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Abstract

Monohalo and dihalo 1,3-thiazole derivatives can be efficiently and selectively prepared under mild
conditions from 2-amino-1,3-thiazoles. Halogenations proceed easily in the presence of copper(I) or
copper(II) chlorides, bromides, or iodides directly in solution or with supported copper halides.

1,3-Thiazole rings appear in many compounds that exhibit important biological and
pharmacological activities. For example, these rings feature in all the potent epothilones1used
against multidrug-resistant tumor cell lines. They are also found among pharmaceuticals for
the treatment of type 2 diabetes,2 antibiotic-like compounds,3 and metabotropic glutamate
receptor subtype 5 (mGluR5) antagonists.4

1,3-Thiazole rings are usually introduced into target molecules by use of a monohalo thiazole
in an organometal-catalyzed coupling procedure (e.g., a Sonogashira, Heck, or Suzuki
reaction). Traditionally, the required monohalo thiazoles have been synthesized from 1,3-
thiazole or 2-bromo-1,3-thiazole in two or three steps via stannyl or silyl intermediates.5 2,4-
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Dibromo-1,3-thiazole has also been produced under harsher conditions with phosphorus
oxybromide.6 Although these procedures give access to a variety of halo-1,3-thiazoles, only a
limited number are commercially available. Moreover, these methods have seldom shown
applicability to the syntheses of more complex thiazole-containing molecules bearing further
functional groups. In the course of our research to produce new improved radioligands for the
molecular imaging of brain mGluR5 in vivo with positron emission tomography (PET),7 we
aimed to synthesize new 2-halo-1,3-thiazole derivatives with various appendages in position
4. One such compound, the 2-bromo-1,3-thiazole derivative (2), had previously been obtained
in high yield from compound 1, copper(II) bromide, and tert-butyl nitrite under Sandmeyer
conditions (Scheme 1).8

Surprisingly, in our hands, this reaction led predominantly to the 2,5-dibromo adduct 3 with
the targeted monobromo compound 2 as minor product (Scheme 1). Classically, the Sandmeyer
reaction involves diazotization of an arylamine followed by reaction of the formed diazonium
salt with copper(II) halide (CuX2, X = Cl, Br, or I). Although good yields of haloarenes are
generally obtained, this procedure is usually complicated by numerous competing side
reactions. The scope and limitations of the Sandmeyer reaction have been widely investigated
with various arenes,9 but little was previously known about this reaction for the halogenation
of 2-amino-1,3-thiazoles.

To investigate the reasons for the formation of the dibromo compound 3 from 1, we synthesized
the des-fluoro analogue 4 and used it as a model in bromination reactions conducted with
CuBr2 and n-butyl nitrite in acetonitrile (Scheme 2).

The effects of order and method of addition of reagents, the temperature, and the nitrite to
copper bromide mole ratio on the yield of the dibromo compound 6b were investigated.
Temperature played a critical role in product outcome. Above room temperature, we found
that 6b was almost always the major product (>70%), independent of the stoichiometry of
reagents and other factors. Use of amyl, tert-butyl or n-butyl nitrite gave the same results;
therefore the latter was used in the rest of this work. When the reaction was performed at 85 °
C, 6b was formed rapidly, reaching 99% yield after 15 min (Table 1).

The fact that the dibromo compound 6b was produced suggested that the reaction occurred in
two steps via a monobromo intermediate. To verify this hypothesis, 4 was submitted to a
temperature study in which reaction progress was monitored by HPLC with the temperature
rising by 10 °C at intervals of 30 min (±5 min) (Figure 1). Initially, after 10 min of reaction at
– 40 °C, 5-bromo-4-(phenyl)ethynyl-1,3-thiazol-2-amine (7b) appeared in solution, showing
bromination to occur first at position 5. The ratio of 7b to 4 increased with temperature. At –
10 °C, 7b was the only product. Above –10 °C, 7b converted into the dibromo compound,
6b. This conversion was slow below 0 °C but became rapid and complete at 60 °C. Thus,
reaction of 4 with copper(II) bromide in the presence of n-butyl nitrite rapidly gives 7b and is
followed by a second slower step, the diazotization of the amino group, and bromine insertion.
The latter reaction can be avoided by omitting n-butyl nitrite, resulting in a high yield (94%)
of 7b (Table 1).

The desired 2-bromo compound 5b was not observed in the preceding temperature study.
However, it reached almost 50% yield when the reaction was run at a low temperature (between
–10 and 0 °C) with the molar ratio of copper(II) bromide to nitrite decreased to 0.5. At room
temperature, under these conditions, yields of 5b never exceeded 30%.

To obtain the initially targeted 2-bromothiazole 5b in acceptable yield, we tested the reactivity
of 4 with a variety of brominating agents under Sandmeyer conditions (Table 1). CuBr, KBr,
KBr-CuBr, Br2, or alumina-supported-KCuBr2 was added to a solution of 4 and n-butyl nitrite.
Remarkably, near quantitative yields of 5b were obtained with CuBr. KBr gave an inextricable
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mixture of products in which 5b was found in only low yield. A moderately high yield of 5b
was obtained with KBr-CuBr. Molecular bromine selectively gave the dibromo-derivative
6b in moderate yield.

The supported copper(I) complex, alumina-KCuBr2, is an efficient reagent for halogen
exchange in haloarenes.10 This reagent gave 5b selectively and in very high yield at room
temperature after 24 h (Table 1). By contrast, reactions run with CuBr without alumina at this
temperature gave lower yields. Technically, the use of a supported reagent is very attractive
as the protocol for product extraction is simple filtration. Also this room temperature procedure
might potentially allow the halogenation of more complex molecules that would either
decompose or racemize in solution at higher temperatures.

We also prepared other alumina-supported copper(I) halides (alumina-KCuX2, X = Cl or I).
Reaction of these reagents or of the available CuXn salts (X = Cl or Br for n = 1 or 2, or for I,
n = 1) with 4 or the 3-cyanophenyl analogue 9 led to several new halo-1,3-thiazoles (Table 2).
Iodination of 4 with alumina-supported-KCuI2 appeared to reach an equilibrium, since a second
addition of reagent significantly improved the yield of 5c. Having demonstrated the
regioselectivity of these reactions, we speculated that it would be possible to introduce different
halogens selectively in two steps at two different positions. The synthesis of 2-iodo-5-
chlorothiazole derivative 8 and 2-chloro-5-bromothiazole derivative 9 demonstrated that this
was indeed possible with these versatile procedures. The methods are only limited by the
availabilities of the halogenation reagents; therefore no 5-iodo analogue could be produced as
unstable CuI2 is not commercially available.

It has been established that the Sandmeyer reaction proceeds via formation of radical species.
11 Nevertheless, in the case of the 2-amino-1,3-thiazole derivative 4, addition of the radical
trap TEMPO or of the radical initiator AIBN failed to modify the yields of reaction or the ratios
of the products 5b, 6b, and 7b, suggesting that the reactions proceeded according to ionic
mechanisms.

In conclusion, we have shown that halo-1,3-thiazole derivatives can be prepared
regioselectively and efficiently with a variety of simple reagents. Regioselective halogenation
in position 5 of 2-amino-1,3-thiazoles was achieved at room temperature by reaction with
CuX2 (X = Cl or Br) in acetonitrile. Dibromination was realized in high yield with n-butyl
nitrite and CuX2 at temperatures above 65 °C and halogenation in position 2 was achieved
selectively by using an alumina-supported copper(I) material or CuX (X = Cl, Br, or I). The
methods we described here for selective halogenations of 2-amino-1,3-thiazole derivatives
were mild and were successfully used on variously substituted compounds and led to several
new iodo, bromo, and chloro derivatives. These are especially interesting as potential
intermediates for new mGluR5 ligands, and could lead to the development of new PET
radioligands by radiofluorination12 or new SPECT radioligands by radioiodination.13

Experimental Section
Method I: Synthesis of 2-Halo-1,3-thiazolarylacetylenes 5a–c

The 2-aminothiazole 4 (182 mg, 0.91 mmol) and CuX (1.39 mmol, X = Cl, Br, or I) were
dissolved in acetonitrile (8 mL) at room temperature. n-Butyl nitrite (162 μL, 1.39 mmol) was
added with stirring, and the solution was heated to 60 °C. The reaction was complete after 15
min, as monitored by TLC. The reaction mixture was then evaporated to dryness in vacuo. The
residue was dissolved in ethyl acetate (20 mL) and washed with ammonia solution (0.1 M; 2
× 50 mL). The organic layer was dried over MgSO4 and evaporated to dryness in vacuo. The
residue was purified by chromatography on silica gel (hexane–ethyl acetate; 97: 3, v/v). This
procedure gave 5a, 5b, and 5c in 33%, 46%, and 50% yield, respectively.
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Method II: Synthesis of Dihalo 1,3-Thiazoles 6a and 6b
The 2-aminothiazole 4 (40 mg, 0.20 mmol) and CuX2 (X = Cl or Br; 0.30 mmol) were dissolved
in acetonitrile (2 mL). This reaction mixture was stirred at room temperature for 15 to 120 min
(gentle heating at 40 °C is necessary when using CuCl2 as the reaction proceeds at a slower
rate). Reaction was monitored by TLC. After all starting material had been consumed, n-butyl
nitrite (35 μL, 0.30 mmol) was added and the reaction was stirred for an additional 15 min at
65 °C. The reaction mixture was then cooled and the acetonitrile evaporated off in vacuo. The
residue was dissolved in ethyl acetate (20 mL) and washed with ammonia solution (0.1 M; 2
× 50 mL). The organic layer was collected, dried over MgSO4, and evaporated to dryness in
vacuo. The residue was purified by chromatography on silica gel (hexane–ethyl acetate; 97: 3,
v/v). This procedure gave 6a and 6b in 35% and 79% yield, respectively.

Method III: Synthesis of 2-Amino-5-halo-1,3-thiazolarylacetylenes 7a and 7b
2-Aminothiazole derivative 4 (52 mg, 0.26 μmol) and CuX2 (X = Cl or Br; 0.26 μmol) were
dissolved in acetonitrile (2.5 mL). This reaction mixture was stirred at rt for 10 h. The reaction
mixture was then evaporated to dryness in vacuo, and the residue was dissolved in ethyl acetate
(20 mL) and washed with aqueous ammonia (0.1 M; 2 × 50 mL). The organic layer was dried
over MgSO4 then evaporated to dryness in vacuo. The residue was purified by chromatography
on silica gel (hexane–ethyl acetate; 70: 30, v/v). This procedure gave 7a and 7b in 51% and
94% yield, respectively.

General Procedure for the Halogenation of 4 on Supported Copper(I) Salts
Potassium halide (1 mmol) and copper(I) halide (1 mmol) were mixed in a flask containing
neutral aluminum oxide (3 g). A solution of water (0.1% v/v) in acetonitrile (5 mL) was added
and the mixture was stirred in an open vessel until solvent had completely evaporated off. The
residue was placed in an oven at 100 °C for 24 h and stored at room temperature before use.
2-Aminothiazole 4 (25 μmol) was dissolved in acetonitrile (3.5 mL) with n-butyl nitrite (30
μmol) at room temperature. The reaction mixture was stirred for 15 min and then a supported
copper(I) halide (0.5 g) was added. The reaction mixture was stirred overnight at room
temperature. Then acetonitrile was filtered off and the residue was rinsed with ethyl acetate.
The organic solutions were combined and solvent evaporated off. The residue was purified by
chromatography on silica gel. This procedure produced compounds 5a, 5b, and 5c in 56%,
83%, and 62% yield, respectively.

In the case of the Al2O3–KCuI2, the reaction was incomplete after 24 h at room temperature.
Addition of more supported reagent (0.5 g) led to reaction completion after a further 12 h. The
mixture was filtered and the filtrate was washed with sodium metabisulfate and dried over
magnesium sulfate. Finally, solvents were evaporated off and product purified with
chromatography.
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SCHEME 1.
Bromination of 4-((3-Fluorophenyl)ethynyl)-thiazol-2-amine (1) under Sandmeyer Conditions
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SCHEME 2.
Reactions of Copper Halides with 4-(Phenylethynyl)thiazol-2-amine (4)
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FIGURE 1.
Yield of products with temperature for the reaction of 4 with copper(II) bromide and n-butyl
nitrite (mole ratio, 1:1.2:1.2).
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TABLE 1

Yields of Products from the Bromination of 4 with Various Reagents under Sandmeyer
Conditions

brominating agenta 5b (%)b 6b (%)b 7b (%)b

CuBr2
c 94

CuBr2
d 99

CuBrd 98

CuBr 67

KBr 9 4

KBr-CuBr 77

Br2 58

Alumina-KCuBr2 90

a
All reactions were performed overnight with n-butyl nitrite at room temperature, unless otherwise indicated.

b
Yields are conversion of 4 determined by HPLC.

c
Performed in the absence of n-butyl nitrite.

d
Performed at 85 °C for 15 min.
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