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Abstract
We applied mode-decomposition and matched-filtering, both signal processing techniques used to
increase the signal-to-noise ratio (SNR), to array CGH data of human meningioma DNA, in order
to extract genomic regions of copy-number changes potentially associated with tumor progression.
DNA segments from different chromosomes were decomposed into a small number of dominant
components (modes), and low-amplitude modes were eliminated. The SNR of the entire segment
was increased and it was possible to identify local changes in the data spatial structure, previously
indistinguishable due to noise. We applied matched-filtering to the mode-reduced signals, using a
normal DNA sequences (averaged over 50 healthy donors) as the template. The residual signals from
this process were analyzed to identify disease-related copy number changes. We were able to identify
distinct local changes at different chromosomes in patients with recurrent versus primary
meningiomas.

I. INTRODUCTION
DNA allelic copy-number variations (CNVs) occur as part of the heterogeneity of normal
human genetic variability [14]. However, copy number changes have also been implicated in
a wide range of diseases, including tumorigenesis and cancer progression [3][10][13][17].
Characterization of these genetic changes is important for identifying genes involved in cancer
progression, as well as for diagnostic purposes and for predicting a patient’s response to
treatment.

Array Comparative Genome Hybridization (array CGH) is a high-resolution technology which
allows quantitative measurements of relative copy number changes and their mapping onto
genome sequences. Chromosomal copy numbers are not directly measurable, so array CGH
uses a reference and test DNA sequences, differentially labeled with fluorescent dyes, and
hybridized onto an array. The log-ratio of the two fluorescence intensities is then computed
and represents the relative copy number between the two hybridized sequences at each sampled
locus. However, given the significant heterogeneity of genomic profiles, impurity of the
reference sequence, and other biological and experimental factors, the resulting data are noisy
and may require substantial pre-processing, including artifact removal and normalization by
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some data statistic. Nevertheless, array CGH provides high resolution and genomic-scale
information on copy number variation and is thus a powerful tool.

Analysis methods of array CGH data include examination of single markers, without
accounting for the spatial correlation of neighboring markers [7], segmentation methods and/
or Hidden Markov models which are used to identify correlated DNA regions of interest,
locations of copy number transitions, and segments of loss or gain [6]. In general, these analysis
methods fall into two categories: supervised and unsupervised. Supervised approaches require
a a priori specification of copy number events, i.e, gain, loss or no change and target DNA
locations of interest. Unsupervised approaches do not rely on such information and are thus
appropriate for discovering novel genomic changes associated with disease. Application of
signal processing techniques to array CGH data is limited. Yet, these methods are typically
unsupervised and naturally account of correlations between neighboring time points, which in
the context of array CGH data correspond to spatial correlations between loci.

In this study we applied matched-filtering to array CGH data from patients with primary and
recurrent atypical meningiomas, to identify chromosomal regions of significant copy number
changes. We first explored the presence of a genome-wide, wave-like artifact in the data, first
reported by [6] but consistently identified and extracted in [12]. We applied a mode-
decomposition method [8][16] to extract dominant signal modes and remove low-amplitude
components with insignificant contributions to the signal. As a result, the signal-to-noise ratio
increased significantly across the entire segments of interest. Matched-filtering, which is
widely used in pattern recognition, sonar and communications, to extract a known signal (the
template) from an observed signal corrupted by noise, was then applied to the mode-reduced
data, to identify DNA regions of copy number changes. Template sequences were synthesized
from DNA of healthy subjects. Sequences from meningioma DNA were treated as the observed
noisy signals.

II. METHODS
A. Array CGH Data

Array CGH data of DNA from primary and recurrent atypical meningiomas, World Health
Organization grade II, from 65 patients (35 males and 30 females) were obtained by hybridizing
tumor and normal DNA probes on the Agilent Human Genome CGH MicroArray 105. Two
reference sequences (male and female) were used in the hybridization. The array has
approximately 99,000 probes and average resolution of 15 kb. Reference DNA was obtained
from 10 healthy donors to avoid inclusion of polymorphisms. Normal and tumor probes were
labeled with fluorescent dyes Cy3 and Cy5, respectively. Following hybridization, the log2
fluorescence intensity ratios (Cy5 to Cy3 fluorescence) were computed. To obtain a robust
normal DNA sequence as a template signal, and also assess the inter-sequence variability
among healthy donors, we also analyzed 48 normal sequences obtained from The Cancer
Genome Atlas(TCGA) [1]. These data were generated using the Agilent Human Genome CGH
Microarray 244A, which has approximately 236,000 probes and average resolution of 6.4 kb.
In order for the two data sets to be comparable, we down-sampled the TCGA data to the same
number of probes as the meningioma array CGH data. All normal sequences where averaged
to obtain the template signal.

B. Matched Filtering
Matched filtering is a theoretically optimum detection method for extracting a signal of known
waveform from an observed, contaminated by noise signal. If the noise spectrum is white, the
matched filter is the time-reversed signal [18]. The filtering operation involves the convolution
of the known (template) signal with the unknown signal in order to extract the template from
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it [2]. Matched-filtering is extensively used in communications, sonar and pattern recognition
applications. The matched filter h(t) maximizes the SNR and thus improves the detection of a
known signal. It is a waveform-or pattern-specific filter rather than a frequency band-specific
filter. The method involves convolving an observed signal y(t) with the filter h(−t) to obtain
the matched-filtered signal yMF(t), i.e.,

(1)

This process corresponds to signal cross-correlation, which, however, does not involve time-
reversal. In this study we used one normal DNA sequence as the template, obtained by
averaging over 50 normal sequences, and matched-filtered the meningioma sequences with
this template. The signal of interest was the residual from this process, as the matched-filtered
signal represents the best match between template and observed data, i.e, increases the SNR in
regions where the DNA sequences were normal. Instead we were interested to eliminate these
and extract the abnormal residual signal.

C. Mode Decomposition
A time series may be decomposed into a theoretically infinite number of components (modes),
which are nevertheless bounded by the sampling frequency. Not all modes contribute equally
to the signal. Fourier decomposition of a signal assumes stationarity and sine or cosine mode
shapes. Signals are, however, often non-stationary and their mode shapes significantly deviate
from sine or cosine functions. In the context of array CGH data, copy-number variation is a
non-stationary process. Changes in a cluster of spatially correlated markers corresponds to a
high-frequency signal, whereas spatially sparse copy-number variation corresponds to a low-
frequency signal. In order to identify the potential contribution of a previously reported wave-
like artifact in the array CGH data, we applied a modified mode decomposition technique
[16], based on the original Empirical Mode Decomposition (EMD) [8], which does not assume
stationarity. Instead, any signal consists of a set of intrinsic mode functions (IMF) which can
be sequentially extracted through a sifting process. The local extrema of the signal are first
identified and fitted with a cubic spline, to obtain the first IMF c1. The latter is subtracted from
the original signal, and the process is repeated until the the variance of the residual signal is
very small. The process stops when the normalized squared difference between two successive
sifting operations is small, based on an a priori set threshold for σk, where:

(2)

All IMFs were examined to ensure that they were zero-mean. The original method was
modified to account for potential modal amplitude instabilities at the endpoints [16].

III. Array CGH DATA ANALYSIS
An example of array CGH data, from the reference sequence and one patient with meningioma,
respectively are superimposed in Figure 1. The segments are along chromosome arms 1p and
1q, chromosomes 2, 3 and 5. CNVs in these chromosomes have been implicated in progression
of brain cancers. Specifically, chromosome arm 1p has been associated with copy number loss
and chromosomes 2, 3, 5 and arm 1q with copy number gain [10][17].
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We investigated the ‘low-amplitude’, wave-like artifact identified in [12], using modified
empirical mode decomposition, to increase the data SNR. Figures 2 and 3 show examples of
original and mode-reduced segments along chromosome 3 of the normal sequence and of one
cancer patient, respectively. Signals were decomposed into a small set of components (typically
less than 20). Usually, the physics of the system guides the choice of modes that are
subsequently chosen. Here, small modal amplitude is the only available other criterion for
eliminating modes. Figure 2 shows the effect of progressively eliminating higher order/
frequency modes from the normal sequence, resulting in progressively smaller variances.
Figure 3 shows the effect of eliminating low-amplitude modes from the meningioma
sequences. Thus, this method is adequate for increasing the SNR both in regions of large copy-
number gains and losses, and in regions of small copy-number variability, as in the case of
normal sequences.

Higher order modes and/or low-amplitude modes were eliminated based on their contribution
to the SNR of the sequence, i.e, modes were included as long as the resulting SNR was at or
above a threshold, here set to 3 ( ). Sequences were re-synthesized
by superimposing only the selected modes. The local structure of the data was more clearly
distinguishable in the mode-reduced signals, e.g, in Figure 3 between markers 800–1000.
Simultaneously, noise levels were reduced in the first 800 markers, revealing a more
heterogeneous data structure than that of the original sequence. We computed the SNR of the
data by normalizing them by the standard deviation of the entire chromosomal segment, both
pre- and post-mode decomposition, for all patients and chromosomes. Figure 4 compares the
two SNR values, for each marker along the segment, for 3 different patients and segments along
chromosomes 3, 1, and 2.

Mode-decomposition and signal re-synthesis based on the reduced number of modes, resulted
in higher SNR. Prior to matched-filtering, all data were, therefore, mode-reduced. Filtering was
performed using a sliding window of 100 data points (markers), corresponding to DNA
segments of length > 1–2 Mb. The effect of window length on the resulting matched-filtered
signal was found to be insignificant. The filtered signals were subtracted from the original
sequences, and residual signals were further examined for copy number changes, as they
represented the copy number deviations from normal CNVs, possibly due to cancer
progression. Figure 5 shows the raw (top), mode-reduced (middle) and residual (bottom)
signals, for one patient with meningioma.

There is a clear noise level reduction in the mode-reduced signal. However, although the
general trends of copy number loss in the p arm of chromosome 1 and gain in the q arm are
distinguishable even in the raw and mode-reduced signals, it is difficult to identify local copy
number changes in these signals. In contrast, the SNR increased locally in the matched-filtered
data, reflecting regions of significant relative copy-number changes in comparison to the
normal DNA sequence. We examined data from patients with recurrent and primary tumors
separately, to identify tumor-type specific copy-number changes. Figure 6 shows an example
of the matched-filter chromosome 1 sequence, of 6 patients (3 with recurrent and 3 with primary
tumors). For patients with recurrent tumors there were consistent local regions of copy number
gain in arm 1p, followed regions of copy number loss, not distinguishable in the raw data. In
some patients with primary tumors, a specific gain at the end of arm 1p was also seen, but those
data were more heterogeneous.

IV. DISCUSSION
We have presented preliminary results from the analysis of array CGH data of primary and
recurrent human meningiomas, using mode-decomposition, followed by matched- filtering, to
increase the SNR of the data, and identify specific chromosomal regions where copy number
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changes occur, possibly as a result of tumor progression. We have shown that, reducing the
number of signal components through mode decomposition increased SNR. Matched-filtering,
used to eliminate the normal copy-number variability of the data, resulted in signals where
localized CNVs at specific locations along the chromosomes were clearly identifiable.
Consistent CNVs for all patients with recurrent meningiomas were seen, at least in the few
fully analyzed chromosomes. Thus, signal processing techniques that aim at increasing the
SNR may be useful in the analysis of array CGH data, to identify local (small-scale) copy
number changes, possibly associated with tumor progression.
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Fig. 1.
DNA segments along chromosomes 2, 3, 5 and arms 1p and 1q, from the averaged normal
sequence (blue) and from a patient with meningioma(red).
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Fig. 2.
DNA segments along chromosomes 3, from the normal sequence. A low amplitude mode is
superimposed to the original segment (top). Mode-reduced signals are shown in the middle
and bottom plots.
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Fig. 3.
DNA segments along chromosomes 3, from a sequence of one patient with meningioma. High
and low-amplitude modes are superimposed to the original signal. The mode-reduced signal
is shown in the bottom plot.
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Fig. 4.
Comparison of SNR before and after mode decomposition and elimination of low-amplitude
modes. Columns correspond to chromosomes, rows to patients.
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Fig. 5.
log2 ratios along chromosome 1, of one patient with meningioma. Raw data (top), mode-
reduced (middle) and residual (bottom).
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Fig. 6.
log2 ratios along chromosome 1, of patients with recurrent tumors (left column), and primary
tumors (right column), respectively.
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