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Summary
We consider the problem of comparing cumulative incidence functions of non-mortality events in
the presence of informative coarsening and the competing risk of death. We extend frequentist-
based hypothesis tests previously developed for non-informative coarsening and propose a novel
Bayesian method based on comparing a posterior parameter transformation to its expected
distribution under the null hypothesis of equal cumulative incidence functions. Both methods use
estimates derived by extending previously published estimation procedures to accommodate
censoring by death. The data structure and analysis goal are exemplified by the AIDS Link to the
Intravenous Experience (ALIVE) study, where researchers are interested in comparing incidence
of human immunodeficiency virus seroconversion by risk behavior categories. Coarsening in the
forms of interval and right censoring and censoring by death in ALIVE are thought to be
informative, thus we perform a sensitivity analysis by incorporating elicited expert information
about the relationship between seroconversion and censoring into the model.
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1. Introduction
In prospective studies examining incidence of non-mortality outcomes, event times are often
assessed at regular pre-scheduled appointments. These event times can be interval censored
when study participants miss visits and return after a hiatus having experienced the event of
interest. Censoring also occurs when participants never return or die before returning after
missing visits. Such data are usually analyzed by assuming non-informative censoring, a
special case of coarsening at random (CAR) [1–3]. However, the censoring process may be
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related to the event process. That is, the coarsening mechanism may be coarsened not at
random (CNAR). Unfortunately, observed data are not sufficient to estimate the relationship
between these processes. Therefore, analyzing coarsened data involves making unverifiable
assumptions about the relationship between coarsening and event incidence.

There have been several recent methodologic developments to address coarsening not at
random. Bayesian and frequentist methodologies were developed for interval-censored data
to estimate cumulative incidence for (potentially) CNAR data by incorporating elicited
expert information into the model [4]. A tool for quantifying local sensitivity to informative
coarsening in the context of censoring has been proposed [5]. A test for dependent censoring
has been developed using auxiliary visit-compliance information outside of the censoring
interval [?]. Assuming a proportional hazards model, inference methods based on the
collection of all attainable hazards ratios have been proposed [7]. The book by Sun [8]
provides a compendium of analytical methods to handle noninformative interval censoring
and a brief treatment of informative interval censoring. However, none of the
aforementioned developments includes hypothesis assessment methods for informatively
interval-censored data without imposing a proportional hazards model.

In this paper, we aim to develop formal hypothesis assessment procedures for comparing
cumulative incidence functions using estimates derived by extending previously published
methods [4] to accommodate censoring by death. For frequentist inference, we extend the
logrank [9] and a two-sided version of the integrated weighted difference (IWD) [10] tests to
allow informative censoring. We also generalize IWD to more than two groups. For
Bayesian inference, we propose parameter transformations of posterior event-time
probabilities, motivated by the logrank and IWD tests.

We apply our methods to AIDS Link to the Intravenous Experience (ALIVE), an ongoing
prospective observational study of risk factors for human immunodeficiency virus (HIV)
infection among injection drug users (IDUs) in Baltimore, Maryland [11–13]. In this study,
HIV serostatus, a proxy for HIV infection status, was determined by subsequent regularly
scheduled laboratory blood tests. For those who attended every visit on schedule, time to
seroconversion (operationalized as years from enrollment here) is known, resulting in
discrete event-time data. However, ALIVE participants often missed visits or attended visits
off schedule, sometimes resulting in interval-censored seroconversion times only known
within a range of years. Also, some seropositive participants never tested positive during the
study due to loss to follow up, administrative censoring, or death. We compare ten-year
seroconversion incidence (1988-1998) between those who self-reported sharing needles for
injecting drugs during the six months prior to enrollment and those who did not. To perform
a sensitivity analysis, we use information about the relationship between incidence and
censoring elicited from ALIVE investigators and an AIDS epidemiologist. After estimating
cumulative incidence functions, we assess the null hypothesis of equal HIV incidence
between needle sharers and non-sharers.

2. Data Structure, Coarsening Models, and Inference
2.1. Data structure

Let T = t denote seroconversion during year t, where E = {t : t = 1, …, M + 1} is the support
of T. M denotes last year of follow-up from enrollment, and T is arbitrarily set to be M + 1
for individuals who did not seroconvert during follow-up. Observed data for an individual
may be a set of years from E, [L, R] = {t ∈ E : L ≤ t ≤ R}, where [L, R] is a coarsening of T
because T ∈ [L, R]. For example, if a participant tests negative for HIV at a visit in year 2,
returns for a visit in year 5 and tests positive, then serconversion could have occurred as
early as year 2 (after the year 2 visit) and as late as year 5 (before the year 5 visit). Therefore
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L = 2, R = 5, and T ∈ [2,5]. However, if the participant never returned after the year 2 visit,
then seroconversion could have occurred anytime during or after year 2 within the study
period, after the end of the study, or never. Therefore, L = 2, R = M + 1, and T ∈ [2, M + 1].
If seroconversion is known to occur in year t, t=1, …, M, then L = R = t. For example, if the
participant would have returned later in year 2 and tested positive, then L = 2, R = 2, and
thus T = 2. In general, if seroconversion did not occur during follow-up, then L = R = M + 1,
and if knowledge about T is incomplete, then L < R. Those with L < R = M + 1 are right-
censored drop-outs, and those with L < R < M + 1 are interval-censored returners [4].

We generalize the above ideas to accommodate the competing risk of death encountered in
ALIVE. Those with first missed visit in year l who die in year r (r > l) either seroconverted
in [L = l, R = r] or died seronegative. For those censored by death, [L = l, R = r] has an
altered interpretation: R = r denotes death at year r, and possible event times are {l, …, r, M
+ 1}. Therefore, T = M + 1 denotes not seroconverting while at risk. For example, if a
participant who tested negative during year 2 and missed subsequent visits died with
unknown serostatus during year 5, then seroconversion either did not occur (T = M + 1) or
occurred between years 2 and 5, inclusive. Therefore T ∈ {2, …, 5, M + 1}. Let Δ = δ, δ ∈
{0, 1}, indicate whether R is year of death. Thus, the aforementioned participant would have
L = 2, R = 5, and Δ = 1. In general, if R < M + 1 and serostatus is unknown at year R due to
death, then Δ = 1, otherwise Δ = 0.

Let G denote number, and  denote the set, of groups to compare. We assume that, for those
in group g, g ∈ , we observe ng i.i.d. copies of the data. Pg(·) refers to probabilities for
those in group g. Where necessary, the subscript i will denote subject-specific data.

2.2. Coarsening Models
2.2.1. Coarsening at random—Given L = l, R = r, and Δ = δ, let A(l, r, δ) denote
possible values of T induced by censoring, where A(l, r, 0) = [l, r] and A(l, r, 1) = {[l, r], M
+ 1}. Within group g, CAR means

(1)

for all [l, r] ∈ E* = {[l, r] : l ≤ r, l, r ∈ E} and δ ∈ {0, 1}. Using Bayes' rule with 1, it can be
shown that CAR also means

for all t ∈ A(l,r,δ) [3].

In words, CAR means that among those in group g, the coarsening process provides no
information about the seroconversion process beyond knowing that the true year of
seroconversion resides in the set of years induced by censoring. As a result, estimated event-
time probabilities for censored individuals only depend on estimated probabilities for years
in that set.

2.2.2. CNAR models—The coarsening (in this case, censoring) mechanism cannot be
identified from observed data [3], therefore we consider a class of CNAR models indexed by
a (possibly group-specific) censoring bias function that allows elicited expert information to
determine whether event probabilities for coarsened event times should be made
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stochastically larger at later times (seroconversions tend to occur late in the censoring set) or
earlier times (seroconversions tend to occur early in the censoring set) relative to CAR [4].
We ‘exponentially tilt’ [14] the model assuming CAR for each group g, g ∈ :

(2)

where cg(l, r, δ; qg) = Σs∈A(l,r,δ) Pg(T = s | T ∈ A(l, r, δ)) exp{qg(s, l, r, δ)}, and qg(t, l, r, δ)
is a specified censoring bias function of (t, l, r, δ) for those in group g. If qg(·) does not
depend on t, no tilting is performed, and CAR is assumed for group g. Information about
death is only utilized to define possible seroconversion times and in qg(·) to allow estimation
of the seroconversion process without requiring estimation of the death process.

Using Bayes' rule, equation (2) can be represented as a selection model:

(3)

for t, t′ ∈ A(l, r, δ). From (3), qg(t, l, r, δ) is the group-g difference in log probability of
having censoring set A(l,r,δ) comparing those with T = t to those with T equal to some
reference value, tref, such that qg(tref, l, r, δ) = 0.

2.2.3. Low-dimensional parameterization of qg(·)—We temporarily return to ALIVE
to describe a proposed censoring bias function. To facilitate a sensitivity analysis, we
parameterize a censoring bias function by a small set of unidentified censoring bias
parameters to capture key features of ALIVE. The function parameters differentiate
between those who are interval censored, right-censored alive, and censored by death. We
allow the censoring mechanism to differ between non-sharers (g = n) and needle sharers (g =
s). Let ϕ = {ϕg: g = n, s} denote group-specific censoring bias parameters. The proposed
censoring bias function is

(4)

where ϕg = {ϕg1, ϕg2, ϕg3}, and I(·) denotes the indicator function. From equation (3),
exp{ϕg1} is the probability ratio of having L = 1, R = 5, and Δ = 0 comparing those with T =
5 to those with T = 1, among those in group g, g = n, s. The factor 9/4 is used to attain this
interpretation for elicitation. Similarly, exp{ϕg2} is the needle sharing-specific probability
ratio of having L = 1, R = M + 1, and Δ = 0, comparing those with T = M + 1 to those with T
= 1. Lastly exp{ϕg3} is the needle sharing-specific probability ratio of having L = 1, R = M +
1, and Δ = 1, comparing those with T = M + 1 to those with T = 1. Note that ϕg1, ϕg2, and
ϕg3 refer to returning, dropping out alive, and being censored by death, respectively, for
those in group g.

From (2), we see that when exp{ϕg1} > 1 (< 1), returners are assumed to be more (less)
likely to seroconvert late than seroconvert early. When exp{ϕg2} > 1 (< 1), drop-outs who
remain alive are assumed more (less) likely to seroconvert late or never than seroconvert
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early. Lastly, When exp{ϕg3} > 1 (< 1), drop-outs who die with unknown serostatus are
assumed more (less) likely to seroconvert late or never than seroconvert early.

The form of Equation 4 was chosen to capture key features of ALIVE, such as the presence
of both interval-censoring and drop-outs as well as the competing risk of death. Equation 4
also allows us to explore sensitivity to different assumptions about needle sharers and non-
sharers because the purpose of the analysis is to compare HIV incidence between these two
groups. Lastly, we specified Equation 4 to be a scientifically interpretable low-dimensional
function to facilitate elicitation from subject matter experts. Thus, for specifying a censoring
bias function for other applications, one should consider study design features, scientific
hypotheses, interpretability of parameters, and ease of elicitation.

2.3. Inference
2.3.1. Frequentist inference—Let pgj be the event probability during year j among those
in group g. Frequentist estimation of pg = pg1, …, pg(M+1) is performed via the expectation-
maximization algorithm [15] by replacing coarsened event times with their expected values
given L, R, and Δ [4]. See Appendix I for details.

Probability estimates are used to estimate Fg(·), the cumulative incidence function for group

g, . Once estimates of p = {pg, g ∈ }, denoted p̂, and standard
errors are obtained, statistics can be derived for testing the null hypothesis H0 : Fg(·) = Fg′(·),
g = g′ ∀g, g′ ∈  using the delta method, including logrank (LR) and IWD tests.

Let LR = {LRg, g ∈ }t be a vector of length  with gth component

, where dgj = ngp̂gj is the estimated number of seroconverts in

group g during year j,  is the estimated number at risk in group g during
year j, dj = Σg∈Gdgj, and nj = Σg∈Gngj. Thus LRg takes the form of the logrank test
numerator. The variance of LR, ΣLR, is a  ×  matrix estimated by Σ̂LR (see Appendix I).

The test statistic is , where  denotes generalized inverse of Σ̂LR. Under

the null hypothesis,  has a χ2 distribution with G − 1 degrees of freedom. The generalized
inverse is needed owing to the loss of one degree of freedom from estimating pj by dj/nj.

The IWD test was originally proposed to perform a one-sided hypothesis for G = 2 [10]. We
generalize it to a two-sided test. The two-sample test with weight w(·), estimated by ŵ(·), has

numerator , where . Let  denote the

variance of IWD, estimated by  (Appendix I). The test statistic, Zobs = IWD/σ ̂IWD, can be
compared to a standard normal distribution [10]. When G ≥ 2, we modify the test by
comparing F̂g(j), g∈ , to the estimated overall cumulative function: F̂(j) = Σg∈GngF̂g(j)/n.
Let IWD = {IWDg, g ∈ }t be a vector of length G with gth component

. The variance of IWD is a G × G matrix, ΣIWD, estimated

by Σ ̂IWD (Appendix I). The test statistic, , is distributed χ2 with G − 1
degrees of freedom under the null hypothesis due to estimation of F̂(j)

2.3.2. Bayesian inference—We specify a Dirichlet prior density for pg to obtain
posterior cumulative incidence. Conjugate analysis cannot be performed, therefore we use a
Markov Chain Monte Carlo (MCMC) algorithm described in Appendix II [4]. Simulated p's
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are then transformed into an interpretable one-dimensional quantity summarizing the
difference between G cumulative incidence functions.

One proposed quantity is motivated by the logrank test. Let Nsim denote the Markov chain
length. Let p(s) be the vector of simulated p at iteration s, and let LR(p(s)) denote the
posterior logrank transformation, a vector of length G with gth component

, where , and

. Let ΣLR(p(s)) be a G × G matrix motivated by the variance of the logrank test
numerator when the null hypothesis is true (Appendix II). The transformation involves

calculating . The median of this posterior parameter
transformation under the null hypothesis is the median of a χ2 distribution with G − 1
degrees of freedom, approximately μG = G − 1 − 2/3 + 4/[27(G − 1)] − 8/[729(G − 1)2].
The vector of logrank parameter transformations is denoted by

. Let ω denote the observed data, where ωigj is the indicator
that tj ∈ [Lig, Rig], i.e., that time tj is a possible event time for person i in group g. A
posterior tail probability summarizing the degree of overlap between the observed

distribution and expected distribtution under the null can be calculated by .

For a visual representation, the  can be plotted with a  kernel, the distribution of
the logrank test statistic when all G event-time distributions are equal. When G = 2, a
transformation can be calculated by ZLR(p(s)) = LRg(p(s))/σLR(p(s)), where σLR(p(s)) is the
standard deviation of LRg(p(s)). Let ZLR(p) = {ZLR(p(1)), ⋯, ZLR(p(Nsim))}; ZLR(p) can be
plotted with a standard normal kernel, and the tail probability can be calculated as 2 [min{P
(ZLR(p) ≥ 0 | ω), P (ZLR(p) ≤ 0 | ω)}].

The second quantity considered is motivated by the IWD test. Let IWD(p(s)) denote the
posterior IWD transformation, a vector of length G with gth component

, where

, and w(s)(j) is a weight function. Let ΣIWD(p(s))
be a G × G matrix motivated by the variance of the IWD test numerator (Appendix II). The

parameter transformation is . When G = 2,
inference is performed like that for ZLR(p) using ZIWD(p) = {ZIWD(p(1)), ⋯, ZIWD(p(Nsim))},
where ZIWD(p(s)) = IWD2(p(s))/σIWD(p(s)), and σIWD(p(s)) is the same form as the standard
deviation of IWD2(p(s)).

These posterior tail probabilities are interpreted differently from frequentist p-values.
Instead of calculating the tail probability of a test statistic under H0 at the observed value,
we calculate the posterior tail probability of a parameter transformation at its expected value
when H0 is true. This tail probability summarizes the degree of overlap between the
observed posterior parameter transformation distribution and that expected under H0, where
tail probabilities of 1 and 0 denote perfect and no overlap, respectively. Comparing the
posterior distribution to some reference posterior (in this case, the expected posterior under
H0) to assess Bayesian hypotheses is thought to be more appropriate than inference by
Bayes' factors for continuous parameters, because calculating Bayes' factors requires
hypotheses to have strictly positive prior probabilities [16]. The reference posterior approach
has the additional benefit of being simpler to perform than calculation Bayes' factors
because it does not require running the MCMC multiple times.
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3. Simulation Study
Simulations were performed for two-sample and G-sample logrank and IWD tests with G =
3 and  = {1, 2, 3}, allowing left, interval, and right censoring, but no competing risks.
Event times were simulated from a multinomial distribution using the continuation ratio
logistic model with M = 4. Let ρij = P(Ti = j | Ti ≥ j, Zi) for j = 0, …, M + 1. The
continuation ratio model for the three-sample simulation is logit , j = 0, …, M,
where β = {β1, β2} and Zi = {Zi1, Zi2}, where Z1 = I(g = 2) and Z2 = I(g = 3). Replacing 
with β1Z1i results in the continuation ratio model used for the two-sample simulation study.
For the three-group simulation study, groups two and three are assumed to have the same
distribution (e.g., a control group and two exchangeable treatments), β1 = β2 = β. For each
group, censoring intervals were simulated given T. The function q(·) and the distribution of
T for group g do not identify P(Li = l, Ri = r | Zi, Ti) = Pg(Li = l, Ri = r | Ti). The number of
free parameters in this distribution for each group equals (M + 2)(M + 1)/2, the number of
intervals minus the number of event times. These parameters (interval probabilities) were
fixed at values satisfying the constraints Pg(T = t) > Pg(T = t, L = l, R = r), for g ∈ . The
strict inequality allows positive probability for each combination of l and r including t. The
remaining M + 2 interval probabilities were identified from the constraints Σl≤rPg(L = l, R =
r) = 1 and Σ{l,r}: l≤t≤rPg(T = t | L = l, R = r)Pg(L = l, R = r) = Pg(T = t).

True event times, T, were drawn given g, with β ∈ {0, 0.75} and θ = {−0.65, −0.55, −0.45,
−0.15, −0.05}. Let ϕ = {ϕg: g ∈ } be the vector of group-specific censoring bias
parameters for the censoring bias function qg(t, l, r) = ϕg(t−l)/(r−l). The true censoring bias
parameters were combinations of {−log(2), 0, log(2)}. In this study, ϕ2 = ϕ3.

The empirical sizes of the tests were estimated assuming β = 0. Empirical power was
estimated for the alternative hypothesis H1 : Fg(·) ≠ Fg′ (·) when β = 0.75, where g = 1 and g′
= 2 for the two-sample test and where g ≠ g′ for some g, g′ ∈  for the G-sample test. We
chose ng = 100, 200, 500 and performed 1000 simulations for each specification.
Simulations were also performed on uncensored data. Values of the true parameters were
chosen to produce between 86% and 97% censoring (i.e., P(L ≠ R)), depending on ϕ and β.
For censored data, two weight functions were used for the IWD test, ŵ(j) = 1, and ŵ(j) =

w*(j), where , and K̂g(j) is the sample proportion
of individuals in group g with known serostatus in year j [10]. When data are uncensored,
w*(j) simplifies to 1.

Simulation test results are shown in Tables I and II. The first row of each sample size-
specific study shows results for uncensored data. The first column shows the true ϕ that
generated the censoring intervals for simulations with censoring. The second column shows
the assumed ϕ for the model with censored data, either CAR or the true ϕ. Both tables show
results for six tests: the IWD test with w = 1 and w = w* and the logrank test, all for G = 2
and G = 3. The empirical size results in Table I show the tests perform well with no
censoring, and the performance improves as the sample size increases. When ϕ are correctly
specified, or when the bias for both parameters is of equal magnitude in the same direction
(e.g., true ϕ are {−log(2), −log(2)}, but CAR is assumed), the tests perform well. Empirical
size differs most from nominal size when ϕ are biased in different directions (e.g., true ϕ are
{−log(2), log(2)}, but CAR is assumed). No single test performs uniformly better than the
others, however, the logrank test tends to be more anticonservative than the IWD test for
smaller samples sizes, even with no censoring. When the data are censored, the three-group
IWD test produces the most conservative (n = 500, true ϕ = {−log(2), −log(2)}) and most
anticonservative (n = 200, true ϕ = {−log(2), 0}) results. Empirical power is shown in Table
II. In general, the test with weight w* is more powerful than the analogous test with w = 1.
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With no censoring, the logrank test is more powerful than the IWD test. However, with
censoring in smaller sample sizes, the IWD test tends to be more powerful. In larger sample
sizes, the difference is negligible. The true underlying distribution has hazard ratio 2.12
(exp{0.75}) comparing groups 2 and 3 to group 1. When groups 2 and 3 are biased to have
greater (lower) hazards relative to group 1, power is increased (decreased).

We repeated the simulation study with n=500 and 1000 iterations by including a competing
risk. In this case, the number of free parameters is (M + 2)2 because there are twice as many
intervals with a competing risk than without a competing risk i.e., specify probabilities for
intervals L = l, R = r, Δ = 0 and L = l, R = r, Δ = 1 rather than only L = l, R = r. Interval
probabilities were fixed at values satisfying the constraints Pg(T = t) > Pg(T = t, L = l, R = r,
Δ = δ), for g ∈ . Analogous to the case with no competing risk, the strict inequality allows
positive probability for each combination of l, r, δ including t. Similarly, the remaining M +
2 interval probabilities were identified from the constraints Σδ∈{0,1}Σl≤rPg(L = l, R = r, Δ =
δ) = 1 and Σδ∈{0,1} Σ{l,r}:t∈A(l,r,δ) Pg(T = t | L = l, R = r, Δ = δ)Pg(L = l, R = r, Δ = δ) = Pg(T
= t). The empirical type I error from this simulation ranged from 0.048 (ϕ = {−log(2), 0},
IWD test with w = w* and G = 2) to 0.062 (ϕ = {−log(2), −log(2)}, IWD test with w = w*
and G = 2; ϕ = {−log(2), 0}, IWD test with w = 1 and logrank test, both with G = 3). The
empirical type I errors were, on average, closer to the nominal type I error than those in
Table I obtained without the competing risk. Trends in empirical power with the competing
risk were similar to those without the competing risk in Table II (not shown). The empirical
distribution of the test statistic is graphically compared with the chi-square distribution in
Figure 1. Regardless of ϕ, number of groups, and presence of a competing risk, Figure 1
shows that the distributions of all three test statistics (ID, IWD, and LR) approximate a chi-
square distribution well.

4. Example Data Analysis: ALIVE
We apply our proposed inference methods to ALIVE to compare ten-year cumulative
incidence functions of seroconversion between those who self-reported needle sharing at
enrollment and those who did not. Among the 2,205 ALIVE participants with complete
needle-sharing information, 1,527 reported sharing needles, and 678 did not. Among those
reporting sharing needles, 190, 1,135, 144, and 58 participants were censored by death,
right-censored by drop-out or end of study, interval censored, and exactly observed,
respectively. The respective numbers among those reporting not sharing needles were 73,
522, 54, and 29. Among needle sharers, 242 (15.8%) total died within ten years of
enrollment. Similarly, 100 (14.7%) total non-sharers died during the study. The relationship
between needle-sharing and seroconversion may be driven by differential death rates
between groups. However, logrank test results (p = 0.52) do not support this hypothesis.
Death as a primary endpoint was not addressed in the sensitivity analysis.

4.1. Elicitation and sensitivity analysis
To elicit values of ϕ in equation (4), two ALIVE investigators were seperately interviewed
to obtain ranges of the parameters and hyperparameters found in Table III (columns 4-5, and
6-7, respectively). Prior distributions of p and ϕ were elicited from an external AIDS
epidemiologist and an ALIVE investigator, respectively. The AIDS epidemiologist was
interviewed regarding the expected seroconversion time distribution and the weight of
expert opinion relative to ALIVE data. An expert unaffiliated with ALIVE was consulted to
obtain opinion prior to ALIVE. The elicited weight of prior opinion was 10 percent of final
results (ALIVE data weighted 90 percent). Prior information about seroconversion
probabilities was not specific to needle-sharing status to reflect the “null” hypothesis of
equal cumulative incidence functions. Elicited ranges of exp{ϕ} were centered and scaled
parameters ranged 0 to 1 with assumed beta distributions. Plots of beta distributions were
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used to elicit the beta hyperparameters from an ALIVE investigator. To accommodate
correlations between the parameters, we consider the normal approximation to the beta
distribution. Using scatterplots of pairwise correlations between parameters to elicit
covariances, the ALIVE investigator's prior variance-covariance matrix involved positive
correlations for several combinations of needle-sharing group and censoring type:

Additional details about the elicitation process and rationale for ranges of parameters and
their hyperparameters can be found elsewhere [17].

4.2. Frequentist results
Frequentist inference was performed using estimates assuming CAR and combinations of
minimum and maximum elicited values of ϕ [4]. For each combination, needle-sharing
specific seroconversion probabilities were estimated, and logrank and IWD tests were
performed with weights w(j) = 1 and w*(j).

Table IV shows estimated needle-sharing specific one-, five-, and ten-year cumulative
incidence and 95 percent confidence intervals (using the complementary log-log
transformation), and p-values for three values of ϕ: ϕ = 0 (CAR assumed), {max(ϕn),
min(ϕs)}, and {min(ϕn), max(ϕs)}. When CAR is assumed, estimated probabilities are
similar across groups, corroborated by large p-values for IWD and logrank tests. The
minimum p-values were produced when needle sharers are assumed to seroconvert
stochastically early in their observed sets (minimum ϕs) and non-sharers are assumed to
seroconvert stochastically late in their observed sets (maximum ϕn) according to elicited
ranges for ϕ. Estimated cumulative incidence is lower for non-sharers than for needle-
sharers under this assumption. Similarly, when the opposite assumption is made (minimum
ϕn, maximum ϕs), estimated cumulative incidence was higher for non-sharers than for needle
sharers. Test results were most sensitive to values of ϕs2 (not shown), because needle-
sharing drop-outs alive at the end of year ten is the largest needle-sharing group-by-
censoring type category in ALIVE, and experts expressed the most uncertainty about them.

4.3. Bayesian results
Prior beliefs about seroconversion probabilities and censoring bias parameters were
converted into Dirichlet and multivariate normal hyperparameters, respectively. First,
exp{ϕ} were centered and scaled to have range [0, 1] and marginal beta distributions,
inducing means and variances used to make normal approximations to beta densities.
Elicited correlation coefficients induced an approximate multivariate normal joint
distribution for centered and scaled exp{ϕ}, and the logit transformation was used for
simulating from a multivariate normal distribution.

Bayesian analysis was first performed for fixed ϕ. We examined results assuming CAR and
the same two extreme specifications used in frequentist analysis, {max(ϕn), min(ϕs)} and
{min(ϕn), max(ϕs)}. MCMC was run for 500 burn-in and 5000 additional iterations. A
previously published diagnostic scheme was used for all Bayesian analyses [18]. Needle-
sharing specific mean posterior one-, five-, and ten-year cumulative incidence, 95 precent

Shardell et al. Page 9

Stat Med. Author manuscript; available in PMC 2009 December 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



credible intervals, and parameter transfomation tail probabilities are shown in Table V. The
IWD parameter transformation was only calculated for w = 1 because, given imputed
complete data, w* = 1. Mean posterior cumulative incidence was higher than analogous
results from frequentist analyses due to shrinkage to the prior, which suggested more
accelerated seroconversion than estimates from data alone. Also, credible intervals are
slightly narrower than analogous confidence intervals, especially for the ten-year cumulative
incidence, due to additional information from the prior and many drop outs. The tail
probabilities were similar to analogous frequentist p-values.

Fully Bayesian analysis was then performed, averaging over the posterior distribution of ϕ.
MCMC was burned in for 1000 iterations and run for 10000 more. Metropolis-Hastings [19]
acceptance was 64 and 86 percent for needle sharers and non-sharers, respectively. Prior and
posterior densities for exp {ϕ} were approximately equal, reflecting no information about
these parameters in the data (not shown). Prior and posterior densities for one-, five-, and
ten-year cumulative incidence are reported in Figure 2. Posterior densities are tighter than
priors, due to small weight given to elicited information relative to the data. Cumulative
incidences are between those obtained using extreme elicited censoring bias parameter
values, and tail probabilities were similar to those assuming CAR (Table V). Figure 3 shows
that the LR and IWD posterior parameter transformations differ little from a standard normal
kernel, suggesting seroconversion cumulative incidence functions do not differ across
needle-sharing status. Posterior mean cumulative incidence and tail probabilities in Table V
corroborate this conclusion.

5. Discussion
We developed two approaches for comparing cumulative incidence functions for
informatively coarsened event-time data using estimates derived from previously published
methods [4] and applied them to ALIVE. We accounted for the competing risk of death in
the analysis, extended two test statistics to accommodate informatively coarsened data, and
proposed a novel approach for Bayesian hypothesis assessment that is interpretable and
easily calculated after performing a single MCMC run. We also extended the IWD test to be
two sided and to accommodate more than two groups. We showed that these tests perform
well when the censoring mechanism is correctly specified. The simulation study was
performed using a regression model appropriate for discrete event-time data. Future research
includes estimation and variable selection using this model in the presence of informative
coarsening.

CAR-based analyses of ALIVE data suggest baseline needle sharing is not associated with
time to seroconversion. These conclusions are robust to elicited assumptions about the visit-
compliance process. CAR-based and random-ϕ posterior cumulative incidence varied little.
Had our sensitivity analysis results produced conflicting conclusions, the test results could
be displayed using contour plots like in [20] to allow readers to see conclusions as a function
of ϕ. Needle sharing status poses a short term risk for HIV and may change over time, thus
future research involves developing methods to accommodate time-varying risk factors.

The proposed inference methods are beneficial in that they facilitate a sensitivity analysis
across assumptions about the censoring mechanism using results from a previously
published estimation method. The methods are generalizable to any scientific application
where the goal is to compare cumulative incidence across groups in the presence of
informative censoring. However, the form of the censoring bias function should differ as
appropriate, and interpretations of the censoring bias parameters would be context specific.
The approaches proposed here are preferable to other ad hoc sensitivity analyses involving
single imputation of interval endpoints or interval midpoint imputation, because these
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approaches underestimate standard errors [21]. Also, interval endpoint imputation involves
extreme assumptions that may not be scientifically plausible. In particular, imputing L and R
for T is equivalent to specifying ϕ = −∞ and ϕ = ∞, respectively.

Despite the benefits, these methods have limitations. In particular, results may be sensitive
to distributional assumptions. For example, the correlation structure of Dirichlet priors does
not take advantage of time ordering of visits. Also, the proposed methods are limited to
small numbers of groups. Lastly, utilizing these methods requires a potentially challenging
elicitation process and difficult choice of censoring bias function.

Despite these challenges, assumptions must be made to analyze coarsened data, because the
coarsening process is not identifiable from observed data [22], thus statistical methods that
can incorporate ranges of assumptions are needed. Our methods fulfill this need by allowing
investigators to explicitly communicate their assumptions and perform a sensitivity analysis
to explore the impact of these assumptions on analysis results, facilitating more honest
reporting of results from scientific studies.
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6. Appendix I: Frequentist Methods

6.1. Estimation

The complete-data likelihood is , where Iigj is the event
indicator at time j for person i in group g. Initial estimates of pg are used to evaluate the
expected complete-data log likelihood, given observed data (E-step). The E-step at iteration
s is

where λg are Lagrange multipliers, and

Q(p; p(s−1)) is maximized (M-step) to obtain updated estimates of pg. The M-step results in
a reweighted version of Turnbull's self-consistency equation [23] for each group g, g ∈ :
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Estimated standard errors for probabilities in each group can be calculated using Louis's [24]
method for estimating the observed information matrix.

To derive the observed information matrix for group g, Ipg, let  denote the complete-

data information matrix, and let  denote the missing-data information matrix, where

. Using Louis's method, , where log[Li(pg)]
is the complete-data log likelihood and ωig is the observed information for individual i in

group g. Also,  where , the complete-data

score equation for individual i in group g. Then,  is a (M + 1) × (M +1) diagonal matrix

with jth diagonal element . Next,  is a (M + 1) × (M + 1) matrix with j,

k element . The variance-

covariance matrix for p̂g is then , estimated by plugging p̂g into  and .

6.2. Test Statistics

To calculate Σ̂IWD, let  be the estimated variance of , where

(5)

and  is the estimated covariance between p̂gj′ and p̂gk′, the j′, k′ entry of , the
inverse estimated observed information matrix for group g.

Let f̂g = ng/n. Then, the g,h (g h ∈ ) entry of Σ̂IWD equals

(6)

To calculate Σ̂LR, we define  to be the block-diagonal G(M + 1) × G(M + 1) inverse
estimated observed information matrix. Then, using the multivariate delta method,
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where  is a G × G(M + 1) matrix with g, (h − 1)(M + 1) + j′ entry, i.e., , equal to

7. Appendix II: Bayesian Methods

7.1. Estimation
The Bayesian algorithm is a G-group version of that previously described [4]. Let Ig be
complete data and ωg be observed data (e.g., L, R, and Δ) for all individuals in group g.

For the Dirichlet prior, let Bg = {bg1, ⋯, bg(M+1)} be a base measure defined on E for those
in group g, the prior mean of pg. A precision parameter, α*, describes concentration of the
distribution around Bg, where elements of Bg sum to 1. Let αgj = α*bgj, for j = 1, …, M +1.
The Dirichlet density is given by:

where pg1, ⋯, pg(M+1) ≥ 0; ; the αg = {αg1,…, αg(M+1)} are all positive; and αgj's
are interpreted as ‘prior counts’ of seroconverts during year j in group g. Data are
incomplete, thus we use the Gibbs sampler [25] with data augmentation [26] and a
Metropolis-Hastings step [19].

First, starting values are chosen for censoring bias parameters, ϕ(0), and event-time
probabilities, p(0). The Gibbs sampler involves three simulation steps per iteration. For
iteration s = 1, …, Nsim simulate:

1.  from ,

2.  from ,

3. ϕ(s) from ,

where p(·) denotes the density.

The vector of imputed event indicators, , for person i in group g are simulated from a
truncated multinomial distribution,

The  are aggregated into group-by-time frequencies. Let  denote the simulated event

count during interval j among those in group g at iteration S, and .
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Conditional on , pg is independent of ϕ and ωg. Therefore,  can be simulated in Step 2

from , a Dirichlet distribution with hyperparameters . Metropolis-
Hastings is used in Step 3 to simulate ϕ. Let I(s) denote the iteration s vector of simulated
event indicators and ω denote observed data across all groups. The candidate, ϕ*, is
simulated from the jumping distribution at iteration s, Js(ϕ* | ϕ(s−1)), and is accepted with
probability min(1,rMH), where

In this application, Js(ϕ* | ϕ(s−1)) was a multivariate normal distribution.

7.2. Posterior Parameter Transformations
To calculate the logrank parameter transformation, let

For the IWD parameter transformation, elements of ΣIWD(p(s)) take the same form as

Equation (6), with  /nj replacing  in Equation (5).
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Figure 1.
Simulation study results, Ng = 500, Nsim = 1000. Empirical distribution of integrated
weighted difference (ID, w = 1; IWD, (w = w*) and logrank (LR) tests compared to a chi-
square distribution (two groups, df=1; three groups, df=2), with and without a competing
risk.
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Figure 2.
ALIVE Bayesian results. Posterior (solid line, needle sharers; dashed line, non-sharers) and
prior (dotted line) densities of one-, five-, and ten-year cumulative incidence.
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Figure 3.
ALIVE Bayesian Inference. Posterior density for ZLR(p) (solid line) and ZIWD(p) (dashed
line) parameter transformations with standard normal kernel (dotted line). Mean posterior
(solid line, needle sharers; dashed line, non-sharers) and prior (dotted line) cumulative
incidence.
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