challenge in the neonate rat tilted sagittal slab preparation. J Neurophysiol
2007;97:2283–2292. [PubMed: 17215506]

Beltran-Parrazal L, Lopez-Valdes HE, Brennan KC, Diaz-Munoz M, de Vellis J, Charles AC.
Mitochondrial transport in processes of cortical neurons is independent of intracellular calcium.
American journal of physiology 2006;291:C1193–C1197. [PubMed: 16885395]

Bonnot A, Mentis GZ, Skoch J, O'Donovan MJ. Electroporation loading of calcium-sensitive dyes into
the CNS. Journal of neurophysiology 2005;93:1793–1808. [PubMed: 15509647]

Charles, A.; Weiner, R.; Costantin, J. Molecular endocrinology. Vol. 15. Baltimore, Md: 2001. cAMP
modulates the excitability of immortalized H=hypothalamic (GT1) neurons via a cyclic nucleotide
gated channel; p. 997-1009.

Cohen LB, Salzberg BM, Davila HV, Ross WN, Landowne D, Waggoner AS, Wang CH. Changes in
axon fluorescence during activity: molecular probes of membrane potential. The Journal of membrane
biology 1974;19:1–36. [PubMed: 4431037]

Costantin JL, Charles AC. Modulation of Ca(2+) signaling by K(+) channels in a hypothalamic neuronal
cell line (GT1-1). Journal of neurophysiology 2001;85:295–304. [PubMed: 11152729]

Costantin JL, Charles AC. Spontaneous action potentials initiate rhythmic intercellular calcium waves
in immortalized hypothalamic (GT1-1) neurons. Journal of neurophysiology 1999;82:429–435.
[PubMed: 10400969]

Eugenin J, Nicholls JG, Cohen LB, Muller KJ. Optical recording from respiratory pattern generator of
fetal mouse brainstem reveals a distributed network. Neuroscience 2006;137:1221–1227. [PubMed:
16361062]

Funke F, Dutschmann M, Muller M. Imaging of respiratory-related population activity with single-cell
resolution. American journal of physiology 2007;292:C508–C516. [PubMed: 16956966]

Mellen and Tuong Page 13

Neuroimage. Author manuscript; available in PMC 2010 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Garaschuk O, Milos RI, Konnerth A. Targeted bulk-loading of fluorescent indicators for two-photon
brain imaging in vivo. Nature protocols 2006;1:380–386.

Hartelt N, Skorova E, Manzke T, Suhr M, Mironova L, Kugler S, Mironov SL. Imaging of respiratory
network topology in living brainstem slices. Molecular and cellular neurosciences 2008;37:425–431.
[PubMed: 18203620]

Ikegaya Y, Le Bon-Jego M, Yuste R. Large-scale imaging of cortical network activity with calcium
indicators. Neuroscience research 2005;52:132–138. [PubMed: 15893573]

Kettunen P, Demas J, Lohmann C, Kasthuri N, Gong Y, Wong RO, Gan WB. Imaging calcium dynamics
in the nervous system by means of ballistic delivery of indicators. Journal of neuroscience methods
2002;119:37–43. [PubMed: 12234633]

Koshiya N, Smith J. Neuronal pacemaker for breathing visualized in vitro. Nature 1999;400:360–363.
[PubMed: 10432113]

Lindeberg, T. Scale-Space Theory in Computer Vision. Dordrecht, Netherlands: Kluwer; 1994.
Mellen NM. A vibrating microtome attachment for cutting brain slice preparations at reproducible

compound angles relative to the midline. J Neurosci Methods 2008;168:113–118. [PubMed:
17996947]

Ohki K, Chung S, Ch'ng YH, Kara P, Reid RC. Functional imaging with cellular resolution reveals precise
micro-architecture in visual cortex. Nature 2005;433:597–603. [PubMed: 15660108]

Ohki K, Chung S, Kara P, Hubener M, Bonhoeffer T, Reid RC. Highly ordered arrangement of single
neurons in orientation pinwheels. Nature 2006;442:925–928. [PubMed: 16906137]

Onimaru H, Homma I. A novel functional neuron group for respiratory rhythm generation in the ventral
medulla. J Neurosci 2003;23:1478–1486. [PubMed: 12598636]

Palmer AE, Tsien RY. Measuring calcium signaling using genetically targetable fluorescent indicators.
Nature protocols 2006;1:1057–1065.

Potts JT, Paton JF. Optical imaging of medullary ventral respiratory network during eupnea and gasping
in situ. Eur J Neurosci 2006;23:3025–3033. [PubMed: 16819991]

Radke RJ, Andra S, Al-Kofahi O, Roysam B. Image change detection algorithms: a systematic survey.
IEEE Trans Image Process 2005;14:294–307. [PubMed: 15762326]

Ruangkittisakul, A.; Schwarzacher, SW.; Ma, Y.; Poon, BY.; Secchia, L.; Funk, GD.; Ballanyi, K.
Program Washington, DC. 2005. Washington, DC: Society for Neuroscience; 2005. Minimum pre-
Botzinger complex extension for rhythm generation at physiological [K+] of brainstem slices from
newborn rats.

Ruangkittisakul A, Schwarzacher SW, Secchia L, Ma Y, Bobocea N, Poon BY, Funk GD, Ballanyi K.
Generation of eupnea and sighs by a spatiochemically organized inspiratory network. J Neurosci
2008;28:2447–2458. [PubMed: 18322090]

Stosiek C, Garaschuk O, Holthoff K, Konnerth A. In vivo two-photon calcium imaging of neuronal
networks. Proc Natl Acad Sci U S A 2003;100:7319–7324. [PubMed: 12777621]

Takahashi N, Sasaki T, Usami A, Matsuki N, Ikegaya Y. Watching neuronal circuit dynamics through
functional multineuron calcium imaging (fMCI). Neuroscience research 2007;58:219–225.
[PubMed: 17418439]

Thoby-Brisson M, Trinh JB, Champagnat J, Fortin G. Emergence of the pre-Botzinger respiratory rhythm
generator in the mouse embryo. J Neurosci 2005;25:4307–4318. [PubMed: 15858057]

Yuste, R.; Konnerth, A., editors. Imaging in Neuroscience and Development, A Laboratory Manual. Cold
Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2005.

Mellen and Tuong Page 14

Neuroimage. Author manuscript; available in PMC 2010 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Image processing sequence for ROI extraction. Boxes indicate processing steps applied to
single images, the rhombus indicates processing carried out on the image stack generated by
the earlier processing steps, and ovals indicate operations on traces. At the end of the ROI
extraction process, mean luminance values associated with each ROI are measured from every
raw image. These traces are then screened by the end-user, and good traces are saved.
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Figure 2.
Temporospatial image-processing enhances salience of Ca2+ transients associated with
neuronal activity. A. Raw image shows the wide dynamic range of static fluorescence signals
that complicates detection of small amplitude Ca2+ transients. Boxed region is expanded on
the right to highlight image changes accompanying filtering steps. B. “Derivative” image
obtained by subtracting the target image (low-pass filtered using a 0.5 s moving average) from
the image obtained 1.5 s earlier (low-pass filtered using a 1.0 s moving average). In this image,
fluorescence changes during Ca2+ influx are more salient, pixels within bright regions are still
quite variable, with active regions showing up as going towards white (during Ca2+ influx) or
towards black after return to baseline (arrows). C. Spatial averaging homogenizes pixel values
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within regions of cellular activity, as well as in quiescent regions. D. Binary thresholding sets
regions of static fluorescence to black, and regions of dynamic fluorescence to white.
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Figure 3.
Average of binary image series undergoes successive thresholding to identify ROIs. A. In the
average of the binary images, regions of intense and/or regular neuronal activity are near-white,
while regions of weak and/or intermittent activity are near-black. B. Intensity profile of a row
of pixels indicated by dotted line in A. Using the methods described here, an ROI will be
generated for points where a lower threshold intersects a peak in the intensity profile, but where
the threshold above it does not. C. Superimposed binary images generated by a low threshold
(grey blobs) and the threshold above it (white blobs). Only blobs retained using the lower
threshold, but missed by the upper threshold are stored as ROIs (dotted boxes).

Mellen and Tuong Page 18

Neuroimage. Author manuscript; available in PMC 2010 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Using 80 thresholds, 58 ROIs are identified in a high spatial resolution low-noise, slow optical
recording data series. A. As the number of thresholds increases, the number of ROIs associated
with respiration-modulated activity goes up (left); conversely, the ratio of respiration
modulated ROIs to false positives decreases as the number of thresholds increases. B. View
of the tissue, with ROIs under control (white outlines) and synaptic blockade (black fill, dotted
white outlines) conditions, and location of recording (inset; VIIn: facial nucleus). C. Traces of
respiration-modulated activity obtained from the ROIs shown in A; top left trace is rectified
integrated motor output (C1). Gray bars indicate inspiratory activity; neurons active at a variety
of phases, and both strongly and weakly respiration-modulated are included. Because of space
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constraints ΔF/F scale bars have been omitted. Traces contained in dotted rectangle in the center
of B are indicated by arrows; although all these traces share respiratory modulation, they are
sufficiently different to suggest that they are generated by separate units. D. Traces of
spontaneous activity recorded under conditions of synaptic blockade. Under these conditions,
neurons active once in 180 s, and neurons active at frequencies higher than control respiratory
frequencies were observed.
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Figure 5.
ROIs can be generated using noisy, low spatial resolution datasets. A. anatomical location of
recording overlaps with the preBötC, which has been identified as lying 500 µm caudal to the
VIIn (Ruangkittisakul et al., 2005). Two juxtaposed ROIs are likely generated by the same cell
(arrow). In the 4 datasets analyzed, the number of respiration modulated ROI traces remained
at approximately 10% of the total number of ROIs identified (inset). B. Traces sorted to match
ROI numbering reveal closely matched activity in 2 adjacent ROIs (arrows), suggesting that
one cell has been misidentified as 2. Despite the fact that traces 8 and 9 are likely generated
from the same cell, the two traces do not match exactly (boxes). C. Effects of high- and band-
pass filtering on the optical recording from one ROI (dotted box, 2nd optical trace from the
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bottom, Figure 5 B). Top trace: the raw optical signal, obtained by calculating the mean of
pixels within the ROI for each frame in the data series. High-pass filtering (via subtraction of
the trace low-pass filtered using a 14 s moving average) eliminates slow time-course
fluorescence fluctuations (middle trace); subsequent low-pass filtering (by taking a 0.6 s
moving average of the signal) gives rise to a band-pass fitered signal in which high-frequency
fluctuations in brightness associated with arc-lamp jitter is attenuated (bottom trace), but in
which the underlying Ca2+ signal is retained. The effect of low-pass filtering on one Ca2+ peak
associated with an inspiratory burst (dotted box, left) is shown on an expanded time-scale (right
panel).
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Figure 6.
Simulated data were used to estimate type 1 and type 2 error under conditions of varying noise.
A. i. simulated image series were based on a 20X image of indicator- loaded tissue. ii. Regions
of time-varying fluorescence retained naturalistic morphology and distribution, as they were
defined by thresholding the raw image to generate a binary image. iii. Pixels in black regions
of the binary image were assigned random values; pixels in white regions were assigned values
representing the sum of a time-varying signal and noise; so as to maintain constant dynamic
range, as noise was increased the amplitude of the time-varying signal was decreased. B. Time-
varying signals assigned to white regions of the binary image were obtained from fluorescence
measurements from a respiration modulated neuron (i) or from simulation of sparse activity
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generated by splicing two peaks associated with inspiratory activity between epochs of random
values scaled to 10% of burst amplitude (ii). Upper traces show traces in which signal and
noise components were of equal amplitude (S/N=1); lower traces were obtained at S/N=0.33.
Traces were scaled so that ΔF/F bars matched. C. Plot of type 1 (□) and type 2 (■) errors as a
function of S/N for rhythmic (i) and sparse (ii) simulated datasets. Type 1 error was calculated
as the ratio of ROIs that picked out “cells” to the total number of ROIs generated; type 2 error
was calculated as the ratio of identified “cells” to the actual number of “cells” in the simulation.
Both errors are minimized as these ratios approach 1; to convey conditions under which both
types of error are minimized, (1-ratio) is plotted. As S/N decreased the lowest threshold applied
to the summed image was increased so as to reduce type 1 error, and more accurately estimate
type 2 error (with sufficiently high ROI numbers, all “cells” will be identified). Lowest
thresholds are expressed as percent of the simulated image’s dynamic range (right axis), and
are indicated by bars.
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