
Design Principles of Biochemical Oscillators

Béla Novak* and John J. Tyson#

*Oxford Centre for Integrative Systems Biology, Department of Biochemistry, University of Oxford,
South Parks Road, Oxford OX1 3QU, UK
#Department of Biological Sciences, Virginia Polytechnic Institute & State University, Blacksburg
VA 24061, USA

Abstract
Cellular rhythms are generated by complex interactions among genes, proteins and metabolites.
They are used to control every aspect of cell physiology from signaling, motility and development
to growth, division and death. By considering specific examples of oscillatory processes, we pick
out three general requirements for biochemical oscillations: delayed negative feedback, sufficient
‘nonlinearity’ of the reaction kinetics, and proper balancing of the time-scales of opposing
chemical reactions. Positive feedback is one mechanism to delay the negative feedback signal.
Biological oscillators can be classified according to the topology of the positive and negative
feedback loops in the underlying regulatory mechanism.

Biochemical oscillations occur in many contexts (metabolism, signaling, development, etc.)
where they control important aspects of cell physiology, such as circadian rhythms, DNA
synthesis and mitosis, and the development of somites in vertebrate embryos (see Table 1).
In the 1950s and 60s, the first clear examples of biochemical oscillations (in metabolic
systems) were recognized in glycolysis1, 2, in cyclic AMP production3, and the horseradish
peroxidase reaction4, 5. Soon after these discoveries, theoreticians were thinking about the
general requirements for chemical oscillations and the specific mechanisms of these
examples6, 7. After the molecular biology revolution of the 1980s, many new examples of
oscillations in protein interaction networks and in gene regulatory networks came to light,
such as the PERIOD proteins in animal circadian control8, the CYCLIN proteins in
eukaryotic cell cycle control9, 10, and the Repressilator11 in genetically engineered
bacteria.

Understanding the molecular basis of cellular oscillations is more than an exercise in
experimental genetics and biochemistry. Oscillators have systems-level characteristics
(periodicity, robustness, entrainment) that transcend the properties of individual molecules
or reaction partners and involve the full topology of the reaction network. These properties
can only be fully understood by viewing experimental data from a theoretical perspective,
by quantitative mathematical modeling of chemical oscillatory processes. These models
address general concepts of dynamical systems, such as feedback, time delays, bistability
and hysteresis.
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In this review, we present a series of examples of increasing complexity, which illustrate the
following essential requirements for biochemical oscillators. (1) Negative feedback is
necessary to carry the reaction network back to the ‘starting point’ of its oscillation. (2) The
negative feedback signal must be sufficiently delayed in time so that the chemical reactions
do not home in on a stable steady state. (3) The kinetic rate laws of the reaction mechanism
must be sufficiently ‘nonlinear’ to destabilize the steady state. (4) The reactions that produce
and consume the interacting chemical species must occur on appropriate time scales that
permit the network to generate oscillations. Time-delay can be created by a physical
constraint (for example, the minimal time necessary to carry out transcription and
translation, or the time needed to transport chemical species between cellular
compartments), by a long chain of reaction intermediates (as in a metabolic pathway), or by
dynamical hysteresis (overshoot and undershoot, as consequences of positive feedback in
the reaction mechanism).

To keep the mathematics of oscillating chemical reactions to a minimum, we will
demonstrate the design principles of biochemical oscillators by rate plots (how do reaction
rates depend on chemical concentrations?), signal-response curves (how do oscillations turn
on and off in response to regulatory signals?) and ‘constraint’ diagrams (how are the kinetic
constants of the reaction mechanism constrained by requirements for periodicity?). The
mathematical details are made available to interested readers as online supplementary
information. For further details on the principles underlying chemical and biochemical
oscillations, we refer the interested reader to books12-15 and review articles2, 6, 16-18.

Negative feedback with time delay
In order to lay bare the ‘design principles’ of biochemical oscillators, it makes no sense to
start with a fully detailed model of a particular cellular rhythm, such as the cell cycle in
human fibroblasts, which is likely to be so overlain by subtle control signals that the
essential features of the oscillator are obscure. Rather, we start from a highly idealized
model of periodic protein synthesis that illustrates the basic requirements of biochemical
oscillators in their pristine form.

We have in mind a protein (like PER in the circadian control system of fruit flies19, 20) that
represses the transcription of its own gene (Fig. 1a). The details of this feedback repression
are not important at present. The time-rate of change of protein concentration, dY/dt, is
given by a simple kinetic equation,

(1)

where the first term is the rate of synthesis of protein and the second is its rate of
degradation. The synthesis rate is proportional to a ‘signal’ S (which might be the
concentration of a transcription factor that up-regulates the gene) multiplied by a factor,

, expressing how gene transcription is down-regulated by Y. In this factor, Kd
is the dissociation constant for binding of Y to the up-stream regulatory sequence of the
gene, and p is an integer indicating whether Y binds to the DNA sequence as a monomer,
dimer, trimer, etc. The rate constant k1 is the rate of synthesis of Y (per unit signal strength)
when the concentration of Y is small and the gene is fully expressed. In the second term, E
is a protease that degrades Y (ET is the total concentration of enzyme); its turnover rate is k2
and its Michaelis constant is Km. (Note: lower case k's are rate constants, unit = time-1;
upper case K's are dissociation constants, unit = concentration.)
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In Fig. 1b we plot the rates of synthesis and degradation of the protein as functions of its
concentration, Y. From the diagram it is clear that the protein concentration, if indeed it is
governed by the simple kinetic equation (1), will be drawn towards its steady-state value,
Yo, without any oscillations, nor with any overshoots or undershoots. If ‘homeostasis’ is
what we desire, this is great, but if we are looking for ‘oscillations’ we need something
more.

Explicit time delay
Suppose that the rate of protein synthesis at present (at time t) depends on the concentration
of protein at some time in the past (at time t-τ), where τ is the time delay required for
transcription and translation. Then, the governing kinetic equation becomes

(2)

This model of protein synthesis and degradation was first studied in detail by Mackey and
Glass in 197721. For a proper choice of rate constants and time delay, this equation exhibits
periodic oscillations, as illustrated in Fig. 1c. The time delay causes the negative feedback
control repeatedly to overshoot and undershoot the steady state (Fig. 1d). For details on how
to simulate Eq. (2) and all other models in this review, see supplementary information S1
(box).

By ‘proper choice of rate constants…’ we mean that, in order for Y(t) to oscillate, the
kinetic parameters—S (signal strength), p (nonlinearity of feedback), Km (nonlinearity of the
removal step), and τ (duration of time delay)—must satisfy specific constraints, illustrated
in Fig. 1e and f. For details on how these constraint curves are calculated, see supplementary
information S2 (box). The constraints can be summarized in three requirements. (1) The
time delay, τ, must be sufficiently long. (For fixed values of p and Km, there is a minimum
value of τ —call it τmin—below which oscillations are impossible.) (2) The reaction rate
laws must be sufficiently ‘nonlinear’. (Oscillations become easier—i.e., τmin gets smaller—
as either p or Kd/Km increases.) (3) The rates of opposing processes must be appropriately
balanced.

To understand the third requirement, we must look more closely at the axes in Figs. 1e and f.
The value of ‘time delay’ plotted on the vertical axis is really a dimensionless combination
of parameters:

The value of ‘Signal strength’ plotted on the horizontal axis is the dimensionless ratio

For fixed values of p and Kd/Km, these ratios must lie above a specific curve plotted in the
figures. For example, for p = 2 and Kd/Km = 10 (‘modest’ nonlinearity of the rate laws for
protein synthesis and degradation), these ratios must (roughly speaking) satisfy the
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inequalities: τ / Tdegr > 2 and Tdegr / Tsyn > 1 (from the lowest curve in Fig. 1f). Estimating
the time delay for transcription and translation to be about 20 min, we predict that, in order
for the negative feedback loop to oscillate, the time scale for protein degradation must be <
10 min and the time scale for protein synthesis must be even shorter. If these conditions are
satisfied, then the period of oscillation is (again, roughly speaking) between 2× and 4× the
time delay, i.e., approximately 40—80 min.

In the remainder of this review, we intend to show that these four requirements (negative
feedback, nonlinearity, time delay, and time-scale constraints) are quite generally true of all
biochemical oscillators, provided the notion of ‘time delay’ is suitably generalized.

Time delay by a series of intermediates
Our simple model of negative feedback on gene expression, Eq. (2), exhibits sustained
oscillations if there is a sufficiently long time delay between the action of the protein Y on
the gene and the appearance of new protein molecules in the cytoplasm. We expressed this
requirement as a discrete time delay, τ, in the kinetic equation. Maybe we can dispense with
τ if we include the dynamics of mRNA in our model (Fig. 2a). To this end, we write a pair
of kinetic equations for X = [mRNA], Y = [Protein]:

(3)

In Fig. 2b we plot the ‘nullclines’ of this pair of nonlinear differential equations. The X-
nullcline (curve a in Fig. 2b) is the locus of points in the (X,Y) plane where the rate of
mRNA synthesis is exactly balanced by the rate of mRNA degradation, that is, where

. Along the X-nullcline, dX/dt = 0 and trajectories move horizontally in the
(X,Y) plane because there is no change in the X direction but there may be change in the Y
direction. The Y-nullcline (curve b) is the locus of points where the rate of protein synthesis

is balanced by its rate of degradation, that is, where . Along the Y-nullcline,
dY/dt = 0 and trajectories move vertically in the (X,Y) plane. Where the nullclines intersect
(the solid circle in Fig. 2b), the trajectory comes to rest at a steady state (both dX/dt = 0 and
dY/dt = 0). The sample trajectories in Fig. 2b (the dashed lines) spiral into the stable steady
state. Although the system of reactions may exhibit damped oscillations on the way to the
steady state, sustained oscillations in this simple gene regulatory circuit are impossible22.
Hence, adding mRNA to the model does not do away with the requirement for an explicit
time delay.

Before giving up the idea of replacing the time delay by a series of intermediates in the
negative feedback loop, let's recognize that (in eukaryotes) the mRNA and protein molecules
need to be transported between nucleus and cytoplasm (Fig. 2c). Equation (3) is readily
expanded to four variables: mRNA and protein in the nucleus (Xn, Yn) and in the cytoplasm
(Xc, Yc). The four-variable negative feedback loop oscillates as naturally as a pendulum
(Fig. 2d)!

The constraint diagrams in Fig. 2 underscore the conclusions of the previous section. Figure
2e shows that the kinetic rate laws must be sufficiently nonlinear (p and/or Kd/Km large
enough). Figure 2f shows that the turnover rates for mRNA in the nucleus (kdxn = 0.693/
half-life of Xn) and for protein in the cytoplasm (kdyc = 0.693/half-life of Yc) must be
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properly balanced. Furthermore, if either kdxn → ∞ or kdyc → ∞, the negative feedback
loop reduces to three components, (Xc, Yc, Yn) or (Xn, Xc, Yn) respectively, and yet
oscillations are still possible. Hence, we conclude that oscillations are impossible in a two-
component negative feedback loop (Fig. 2b) but possible in a three-component negative
feedback loop (Fig. 2f)22.

This mechanism (negative feedback on gene expression with three or more components in
the feedback loop), which we have used to illustrate the four basic principles of biochemical
oscillations, was first put forward by Brian Goodwin23, 24 in mid-1960s as a model for
periodic enzyme synthesis in bacteria. Our calculations in this section show that, with an
effective time delay (transcription + translation + reaction intermediates) of about 20 min,
this model gives a period of about 1 h, which is close to the observed periods of such
rhythms25. This mechanism has also been a favorite model for circadian rhythms in flies
and mammals, governed by the PER protein, which moves into the nucleus and blocks
expression of the PER gene26, 27. Of course, to get a period of 24 h, the time delay for the
feedback signal must be considerably longer than the delay expected for transcription,
translation and nuclear transport. It is believed that PER undergoes slow post-translational
modifications (phosphorylations) in the cytoplasm before it returns to the nucleus20.

The possibility of sustained oscillations in a three-component negative feedback loop was
used by Elowitz and Leibler11 to design the ‘Repressilator’, a synthetic gene regulatory
network in E. coli consisting of three operons, each one expressing a protein that represses
the next operon in the loop. The successful engineering of the Repressilator was a
foundational triumph of the nascent field of ‘synthetic biology’ and a vindication of the
theoretical ideas of Goodwin23, 24, Griffith22, Goldbeter26 and others.

Time delay by positive feedback
Time delay is a sort of memory: protein synthesis rate at the present time depends on protein
concentration over some time in the past. Memory is a property of biochemical systems with
bistability: under identical chemical conditions, the system can be in either of two,
alternative, stable steady states28, 29. Which state the system is currently occupying
depends on its recent history (a phenomenon called ‘hysteresis’). Hysteresis can prevent a
system with negative feedback from finding its homeostatic steady state. To see how this
happens, we add positive feedback to our mRNA-protein example, Eq. (3). In particular, we
assume that protein Y, in addition to binding to its own gene regulatory site and down-
regulating its own expression, can bind to an allosteric site on protease E and inhibit E's
activity (Fig. 3a). (Note: by inhibiting its own degradation, Y helps itself to accumulate.)
The kinetic equations become:

(4)

In these equations, kdy is the rate constant for an alternative pathway of protein degradation
and KI is a constant that characterizes the strength of the inhibition of enzyme E by its
substrate Y. In Eq. (4), as before, S is the concentration of a transcription factor that up-
regulates the expression of the mRNA encoding protein Y. We think of S as a signal that
may induce sustained oscillations in protein level as a function of time.

In Fig. 3b we draw the nullclines of Eqs. (4) in the same format as Fig. 2b. The effect of
positive feedback is to put a kink in the degradation curve (compare curves b in Figs. 2b and
3b), and the kink forces the dynamical system to overshoot and undershoot the steady state
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repeatedly (compare the dashed trajectories in Figs. 2b and 3b). The system executes
sustained oscillations (Fig. 3c), provided the signal strength, S, is within certain bounds (Fig.
3d).

The constraint diagrams (Figs. 3e and f) show that these oscillations require positive
feedback (they disappear if KI is too small or too large) and proper balancing of time scales:
mRNA must be sufficiently stable (kdx not too large) and signal strength must lie within
strict bounds (S not too large and not too small).

This mechanism (negative feedback on gene expression + inhibition of protein degradation)
has been suggested by Tyson et al.30 as a possible source of circadian rhythms in the
reaction network governing expression of the PER gene in fruit flies. Their idea was that
PER protein may form dimers that are less prone to degradation by the protease (‘E’ in the
model is casein kinase, which phosphorylates PER and labels it for proteolysis). Other
examples of this design for oscillations will be given after we expand our notion of reaction
mechanisms from gene regulation to metabolic control systems and protein interaction
networks.

Biochemical interaction networks
Using a simple gene regulatory network (GRN) as an example, we have discovered two
distinct mechanisms for generating oscillations: a negative feedback loop with at least three
components, and a combination of short positive and negative feedback loops. We might
depict these mechanisms with the following ‘regulatory motifs’:

where X → Y means ‘X activates Y’ and X ⊣Y means ‘X inhibits Y’. The general ideas of
the previous section—positive and negative feedback, time delay, nonlinearity—are not
limited to GRNs but apply equally well to metabolic control systems (MCSs) and to protein
interaction networks (PINs). We would like to know whether there is a general theory of
regulatory motifs (like the two above) that classifies types of biochemical oscillators.

In this review, we are not so much interested in the precise mechanism of particular
biochemical oscillators as in the patterns of activation and inactivation (that is, the
regulatory motifs) that appear repeatedly in all known oscillators. How ‘activation’ and
‘inhibition’ is actually carried out, biochemically, varies considerably, depending on the
context. In GRNs, transcription factors bind to regulatory sequences upstream of genes and
control whether the gene is transcribed to mRNA or not. In MCSs, metabolites bind to
enzymes and control how quickly or slowly the enzyme catalyzes a particular chemical
reaction. In this way, metabolite X can ‘activate’ metabolite Y either by activating the
enzyme that produces Y or by inhibiting the enzyme that consumes Y. In PINs, protein X
might activate protein Y because X is a kinase phosphorylating Y, or because X is a binding
partner forming an active XY dimer. Protein X might, just as well, inactivate protein Y by
binding to Y or by phosphorylating Y, or because X is a protease that degrades Y. Given all
these possibilities, there are myriad ways to build a PIN or MCS to instantiate a particular
regulatory motif. Our previous examples, involving negative feedback on gene expression,
suggest that, besides the regulatory motif itself (the pattern of positive and negative
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interactions), it is important that an oscillatory mechanism have sufficient ‘nonlinearity’ and
that the rates of particular opposing reactions are properly balanced.

Nonlinearities arise in biochemical reaction networks from many sources (Fig. 4). We have
already used the example of a multimeric transcription factor binding to a genetic regulatory
sequence (Fig. 4a), for which the probability of binding is given by a nonlinear ‘Hill’

function31, . Cooperative binding of substrates and modifiers to multi-subunit,
allosteric enzymes (Fig. 4b) also generates sigmoidal nonlinearities, adequately described by
Hill functions or by more accurate kinetic rate laws31, 32. Reversible phosphorylation and
dephosphorylation of target molecules can create a sigmoidal signal-response curve, if the
interconverting enzymes (kinase and phosphatase) have high affinity (low Km) for their
abundant substrates (zero-order ultrasensitivity33) or if the target molecule has multiple
phosphorylation sites (Fig. 4c)34. Our final example is a stoichiometric inhibitor that binds
to a regulatory protein (X) to form an inactive complex (Fig. 4d): as the total amount of X
increases in response to signal (S), the active fraction of X shows a highly nonlinear signal-
response curve35. A high-affinity substrate can work as a stoichiometric inhibitor of its
enzyme, making enzyme activity for other substrates nonlinearly dependent on enzyme
level36. These sorts of interactions, when introduced into reaction networks of the right
topology, may provide the nonlinearity needed to generate oscillations.

In the next section we present a general classification scheme for simple regulatory motifs
that exhibit sustained oscillations, provided the chemical implementation has sufficient
nonlinearity (introduced by reactions like those in Fig. 4) and the time scales of the reactions
are properly balanced.

Classification of oscillatory motifs
So far, we have shown by examples that biochemical oscillations may be generated by a
delayed negative feedback loop (at least three components in the loop) or by combining
positive and negative feedback loops. In this section, we want to put these two examples into
a general scheme for classifying motifs of biochemical oscillators (Fig. 5).

First of all, we conjecture that oscillators always involve a negative feedback loop. We
know of no examples of chemical oscillations without negative feedback, and negative
feedback seems necessary to close a sequence of chemical states back on itself. In all our
examples, we will use the letter X to denote the ‘activator’ and Y the ‘inhibitor’ in the
negative feedback loop, that is, X ‘activates’ Y and Y ‘inhibits’ X. We allow that the
activation or inhibition may be indirect, i.e., through an intermediate Z.

Secondly, we limit our study to mechanisms that lack autocatalysis (that is, cases where
component X directly promotes its own activity). We can think of a few examples (a protein
kinase that phosphorylates and activates itself, or a misfolded protein that induces other
copies of itself to misfold), but direct autocatalysis of this sort is rare compared to self-
promotion by a positive feedback loop (for example, X activates W and W activates X).
Direct autocatalysis can be incorporated into the scheme we are presenting, but it makes the
enumeration of cases unnecessarily complex.

We have already shown that the capacity to oscillate (in networks lacking direct
autocatalysis) requires at least three chemical species interacting by at least three regulatory
links (activation or inhibition). Motifs (A) and (B) above show two simple examples: a
three-component negative feedback loop, and a pair of coupled positive- and negative
feedback loops (3 components and 4 links). We have systematically surveyed all three-
component regulatory motifs with three or four interaction links and investigated each
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topologically distinct motif for the capacity to oscillate. The oscillatory motifs we found can
be divided into three classes, as follows.

Class 1: Delayed Negative Feedback Loops
By delayed negative feedback we refer to 3 or more components connected in a single loop
by positive and negative links, with an odd number of inhibitory links. Delayed negative
feedback is often used to model oscillatory responses in molecular cell biology. Besides
circadian oscillations of PER protein in fruit flies (mentioned earlier), other examples
include oscillations of p53 in response to ionizing radiation (p53 → MDM2 mRNA →
MDM2 protein ⊣ p53)37-40 and oscillations of NF-κB in response to stimulation by tumor
necrosis factor (NF-κB → IκB mRNA → IκB protein ⊣ NF-κB)40-43.

Because this regulatory motif has 3 or more components, it cannot be adequately
represented by a two-variable state space, as in Figs. 2b and 3b. Nonetheless, it is instructive
to plot trajectories of the basic motif (X → Y → Z ⊣X) in the XY plane (Fig. 5a, left) and
in the XZ plane (Fig. 5a, right), and to compare these plots to the case of a two-component
negative feedback loop (X → Y⊣X) in Fig. 2b. In that figure, curves a and b (called
‘nullclines’) indicate places where the flow of the reaction system is horizontal (in the Y
direction only) and where it is vertical (in the X direction only). (Please notice that we
always plot the activator X on the vertical axis.) These ‘flow indicators’ force the
trajectories (the dashed curves in Fig. 2b) to spiral into the steady state. For the case of a
delayed feedback loop, the trajectories do not obey the flow indicators (Fig. 5a). If we are
plotting X vs. Y (Fig. 5a, left panel), the limit cycle trajectory does not cross curve a in a
horizontal direction, because the rate of synthesis of X depends on Y concentration some
time in the past. If we are plotting X vs. Z (Fig. 5a, right panel), the limit cycle trajectory
does not cross curve b in a vertical direction, because the rate of synthesis of Z depends on
X concentration some time in the past. In either case, the delay allows the trajectory to form
a closed orbit around the steady state instead of spiraling into it.

Class 2: Amplified Negative Feedback Loops
In Fig. 3 we considered a special case where the inhibitor (the protein) is amplified by a
positive feedback loop. It should be obvious that activator amplification may be just as
effective. For the case of activator amplification (Fig. 5b, left panel), the X-nullcline (curve
a) is ‘kinked’ by the positive feedback loop. For inhibitor amplification (Fig. 5b, right
panel), the Y-nullcline (curve b) is ‘kinked’. In either case, trajectories are now forced to
wheel around the steady state onto a closed orbit (curve c, a sustained oscillation).

Where do the ‘kinks’ come from? A two-component positive feedback loop (W → X → W
or W ⊣X ⊣W) can respond in a bistable manner to inhibition by Y. (In this case—Fig. 5b,
left—we are thinking of Y as signal strength and X as the response variable.) If Y is large,
then X will be small, for sure, and if Y is small, then X may be large. But for intermediate
values of Y, the steady state concentration of X can be either large or small, depending upon
how the system got to the intermediate value of Y. This bistability is reflected in the Z-
shaped nullcline (curve a) on the left of Fig. 5b. For the case of inhibitor amplification (Fig.
5b, right), we think of X as signal strength and Y as response variable. In this case, Y can be
a multi-valued function of X, and the Y-nullcline (curve b) becomes N-shaped. In either
case, the negative feedback between X and Y forces trajectories to rotate clockwise on our
standard XY plane, and the positive feedback loop puts kinks in one of the nullclines to
prevent trajectories from spiraling into the steady state.

This class of oscillators appears commonly in the literature, from the earliest models of
chemical oscillations 44-46 to recent models of mitosis-promoting factor (MPF) in frog egg
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extracts47, 48. The latter case is an activator-amplified negative feedback loop, with
W=Cdc25, X=MPF and Y=Cdc20. An inhibitor-amplified negative feedback loop
(X=Cdc10, Y=Cig2, Z=Rum1) has been used by Novak & Tyson49 to model
endoreplication (periodic DNA synthesis in the absence of cell division) in mutant fission
yeast cells. Recently, a synthetic oscillator based on an activator-amplified negative
feedback loop has been built in bacteria by Jeff Hasty's group50.

Class 3: Incoherently Amplified Negative Feedback Loops
By rewiring an activator-amplified negative feedback loop (D), we create new regulatory
motifs (C and E)

that may also have the potential to oscillate. Each of the motifs (C) and (E) has a two-
component positive feedback loop (− −, in both C and E) embedded in a three-component
negative feedback loop (+ + − in C and − − − in E). Motif (C) also has the characteristic that
X inhibits W directly and activates W indirectly (through Y). This characteristic is called an
incoherent feedforward loop (C′). Motif (E) can also be redrawn as an incoherent
feedforward loop (E′).

Hence, we describe these motifs as incoherently amplified negative feedback loops (NFLs).
In both motifs C′ and E′, the embedded positive feedback loop is (− −). There are two other
incoherently amplified NFLs based on an embedded (+ +) feedback loop. The four cases are
shown in Fig. 5c. In each case, the NFL may, of course, oscillate in its own right, but the
additional positive feedback loop adds bistability and robustness to the mechanism51.

The earliest models of glycolytic oscillations 52-54 belong to this class of oscillators (Fig.
5c, fourth motif). In this motif, Z → X refers to the biochemical reaction that converts
fructose-6-phosphate + ATP (Z) into fructose-1,6-bisphosphate + ADP (X). The enzyme
that catalyzes this reaction, phosphofructokinase (species Y in the motif), is activated by
ADP (X → Y), and the active form of Y promotes both the removal of Z (Y ⊣ Z) and the
production of X (Y → X).

The Martiel-Goldbeter55 model of cyclic AMP oscillations in slime mold cells is another
example of the fourth motif in Fig. 5c. In this case, intracellular cAMP is the activator (X)
and extracellular cAMP is the incoherent signaler (Y). Extracellular cAMP binds to a
membrane receptor that quickly activates the enzyme that synthesizes cAMP from ATP
inside the cell. This is the fast activatory signal from Y to X. Furthermore, extracellular
cAMP pushes the membrane receptor (Z) into an inactive state, which only slowly recovers
activity after cAMP is destroyed by extracellular phosphodiesterase. This is the slow
inhibitory signal from Y to X. Tyson & Novak56, 57 use incoherently amplified(- -)NFLs
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(the first and second motifs in Fig. 5c) to model cell cycle transitions (M/G1 and G1/S,
respectively). To model oscillations in p53 (a transcription factor that coordinates
intracellular responses to DNA damage), Ciliberto et al.58 used an incoherently amplified(−
−)NFL and Zhang et al.59 suggested an alternative mechanism based on an incoherently
amplified(+ +)NFL (the first model in their Fig. 1).

Other possibilities?
There are three other regulatory motifs with 3 components, 4 links and a topology similar to
motifs (C′) and (E′):

In these motifs, we use circles to indicate interactions of either sign (+ or -); two white
circles must have the same sign, whereas black and white circles have opposite signs.

Motif (F) is a ‘coherently repressed’ NFL, consisting of two negative feedback loops, one
with three components and the other with two components. Clearly, if the link X → Y is
weak enough, the three-component NFL might oscillate on its own. Addition of the two-
component NFL dampens the propensity of the three-component NFL to oscillate.

Motif (G) is a different sort of incoherently amplified NFL; it differs from the Class 3 motifs
in Fig. 5c in that the positive loop has three components (rather than two) and the negative
loop has two components (rather than three). Everything we have said so far might lead us to
expect oscillations in this motif under the right choice of nonlinearities and rate constants.
However, it is possible to show that motif (G) cannot generate oscillations for any choice of
nonlinear rate equations or any parameter settings (see supplementary information S3
(box)).

Motif (H) has two positive feedback loops, one with two components and one with three.
We might expect this regulatory motif to exhibit bistability but not oscillations, and indeed
this is the case (see supplementary information S4 (box)).

More complex topologies and oscillatory behaviours
To this point we have exhausted all possible oscillatory motifs with 3 components and at
most 4 links. Topologies with 3 components and 5 or 6 links are so densely connected that it
is difficult to think of them as regulatory ‘motifs’. For example, motif (I) combines a Class 2
inhibitor-amplified negative feedback loop with a Class 1 three-component negative
feedback loop. Either sub-motif may oscillate in its own right. Motif (I) has recently been
used by Rust et al.60 to model circadian oscillations in phosphorylation state of the KaiC
protein in cyanobacteria. In this case, X is KaiC phosphorylated on threonine alone or on
threonine + serine, Y is KaiC phosphorylated on serine alone, and Z is KaiA.
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Allowing for four components and 5 or 6 links opens new possibilities that we have not
explored systematically. Some oscillatory motifs are simple generalizations of topologies we
have seen before. For example, motif (J) is just an activator-amplified negative feedback
loop (Class 2); the only difference from Fig. 5b is that the negative feedback loop has been
extended to three components. This motif is capable of oscillating61.

By combining two or more oscillatory motifs in a common mechanism it is possible to
create quite exotic behavior including chaos, as illustrated in Fig. 6. Figure 6a, adapted from
Rössler's classic paper62. on chemical chaos, presents two overlapping ‘activator
amplification’ oscillators (W-X-Y1 and W-X-Y2) that share a common activator. As Fig. 6b
shows, the time course of X fluctuates up and down but never repeats itself. Viewing a
trajectory in (X-Y1-Y2) space (Fig. 6c), we see that the curve never closes on itself (it is not
periodic) and seems to sweep out a surface of complex topology.

It would be beyond the scope of this review to go further into the subtleties of deterministic
chaos, except to point out that the requirements for chaos seem to be quite undemanding.
Chaotic trajectories readily arise in systems of coupled oscillators. Since multiple, coupled
oscillators are likely to be common companions in the complex reaction networks
underlying cell physiology, it is surprising that deterministic chaos has not been identified
more often in experimental data5. Perhaps the chaotic trajectories of individual cells are
averaged out when large populations of cells are monitored. When the behavior of single
cells is monitored with fluorescent proteins, the possibility of deterministic chaos is likely to
be swamped by the white noise of molecular fluctuations in small volumes (a single cell).
Nonetheless, experimentalists and theoreticians should be open to the possibility of
deterministic chaos in their data and models of complex reaction networks with multiple
sources of oscillation.

Summing up
By modelling specific examples of oscillatory processes, we have drawn a number of
general conclusions about the design principles of biochemical oscillators. All biochemical
oscillators are built around some sort of negative feedback signal (X → Y → … ⊣X),
which insures that, if the concentration of X gets too large, it will eventually decrease, and if
it gets too small it will eventually increase 63. Negative feedback is often used in
biochemistry to achieve homeostasis (a stable steady state of intermediate X level), but
under certain conditions the steady state may lose stability and be replaced by spontaneous
oscillations of X level (high → low → high → low → …). The conditions for oscillations
are: sufficient nonlinearity in the reaction kinetics, sufficient ‘memory’ in the negative
feedback loop, and proper balancing of the time scales of components within the loop. In
biochemical reaction kinetics there are many sources of nonlinearity that are conducive to
oscillations (Fig. 4). ‘Memory’ may be a simple consequence of a long negative feedback
loop, but more likely it stems from positive feedback loops in the biochemical reaction
mechanism. When positive feedback creates two, alternative, stable steady states in the
reaction dynamics, then the system can ‘remember’ its recent history and thereby overshoot
and undershoot the homeostatic tendencies of the negative feedback loop.
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With these ideas in mind we classify biochemical oscillators according to the topology of
the positive and negative feedback loops in the reaction mechanism. For systems with three
components and three-or-four links (no self-activation links), we identify three classes of
oscillators: delayed negative feedback loops, amplified negative feedback loops, and
incoherently amplified negative feedback loops. Our classification scheme is by no means
complete, and oscillator motifs may be more complicated than any of our classes. Also, we
have neglected mixed-mode effects, e.g., Y activates the synthesis of X at low concentration
and inactivates it at high concentration. Mixed-mode interactions may easily generate
complex oscillations and chaos.

If a reaction mechanism contains one of the regulatory motifs we have identified, then it
may exhibit oscillatory behavior, provided the rate constants are properly tuned. Because
interaction motifs and reaction rate constants are under genetic control, it is possible for
biochemical oscillators to evolve. Indeed, it is likely that biochemical oscillations have
arisen repeatedly from basic, homeostatic, negative feedback loops by serendipitous genetic
changes that destabilized the steady state and generated sustained oscillations. Maladaptive
oscillations would have been quickly weeded out by selection, but weakly deleterious or
adventitious oscillations may have been co-opted by evolving populations for beneficial
physiological purposes. Almost surely, mechanisms of circadian rhythms evolved many
times independently by this scenario. On the other hand, bistability and oscillations that
govern cell cycle events are much more highly constrained, and the underlying mechanism
(which seems to be universal across all eukaryotic cells) must have been derived from a
single common ancestor.

Another consequence of the fact that a given interaction motif may or may not oscillate,
depending on subtle balancing of reaction rates, is the possibility of a class of ‘dynamical
diseases’ as distinct from ‘genetic diseases’. In a genetic disease, like sickle cell anemia, a
mutant gene encodes a defective protein that cannot do its essential job in some important
aspect of physiology. In a dynamical disease, a mutant gene encodes a modified protein that
still does its job but at a different rate, thereby causing a homeostatic control mechanism to
break out into pathological oscillations, or an oscillatory control system to spiral into a
stable steady state. Some cyclic blood disorders may be dynamical diseases of the first kind,
and some sleep disorders may be dynamical diseases of the second kind.

Finally, we hope that this review will help biochemists and molecular biologists to
understand better the mechanisms underlying cellular oscillations and to recognize the
importance of quantitative modelling in studying these oscillations.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Time-delayed negative feedback oscillator
a| Protein level is determined by opposing processes of synthesis and degradation. Protein
synthesis is down-regulated by the protein itself. b| Curves a and b are the rates of protein
synthesis and degradation, respectively. The arrows indicate the direction of change of
protein concentration, which is always towards Yo, the steady state concentration of protein,
where the rate of synthesis equals the rate of degradation. c| Sustained oscillations for Eq.
(2), with p = 2, Km/Kd=1, S/Kd =1, k1 = k2ET/Kd = 1 min-1, and τ = 10 min. The period of
oscillation is Tc = 27.2 min. d| In curve c we plot the time-delayed rate of protein synthesis,
1/(1+Y(t−τ)p), as a function of the present protein concentration, Y(t). The dashed portion of
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curve c corresponds to the dashed portion of the oscillation in panel c; it is τ time units in
duration, and it extends from the maximum value of Y (at t = 20 min) to the minimum value
of the rate of production of Y (at t = 30 min). The time-delayed loop repeatedly overshoots
and undershoots the steady state because the protein synthesis rate is no longer given by
curve a at Y(t) but by curve a at Y(t - τ). e| Constraint curves for p = 1. Each curve is drawn
for a specific value of Kd/Km. For each case, Eq. (2) exhibits sustained oscillations in the
region above the curve. f| Constraint curves for p = 2. Notice that the oscillatory domain
becomes larger as p increases and as Kd/Km increases, i.e., as the kinetic rate laws become
more nonlinear.
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Figure 2. Multi-component, negative feedback oscillator
a| Negative feedback between mRNA and protein, as described by kinetic equations (3). b|
Representative solutions (dashed curves) of the kinetic equations (3), for parameter values: p
= 2, Km/Kd =1, S/Kd =1, k1 = kdx = 0.1 min-1, ksy = k2ET/Kd = 1 min-1. Notice that every
trajectory spirals into the stable steady state located at the black circle. Curves a and b are
‘nullclines’ for differential equations (3), as explained in the text. The small arrows indicate
the direction of motion of trajectories as they cross the nullclines. Notice that the nullclines
in this figure are identical to the rate curves in Fig. 1b. c| The negative feedback loop taking
into account transport of macromolecules between nucleus and cytoplasm. d| Sustained
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oscillations for the four-component loop in panel c. See supplementary information S1 (box)
for details. e| Nonlinearity constraint. For the negative feedback loop to oscillate, p and Kd /
Km must be large enough. f| Time-scale balancing constraint. The half-lives of mRNA in the
nucleus and of protein in the cytoplasm must lie in the shaded band in order for the negative
feedback loop to oscillate.
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Figure 3. Hysteresis-driven, negative feedback oscillator
a| mRNA and protein in a negative feedback loop, as in Figure 2, and the protein inhibits its
own degradation. This mechanism is described by kinetic equations (4). b| Limit cycle
solution (curve c) of Eqs. (4) for parameter values: p = 4, Km/Kd =0.1, Kd·KI = 2, S =1, k1 =
kdx = kdy = 0.05 min-1, ksy = k2ET/Kd = 1 min-1. Curves a and b as in Fig. 2b, except that
curve b is given by X = kdyY+Y/(Km+Y+KIY2). c| Sustained oscillations of mRNA and
protein, corresponding to curve c in panel b. d| Signal-response curve. Solid lines: stable
steady states; dashed lines: unstable steady states; black circles: maximum and minimum
excursions of Y(t) during a limit cycle oscillation. The oscillation in panel c is indicated by
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the double-headed arrow at S = 1. Notice that oscillations are possible only for a restricted
range of signal strengths, S. e| Nonlinearity constraint. For this mechanism to oscillate, the
positive feedback loop must be strong enough (KI sufficiently large) and the negative
feedback loop must be sufficiently nonlinear (p must be large enough). f| Time-scale
balancing constraint. The turnover rate of mRNA (kdx) cannot be too large, and the signal
strength (S) must be within specific bounds for this system to oscillate.
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Figure 4. Sources of nonlinearity
a| Oligomer binding. Left: a transcription factor (blue ball) forms an n-component homo-
oligomer, which then binds upstream of a structural gene and either activates or represses
mRNA synthesis. Right: rate of mRNA synthesis as a function of transcription factor
concentration, for an activator (solid line) or a repressor (dashed line). b| Cooperativity and
allostery. Left: an enzyme, consisting of two catalytic subunits (spheres) and two regulatory
subunits (cubes), catalyzes the conversion of substrate into product. Activators and
inhibitors bind to specific sites on the regulatory subunits. Right: if the binding of substrate
to the catalytic subunits is cooperative, then the rate of reaction as a function of substrate
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concentration is sigmoidal (solid line). The rate curve can be shifted to the left or to the right
by increasing concentrations of activator or inhibitor, respectively. c| Multisite
phosphorylation. Left: a regulatory protein, X, is phosphorylated on multiple sites by a
protein kinase and dephosphorylated by a protein phosphatase. Right: Concentration of the
unphosphorylated form of X as a function of the ratio of activities of kinase and
phosphatase. d| Stoichiometric inhibition. Left: a regulatory protein, X, is synthesized in
response to a signal, S. X binds strongly to an inhibitor to form an inactive complex. Right:
the concentration of total X increases hyperbolically with S (dashed line) but the
concentration of ‘free’ X is a sigmoidal function of S (solid line).
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Figure 5. A classification scheme for biochemical oscillators
We classify oscillators by their interaction motifs, where X → Y means ‘X activates Y’, Y
⊣X means ‘Y inhibits X’, and W ⊸ X means ‘W may either activate or inhibit X’. If two
white circles appear in the same regulatory motif, they must have the same sign (either ++ or
−−). We assume that all interactions are positive or negative (not mixed-mode) and all self-
interactions are negative. a| Class 1: delayed negative feedback loops. Below each feedback
loop, we present a state-space diagram in the style of Fig. 1d. We plot ‘activator’ X vs
‘inhibitor’ Y (left) or Z (right). Curve c is a projection of the limit cycle oscillation onto the
XY plane. b| Class 2: amplified negative feedback loops. Either the activator X may be
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amplified by positive feedback with W (left), or the inhibitor Y may be amplified by
positive feedback with Z (right). For each motif, we plot the limit cycle oscillation (curve c)
on the XY plane. c| Class 3: incoherently amplified negative feedback loops. Each motif
consists of a three-component negative feedback loop (‘oscillatory’) and a two-component
positive feedback loop (‘amplifying’). Each motif also contains an incoherent feed-forward
loop that may originate from either X or Y. To the left and right of each motif we indicate
how the state-space diagram will appear, depending upon which variable is plotted on the
abscissa and which on the ordinate.
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Figure 6. Chaotic oscillators
a| Activator-amplification with two negative feedback loops in parallel. b| Chaotic trajectory
for the mechanism in panel a. See supplementary information S1 (box) for details. c|
Projection of the chaotic trajectory into the three-dimensional state space (X, Y1, Y2). The
chaotic trajectory was recomputed from the equations and parameter values in Rössler62.
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Table 1
Survey of Biochemical Oscillators

Function Components Period Class* References

Metabolism Glucose, ATP, phosphofructokinase 2 min 3 52-54

Signalling cAMP, receptor, adenylate cyclase 5 min 3 55, 64

Signalling Ca2+, IP3 > 1 s 3 65

Signalling NFκB, IκB, IKK ∼2 h 1 41, 43

Signalling p53, Mdm2 5 h 1 39, 40

3 58, 59

Signalling Msn2, AC, cAMP, PKA ∼10 min 1 66, 67

Somitogenesis Her1/her7, Notch 30-90 min 1 40, 68

Yeast endoreplication cycles Cig2, Cdc10, Rum1 1 – 2 h 2 49

Frog egg cycles CycB, Wee1, Cdc25, Cdc20 30 min 2 47, 48

Circadian rhythm PER, TIM, CLOCK, CYC 24 h 1 26

2 30

*
See Figure 5: Class 1 = delayed negative feedback loop, Class 2 = amplified negative feedback loop, Class 3 = incoherently amplified negative

feedback loop.
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