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Abstract
Nitrones have the general chemical formula X-CH=NO-Y. They were first used to trap free radicals
in chemical systems and then subsequently in biochemical systems. More recently several nitrones
including PBN (α-phenyl-tert-butylnitrone) have been shown to have potent biological activity in
many experimental animal models. Many diseases of aging including stroke, cancer development,
Parkinson’s disease and Alzheimer’s disease are known to have enhanced levels of free radicals and
oxidative stress. Some derivatives of PBN are significantly more potent than PBN and have
undergone extensive commercial development in stroke. Recent research has shown that PBN-related
nitrones also have anti-cancer activity in several experimental cancer models and have potential as
therapeutics in some cancers. Also in recent observations nitrones have been shown to act
synergistically in combination with antioxidants in the prevention of acute acoustic noise induced
hearing loss. The mechanistic basis of the potent biological activity of PBN-related nitrones is not
known. Even though PBN-related nitrones do decrease oxidative stress and oxidative damage, their
potent biological anti-inflammatory activity and their ability to alter cellular signaling processes can
not readily be explained by conventional notions of free radical trapping biochemistry. This review
is focused on our observations and others where the use of selected nitrones as novel therapeutics
have been evaluated in experimental models in the context of free radical biochemical and cellular
processes considered important in pathologic conditions and age-related diseases.
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Introduction
Scientific advancements regarding our understanding of free radicals in biological systems,
their importance in disease processes and now the possibility of using novel therapeutics that
act by influencing free radical processes has changed dramatically over the last several years.
The possibility that free radicals actually may exist in biological systems was only taken
seriously after radiation chemists had shown: A) that oxygen free radicals were formed by
ionizing radiation and B) that ionizing radiation also causes cancer. These facts were
established over 50 years ago and many discoveries since then have occurred which have made
this area an important field of research. Important findings include the following
demonstrations: A) that biological systems actively produce reactive oxygen species (ROS)
and reactive nitric oxide species (RNS), B) that biological systems have enzymatic systems
specifically to degrade these reactive species, C) that specific oxidation products are formed
when biological molecules react with ROS and RNS, D) that cellular stress-related processes
are communicated using ROS and RNS as signaling agents and E) that ROS and RNS are
agents that play an important role in many normal processes as well as pathologic disease
progression.

Following this over arching massive growth in our understanding of ROS and RNS in
biological systems, an important research area in novel therapeutics has arisen. Namely that
potential novel therapeutics have been discovered which act by altering the course of disease
progression by acting upon ROS and RNS mediated processes. We have spent considerable
effort in exploring this area mostly focused on the use of nitrones in age-related diseases. In
this effort much has been learned but much more is yet to be discovered. This review is
presented as an aid to enhance future effort in the pursuit of goals along this path of research.

Nitrones – From Spin Traps in Free Radical Chemistry to Experimental
Animals

The nitrone chemical structure in its simplest form can be represented as X-CH=NO-Y.
Nitrones began to be used in analytical chemistry applications in the late 1960s. Nitrones will
react with and “trap” and stabilize free radical intermediates (Figure 1). Many chemical
reactions have free radical intermediates. Since many of these intermediates exist for only a
brief time they are therefore very difficult to characterize and study. Chemists showed in 1967
that some free radicals will react with nitrones to produce nitroxide free radicals [1]. The nitrone
trapping of a free radical intermediate is represented in the following simple reaction where
the free radical intermediate (R•) is trapped by a nitrone: X-CH=NO-Y+R• → X-CHR-NO•-
Y. Janzen and Blackburn advanced the field significantly and utilized nitrones to trap free
radicals and also coined the term “spin trap” for trapping free radical intermediates [2]. The
reaction of the free radical species with a nitrone yields a product termed the spin-adduct
(Figure 1). The nitroxyl free radical spin-adduct is usually much more stable than the free
radical therefore making it possible in principle to characterize the original free radical trapped
using electron paramagnetic resonance methods [3]. Shortly after beginning the use of nitrones
to trap free radicals in analytical chemistry, scientists then began to use nitrones to trap free
radicals in biochemical systems with reports first appearing in 1975 [4] and 1976 [5].

After the original early reports in the mid 1970s demonstrated the potential for the use of nitrone
spin traps to detect and characterize free radical intermediates in subcellular biological systems,

Floyd et al. Page 2

Free Radic Biol Med. Author manuscript; available in PMC 2009 December 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



increasing research was conducted using nitrones in biochemical research for the next 10–20
years. In this regard excellent research came from several major laboratories including,
Mason’s laboratory [6–10], Piette’s laboratory [11–14], Kalyanaraman’s laboratory [15–18],
our laboratory [19–24], as well as many others. McCay’s laboratory from the very early days
began to focus more on the use of nitrones to trap free radicals in experimental animals. For
example, trapped radicals were demonstrated in rats administered CCl4 [25,26], experimental
animals given ethanol [27], as well as during exposure to gamma radiation [28]. Bolli, Janzen
and McCay studied the free radicals produced in “stunned” hearts of rats [29–33] and McCay,
Janzen and Bray made seminal observations on the pharmacokinetics and metabolism of the
commonly used spin-trap PBN i.e. α-phenyl-tert-butyl nitrone [33–35].

Early Experiments Testing Nitrones as Pharmaceutical Agents
It was in the context of the increasing use of nitrones to trap free radicals in experimental
animals undergoing oxidative stress that the extrapolation to the experimental testing of
nitrones as pharmaceutical agents began. We and others have reviewed the early phases of the
use of nitrones as pharmaceutical agents previously [36–39]. The first early reports of the use
of nitrones as potential pharmaceutical agents were those reported by Noveli in 1985 and 1986
[40–42] demonstrating that administered PBN protected rats from the trauma and death brought
on by subjecting them to confinement in a rotating drum as well as the shock trauma brought
on by LPS injection. The protective activity of PBN was replicated and extended by more
rigorous experiments of septic shock using LPS by McKechnie et al [43] Hamburger and
McCay [44] and Pogrebniak et al [45]. PBN was found to be protective in these models only
if administered prior to the LPS challenge. It was soon after these observations (Dec, 1988)
that Floyd and Carney made the first observations demonstrating that PBN had neuroprotective
activity in the Mongolian gerbil stroke model [46–48]. This discovery arose from follow-up
experiments where we had demonstrated using salicylate to trap hydroxyl free radicals that
ischemia/reperfused gerbil brains produced reactive oxygen species [49]. PBN was then
utilized in an attempt to trap putative secondary free radicals induced by hydroxyl free radical
reactions with biological molecules. This approach failed because the secondary free radicals
that may have been trapped to form the nitroxyl PBN spin adducts were rendered
paramagnetically silent due to their reduction to the hydroxylamine products. Despite the
failure to realize our experimental goals, serendipitous success was soon realized since the
follow-up experiments showed that PBN was protective against stroke-induced brain injury
even if it was administered up to 1 hr after the stroked brain was reperfused [48]. These results
were soon reproduced [50] and extended [51,52].

Observations Extending the Biological Activity of PBN
Following these early observations other laboratories as well as our own extended the
neuroprotective activity of PBN to models involving excitotoxicity induced neuronal damage
[53], toxin induced brain seizures [54,55], and bacterial meningitis caused by group B
streptococci [56]. Hillered’s group also extensively studied the effects of traumatic brain injury
in animal models and demonstrated that PBN and the 2-sulfonyl-PBN derivative i.e. S-PBN
have protective roles [57–62]. In addition to brain, PBN was shown to be protective in hearing
loss in rats caused by the combined exposure to carbon monoxide and loud noise [63]. PBN
was also shown to be effective in preventing streptozotocin-induced diabetes [64], thalidomide-
induced birth defects [65], ischemia/reperfusion-induced acute renal failure [66] and in light-
induced damage to eyes affecting vision [67–69]. Several studies have also suggested that PBN
increased life-span in normal [70] and senescence-accelerated mice [71] and in rats [72] and
also prevented age-related decline in behavioral parameters in rats [72] as well as gerbils
[47,73]. Pertinent to the anti-aging effect of PBN, in rigorously controlled and replicated studies
at three different experimental sites using a genetic model that simulates outbred wild mice, it
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was demonstrated that the PBN metabolite 4-hydroxy-PBN administered in the diet from a
young age did not cause an increase in life span [74,75].

Wide-Spread Biological Activity of PBN – What General Mechanism is Involved?
The studies noted above as well as those not cited in this review clearly demonstrate that PBN-
related nitrones have potent biological activity. In fact, it can be generalized that these
compounds have shown activity in the majority of experimental models of either pathologic
conditions or age-related diseases where they have been tested. New observations continue to
be made. For example, recent observations include the demonstrations that: A) PBN
ameliorates hippocampal injury and improved learning and memory in juvenile rats following
neonatal exposure to LPS [76], B) PBN decreased the incidence of external malformations in
a mouse model of LPS-induced teratogenesis [77] and C) PBN decreased the damage to striatal
neurons and loss in motor skills in neonatal rats exposed to hypoxia-ischemia [78].

The wide-spread activity suggests that there is a universal mechanism that can explain the
mechanistic-basis of the general activity of PBN. If this is true it has not been elucidated thus
far. Since PBN was brought to the attention of scientists because of its ability to trap free
radicals it is rational to assume that its biological action is due to its spin-trapping activity. This
can not be completely ruled out, however the conventional notions of mass action solution
chemistry spin-trapping is highly unlikely to explain the biological action of PBN and related
compounds. This is because the general reaction rate of PBN with most free radicals is quite
slow, i.e. usually about 105–107M−1sec−1 [3]. This dictates, as has been demonstrated in
solution chemistry trapping studies, that PBN then must be present at very high concentrations
(i.e. 10–50 mM) in order for PBN to trap a significant fraction of the free radicals being
produced. As we have argued previously [36,79,80], PBN is rarely higher than 10–50 µM and
almost never more than 0.5 mM in the target tissue of systems where it has been shown to be
active. Based on a solution chemistry based perspective, the low target tissue PBN levels
strongly suggest that PBN would be capable of spin-trapping only a very small fraction of free
radical species produced which strongly argues against this explanation to account for its
biological action. If it however is taken into consideration that the interior of cells has physical
properties of a gel rather than bulk water and that PBN may have specific strong affinities for
specific proteins or other biological molecules then it is possible that PBN may spin-trap critical
free radicals on the surface of these macromolecules which may be of importance in the
biological processes investigated. PBN has been shown to trap protein thiyl free radicals [81]
but it has not been proven that these or other protein radicals are of critical importance in
biological processes where PBN has been shown to have a significant effect. In the case of the
spin trap DMPO (5, 5-dimethyl-1-pyrroline N-oxide) new methodology has shown that many
proteins retain a DMPO molecule attached covalently as revealed by mass spectroscopy [82–
86] and by immunological methods [87–89]. Modifications of this new methodology may
become available to help address the questions of the importance of PBN reacting with free
radicals on biological macromolecules.

PBN-Possible Mechanisms Other than Spin-Trapping
Mechanisms other than spin-trapping have been investigated to account for the biological
activity of PBN and related compounds. In general PBN has been shown to have some activity
and therefore influence many biological processes. As discussed earlier various notions other
than spin-trapping to explain the mechanistic action of PBN have been considered. These
include A) its antioxidant properties, B) its action on important membrane enzymes including
ion transport proteins and C) its action as an anti-inflammatory agent. With regard to PBN as
an antioxidant, at least two studies have demonstrated that it is a very poor antioxidant in simple
systems [90,91]. In biological lipid peroxidation systems it was shown that PBN at ~5 mM was
an effective antioxidant but the antioxidant BHT or γ-tocopherol was as active at about 5 µM
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or less, i.e. they were about thousand-fold more effective than PBN [90]. Since PBN solubilizes
into lipid bilayers it is not surprising that it may influence enzymes especially if the
concentration is in the high range. In this regard PBN has been shown to block calcium channels
that are important in pulmonary artery relaxation [92]. The ED50 for PBN was shown to be
1.93 mM in this regard. PBN also has been shown to inhibit acetylcholinesterase activity with
a Ki of 0.58 mM [93]. It was shown that PBN has no influence on muscarinic or glutamate
receptors though [94,95]. Many studies in our laboratory and Kotake’s laboratory have
demonstrated that PBN has general anti-inflammatory activity. The anti-inflammatory activity
of PBN is manifested as the curtailment of inflammatory cytokine expression and the
accompanying expression of genes associated with the action of proinflammatory cytokines.
Examples of gene induction products which are in general suppressed by PBN include
inducible nitric oxide synthase (iNOS) and COX-2. The induction of these genes have been
shown to be curtailed by PBN administration in a wide range of biological models and systems
[37,64,96–103]. The resultant curtailment of the production of enhanced nitric oxide (NO) and
inflammatory prostaglandins is expected to have significant influence on biological parameters
important in pathologic conditions and age-related diseases as has been noted in several
neurodegenerative models [55,96,99] and in cancer development [80,104,105].

Nitrones as Therapeutics for Stroke
Basic Science Discoveries Leading to Commercial Development

The activity of PBN-related nitrones has been a subject of intense research and commercial
development for over 20 years. As noted in the Introduction section, Floyd and Carney in 1988–
1992 made the original discoveries in experimental stroke that led to most of this activity
[46–48]. The fact that PBN administered up to 1 hr after an ischemia/reperfusion insult to the
brain of Mongolian gerbils showed protective activity was surprising and clearly suggested
possible therapeutic potential for the indication of acute ischemic stroke in humans. Centaur
Pharmaceuticals beginning in 1993 aided by NIH SBIR grants helped implement much of the
commercial research and development activity in this arena until 2000 when Renovis, Inc
became the primary commercial company guiding this effort. Centaur partnered with Astra
that later became AstraZeneca which funded all of the major development research and clinical
studies from Phase I through Phase III stages from mid 1995 through 2007. The PBN derivative
2,4-disulfophenyl-N-tert-butylnitrone, referred to as NXY-059, was the candidate drug that
was taken through the many stages of clinical development for the acute ischemic stroke
indication.

Nitrone Stroke Drug NXY-059 Preclinical Studies
Green et al provided a most extensive review of the nitrone data (NXY-059, PBN, as well as
2-sulfophenyl-N-tert-butylnitrone) in relation to the preclinical research on NXY-059 in stroke
[106]. NXY-059 is a less competitive compound for trapping free radicals in vitro systems than
PBN or S-PBN [107] It should be noted however that PBN is a poor antioxidant when compared
to the well known antioxidants α-tocopherol and butylated hydroxytoluene [90,91]. However
as a protective agent in experimental stroke models, NXY-059 is much more effective than
PBN in the amount of compound needed as well as the time window after the stroke when
administration was started [106]. NXY-059 showed effectiveness when administered at a dose
of 0.3 mg/kg/hr starting 1 hr after a 2 hr occlusion of the middle cerebral artery allowing
regional brain reperfusion in a rat model. However PBN administered at a comparable dose
rate showed no neuroprotective effect. In addition to the transient focal ischemia models in
rats, NXY-059 was also shown to have significant neuroprotective activity in the permanent
focal ischemia model in rat [106] as well as in the marmoset primate model [106,108,109]. In
the rat middle cerebral artery permanent focal ischemia model, the degree of neuroprotection
as judged by decreased infarct volume was directly proportional to the plasma free
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concentration of NXY-059 in the 0–120 µmol/L range [106]. In this model neuroprotection
was significant even if NXY-059 was administered starting 4 hrs after middle cerebral artery
ligation. Probably the most critical preclinical experiments were conducted in the marmoset
model. This permanent focal middle cerebral ischemia model was studied when NXY-059 was
administered either immediately after artery ligation [108] or starting at 4 hrs after artery
ligation [110]. NXY-059 had significant neuroprotective activity in both studies as judged by
behavior parameters as well as by prevention of brain death. Behavioral parameters obtained
from both the hill and valley tests were used. In these tests the use of the lateral and contralateral
arms was evaluated in trained animals at 3 and 10 weeks after artery ligation. Significant
neuroprotection was afforded by NXY-059 in all the neuroprotection parameters measured.
These critical experiments in addition to all the rodent studies conducted in several independent
laboratories as well as the fact that NXY-059 had shown no significant toxicity in humans in
several Phase I and Phase II clinical trials [106,111] were important in the evaluation conducted
by AstraZeneca that led to proceeding into Phase III clinical trials.

Phase I and II Clinical Trials
Much of the background development research leading up to Phase II clinical trials has been
thoroughly summarized previously [39,106,108,109,111]. NXY-059 was shown to be a very safe
drug in all the clinical trials [106,111–113]. If a stroke drug alters hemostasis parameters, this
may have an adverse effect. NXY-059 was studied in 30 healthy adults where it was
demonstrated that it had no effect on bleeding time or platelet aggregation or adhesion [112].
It was also shown that NXY-059 has no effect on the action of recombinant tissue-type
plasminogen activation on the clearance of human thrombi in vitro [113]. Studies of NXY-059
pharmacokinetics administered intravenously in healthy young and elderly humans showed
that the plasma elimination half-life was short, being 2–3 hrs, renal elimination was
predominant, it was not reabsorbed by the kidney and the recovery of the unchanged drug in
the urine was 80–90% of the total dose irrespective of age of the subjects [111]. A follow up
study confirmed that renal elimination of NXY-059 was dominate and that there was no
reabsorption by the drug. It was also demonstrated that NXY-059 excretion in the kidney was
due to active elimination by the organic ion transporter [114]. The drug clearance from plasma
did fit a 2 compartment model indicating that it did have some penetration into tissue. Studies
in rats showed that there was some penetration in brain. Studies in sham operated rats as well
as those receiving a permanent middle cerebral artery occlusion demonstrated that NXY-059
did penetrate into the brain cortex region of sham operated rats (6.26 ± 1.26 nmol/g) but it
penetrated even less in the stroked rats in the region of the artery ligation (3.84 ± 0.80 nmol/
g) than the region of the contralateral side (6.14 ± 2.18 nmol/g). This is expected if the main
supply of blood is blocked from coming into the stroked region. Another study important to
the penetration of NXY-059 into stroked brain was conducted by Dehouck et al [110]. In this
study the penetration of PBN, S-PBN as well as NXY-059 was examined in an in vitro model
of the blood-brain barrier. As expected, the uptake of S-PBN and NXY-059 was low but PBN
readily penetrated. However, importantly the penetration rate of NXY-059 increased several-
fold if the blood-brain barrier was subjected to hypoxia or ischemia [110].

Phase III Clinical Trials
As noted earlier, the marmoset experiments plus the safety profile of NXY-059 contributed to
the decision to begin Phase III clinical trials. Phase III clinical trials were conducted as a series
of two major studies. The two trials were referred to as the Stroke-Acute Ischemic NXY
Treatment (SAINT) trials or SAINT I and SAINT II trials. The SAINT I trial ran from May
2003 through November 2004 at 158 hospitals in 24 countries [115]. The patients were older
than 18 yrs and had a clinical diagnosis of acute stroke that commenced within 6 hrs before
entry into the study. It was required that the patients had limb weakness and had a score of at
least 6 on the National Institutes of Health Stroke Scale (NIHSS). Patients were randomly
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assigned to receive an i.v. infusion of NXY-059 or placebo within 6 hrs after the onset of stroke.
The initial infusion rate was 2270 mg per hour and then reduced to 480 to 960 mg for a further
71 hours with the aim of maintaining a free NXY-059 plasma concentration of 260 µmol per
liter. Treatment outcome was based on a clinical assessment which included functional
measures that were dependent primarily on the modified Rankin scale (range 0–5) and the
Barthel index [115]. Therefore the SAINT I trial was a randomized, double-blind, placebo-
controlled trial involving 1722 patients with acute ischemic stroke and randomly assigned to
receive 72-hr infusion of placebo or intravenous NXY-059 beginning within 6 hrs after the
onset of stroke. In the final outcome, 1699 subjects were included in the efficacy analysis. It
was shown that NXY-059 significantly improved the overall distribution of scores on the
modified Rankin scale, as compared with placebo (P = 0.038) by the Cochran-Martel-Haenszel
test [115]. The common odds ratio for improvement across all categories of the modified
Rankin scale was 1.20 (95 percent confidence interval, 1.01 to 1.42). In contrast to the modified
Rankin scale noted above, NXY-059 did not show significant improvement in neurological
functioning as measured by the NIHSS test. There was no difference in mortality or adverse
events between the treated and untreated group.

Results of SAINT I Clinical Trial
The first report of the success of NXY-059 in the SAINT I trial was hailed as the first
experimental drug to receive this distinction amid a large number of failures for the treatment
of acute ischemic stroke. After the first report there was further analysis of the data by others
leading to conclusions that differed. For instance one critical review concluded that in general
terms that for every 100 stroke patients with NXY-059 about 10 would benefit and none would
be harmed by the treatment [116]. Another review concluded that the treatment provided little
evidence for the demonstration of efficacy [117]. Actually the primary investigator’s conducted
a much more thorough analysis of the data where the outcome parameters were evaluated at 7
days, 30 days and 90 days [118]. The authors concluded from this more detailed analysis that
NXY-059 provided beneficial effects at 7 and 30 days after the stroke but not at 90 days. They
also concluded that the SAINT I trial was underpowered to measure effects on the neurological
examination. These conclusions were apparently important in causing the initiation of another
Phase III clinical trial containing many more stroke patients which was referred to as the SAINT
II trial.

Results of SAINT II Clinical Trial and Pooled Summary
The SAINT II trial was conducted during the period of May 2003 through June 2006 and
enrolled 3306 patients having the same criteria as in SAINT I trial except the study involved
362 centers from 31 countries [119]. The primary endpoint was the distribution of disability
scores on the modified Rankin scale at 90 days. In addition scores on neurologic and activities
of daily living scales were secondary endpoints. The efficacy analysis was based on 3195
patients. The results showed that the distribution on the modified Rankin scale did not differ
between the NXY-059 treatment group and the placebo group [119]. In addition there was no
evidence of efficacy for any of the secondary endpoints either. Following the publication of
the SAINT II results a pooled analysis of the SAINT I and SAINT II trials was then published
[120] which concluded that NXY-059 was not effective in the combined trials. The details
provided of the pooled trials shows that these trials included 498 centers from 38 countries and
that the design and content of the 2 SAINT studies were developed by a steering committee
comprising stroke experts from Europe, North America and Australia. The steering committee
had complete access to the data and was responsible for writing the manuscript [120]. These
results were clearly disappointing to those in the stroke treatment community who had expected
a positive outcome based on the SAINT I trials. It should be noted that the trials, both preclinical
and clinical, had been developed in close accordance with the guidelines proposed by an
academic-industry roundtable group (STAIR) [121–123] and therefore the failure of NXY-059
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was considered a serious blow to the neuroprotection concept that guided stroke scientists for
some time [124].

Critiques of Clinical Trials
There have been many reviews and critiques of the steps in the commercial development of
NXY-059 [125] as well as questioning the neuroprotection concept that has guided stroke
scientists for some time. Since NXY-059 is a compound that has been grouped into the loosely
defined category of antioxidants, it is important for the future of potential therapeutics that may
be placed in this category to learn from the important points revealed by the lessons to be
gleaned from the NXY-059 development history. It is important to list deficiencies in the
preclinical trials that scientists have pointed out. Savitz has pointed out that the preclinical data
have several short comings including a lack of strenuous testing that reproducibly showed
robust protection in extended time windows in clinically relevant stroke models at several
different academic research laboratories [125]. He also states that the clinical trials of NXY-059
were inadequately designed, in part, because of inappropriate treatment windows and inclusion
of diverse stroke patients. Others seem to agree with this assessment [122,126]. Another
important failure pointed out by Feuerstein et al was that more attention was needed to
characterize the nature of the drug candidate-target interaction and its relationship to
pharmacodynamic treatment end points [123].

Lessons Learned Pertinent to Antioxidant Therapeutics
An insightful review focused specifically on free radical scavengers and stroke was provided
by Wang and Shuaib [127]. They noted that in addition to NXY-059 only 3 other therapeutic
antioxidant medications had progressed into clinical trials for stroke; these include Ebselen,
Tirilazad and Edavarone. Both Ebselen and Tirilazad were tested in stroked patients but their
development has been terminated and therefore only Edavarone has succeeded in being used
for stroke but only in Japan. They conclude that antioxidants as potential therapeutics is still
valid as a goal, but that certain key elements need to be addressed in future development. First,
there is a need to more thoroughly understand mechanistically how neurons die especially in
human cerebral ischemia. Second, ischemic cell death is the result of complex noxious
processes including oxidative stress, excitotoxicity, functional failure of ionic pumps,
inflammatory reactions and activation of apoptotic death pathways and that termination of one
of these cascades may not be sufficient to reduce the brain damage that occurs. Thirdly,
therefore a combination therapy with different compounds targeting different pathways may
offer better chance than single medications. Two other elements were suggested, these included
the concept that DNA regulatory elements in the promoter regions of genes that were
upregulated by ischemic tolerance of cells may be a valid target and finally the need to test
compounds in patients that had been more carefully selected using newer technologies such as
MRI screening. These are excellent suggestions and are clearly issues that need to be considered
in future drug development for stroke and probably other pathologic conditions where
exacerbated oxidative stress is considered an etiological agent.

Anti-Cancer Activity of PBN-Related Nitrones
Early Studies on Hepatocellular Carcinoma

We discovered that PBN has anti-cancer activity in the well known dietary choline deficiency
rat liver cancer model [128–130]. Our research on the influence of PBN on
hepatocarcinogenesis induced by a choline-deficiency diet started in 1997. Development of
hepatocellular carcinoma in many animal models begins as preneoplastic lesions that appear
as “small islands” of “altered cells” in the liver. In the case of the choline deficiency model as
well as in several other models there are hundreds to thousands of preneoplastic nodules
(islands) that develop in the liver. With time and sustained oncogenic pressure a few adenomas
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arise from some of these islands and also with time carcinomas may arise from the adenomas
or from the preneoplastic lesions per se. The choline-deficiency model was tested because
reactive oxygen species and lipid peroxidation had been shown to be very important primary
agents in this model by several laboratories [131–135]. Since PBN had been shown to suppress
oxidative damage in several biological systems with very little toxicity, it seemed a reasonable
choice. The first experiments were conducted on the Wistar rat model and involved three levels
of PBN administered in the drinking water for 12 weeks while the rats were on the choline
deficiency amino acid (CDAA) defined diet. At the end of this time period the rats were
sacrificed and the livers examined to assess several parameters about preneoplastic nodule
growth, size, etc. In this study we first noted that PBN in increasing amounts administered in
the drinking water caused dramatic decreases in the size of preneoplastic nodules in the liver.
In the same study we also noted a slight decrease, more so with increasing dosage, of the number
of preneoplastic nodules in the liver. Additionally we also demonstrated that PBN at increased
dosage, caused a decrease in the amount of oxidized DNA adducts as measured by 8-OHdG
content in the livers [136]. The research results are summarized in Table 1.

The dramatic decrease in the size of the preneoplastic nodules was evident even at very low
levels (6 mg/kg-day) of PBN in the drinking water and this spurred us to explore the anti-cancer
activity in more detail. Therefore we then followed up with a long term (70 week) study where
rats were placed on a choline deficient amino acid defined diet (CDAA) or a control diet
(choline sufficient amino acid defined diet (CSAA) and PBN was administered in the drinking
water. The results of this study clearly demonstrated that PBN had anti-cancer activity. The
results have been summarized in 3 publications [128–130] and also we were granted a patent
on these observations [137]. These results clearly show that PBN when given in the drinking
water for the first 26 weeks or for the last 44 weeks to the rats given the CDAA diet caused
the complete prevention of hepatocellular carcinoma (HCC) formation assessed after 70 weeks.
We also found that when PBN was given in the control diet (CSAA), no tumor formation was
observed. Therefore PBN is not carcinogenic per se. This study with PBN was followed up by
a new study testing the anti-cancer activity of 4-hydroxy-PBN i.e. 4-OHPBN, which is the
natural p450 hydroxylated derivative of PBN. In this case 4-OHPBN was given in the diet as
opposed to PBN which was given in the drinking water. A dietary administration route for 4-
OHPBN was used simply because of convenience. The results of this 70 week study of 4-
OHPBN demonstrated that 4-OHPBN had anti-cancer activity in this model also. Even though
the activity of 4-OHPBN and PBN were not directly compared in this experiment they were
judged to be approximately equal in efficacy.

The data presented in Table 1 suggested that PBN in some unknown manner caused decreased
growth of the cells in the preneoplastic lesions. A clear demonstration that this was due to
increased selective apoptosis of these cells was demonstrated in an experiment where PBN as
well as some of its chemical derivatives (2-OHPBN, 3-OHPBN, 4-OHPBN and 2-Sulfate PBN)
were tested in a short term study in the same model although in this case PBN and derivatives
were administered in the CDAA diet [129]. Important data concerned with the effects of PBN
and the two active derivatives on preneoplastic lesions are presented in Figure 2. This data is
a summary of our published results [138]. Note that the highest levels of PBN as well as 4-
OHPBN and 3-OHPBN caused significant decreases in the size of the preneoplastic lesions as
well as the content of 8-OHdG in the DNA and the amount of lipid peroxidation as measured
by thio barbituric acid reactive species (TBARS) in the tissue. As was noted in the earlier study
[136] the numbers of preneoplastic lesions were decreased by the highest levels of PBN (as
well as 4-OHPBN and 3-OHPBN in this study) although not as marked as that noted in the
change in size of the preneoplastic lesions brought on by the nitrones. The data collected on
apoptosis of cells within the lesions versus the surrounding “normal” tissue cells are presented
in Table 2. These data show that treatment with the nitrones caused a large significant increase
in the apoptosis of the cells within the preneoplastic lesions but had the opposite effect of the
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cells in the surrounding tissue. These results clearly show that the nitrones decreased the size
of the preneoplastic lesions by enhancing the selective apoptosis of these cells. This is a
remarkable finding and may be the key to understanding the anti-cancer activity of the nitrones
in this model.

Presently we do not understand the mechanisms involved as to why the active nitrones caused
the enhanced selective apoptosis of the cells within the preneoplastic lesions. Many potential
mechanisms can be envisioned. However a set of observations we made suggests that enhanced
expression of iNOS and thus the enhanced level of NO produced could play an important role.
Our observations and rationale implicating the role of iNOS in cancer development has been
summarized previously [80,105] and therefore only the major points will be presented here. We
observed that isolated hepatocytes from rats fed a choline deficiency diet had enhanced NO
production [104] and that this was due to enhanced levels of iNOS expression and that PBN
administration decreased NO production and iNOS expression by the isolated hepatocytes.
These observations clearly implicate that iNOS and enhanced NO production is correlated with
the growth of liver tumor in the choline deficiency model and that PBN administration caused
the suppression of iNOS/NO production which may help to explain the anti-cancer activity of
these compounds in this model. The scientific literature reinforces the notion that iNOS/NO is
important in cancer development in several experimental models and in human studies as we
summarized previously [105]. The mechanisms involved in the iNOS/NO mediated cancer
development can be rationalized and are briefly summarized below.

Rigorous studies in the literature with several tumor cell lines [139–142], as well as isolated
hepatocytes [143–149] demonstrated that NO prevents apoptosis by forming critical S-
nitrosylation bonds with specific caspases, probably Caspase 8 [147] or Caspase 9 or
Procaspase 9 [139] and thus preventing the initiation of the apoptosis processes. Recent studies
have also demonstrated that NO mediates S-nitrosylation of Bcl-2 which prevents proteosomal
degradation thereby enhancing the buildup of this protein and therefore preventing apoptosis
of the cancer cells [150]. In addition to forming S-nitrosylation adducts of caspases and Bcl-2
thereby inactivating these enzymes and preventing apoptosis, NO also mediates the S-
nitrosylation of OGG1 thus causing the inactivation of this DNA repair enzyme [151]. OGG1
inactivation is then expected to cause the buildup of 8-OHdG, as we observed [136]. The
enhanced 8-OHdG is expected to then enhance cellular mutation events. Additionally NO
mediates S-nitrosylation of PTEN inactivating this tumor suppressor protein [152] which then
is expected to cause enhanced oncogenic cell cycle processes to proceed [153]. In effect then
because NO is produced at sustained increased levels it causes the S-nitrosylation of OGG1,
PTEN and specific caspases and Bcl-2 which then respectively causes the enhancement of
cellular mutational rates and increased oncogenic cell growth as well as decreased apoptosis
of preneoplastic and cancer cells. Therefore based on this rationale we postulate that PBN
administration then shuts down NO production and this in effect causes cessation of these three
very important carcinogenic processes by the mechanisms outlined above and therefore PBN
slows down the development of cancer by enhancing the death of the preneoplastic cells and
possible cancer cells. Although this rationale helps explain our results in this model, these
notions have not been rigorously proven by direct experimental methods in this model.
Additionally there may be other mechanisms involved in the anti-cancer action of the nitrones
which supersede or encompass the iNOS/NO notions discussed above.

Studies on Gliomas
The efficacy of PBN as a potential anti-glioma therapeutic agent was assessed in a rat C6
intracerebral glioma model. Magnetic resonance (MR) imaging (MRI) and MR angiography
(MRA) was used to follow tumor morphology, such as tumor heterogeneity, size and volume,
and to determine alterations in tumor vascularity, such as associated with angiogenesis,
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respectively [154]. PBN was administered both as a prophylaxis and a post-tumor treatment
agent. For prophylaxis, PBN treatment was administered in the drinking water (75 mg/kg rat/
day or 0.065% w/w, for an estimated water uptake rate of 110–120 ml/kg rat/day) continuously
starting 5 days before intracerebral implantation of C6 rat glioma cells (106 cells/ml in
Dulbecco’s modified Eagle’s medium (DMEM)) [154]. For post-tumor treatment, PBN was
administered in the drinking water (as above) starting 14 days after cell implantation, which
corresponded to a tumor volume of ~50 mm3, as assessed by MRI. Prophylaxis PBN treatment
was able to significantly decrease tumor growth (from 0.14±0.028 day−1 and a doubling time
(Td) of 2.6 days to 0.05±0.007 day−1 and a Td of 7.4 days) and result in partial or even complete
tumor regression over the course of 40 days [154]. Post-tumor PBN treatment was found to
alter tumor growth and result in tumor regression in 40% of treated rats [154]. As shown in
Fig. 3 treatment with PBN 5 days before implantation seems to clearly inhibit glioma formation,
although post-tumor PBN treatment also seems to recede glioma formation in a significant
proportion of the tumors. Histological examination of rat brain slices in animals with complete
tumor regression indicated no evidence of tumor cells following PBN treatment.

MRA analysis of rat brain vasculature, quantified using a Mathematica-based program
developed in-house, indicated that PBN also decreased angiogenesis associated with the
gliomas (see Figure 4) [154]. Non-treated C6 gliomas had a relative blood volume ratio (tumor
blood volume at 23±3 days following cell implantation compared to the first day of assessment
at 7 days following cell implantation when no tumor was visible by MRI) of 1.26±0.157
compared to 0.98±0.072 for rats implanted with non-neoplastic primary astrocytes [154].
Prophylaxis PBN treatment decreased the blood volume ratio to 0.79±0.144 (with an overall
50±8% decrease in blood vessel diameters), whereas post-tumor PBN treatment in responsive
animals was found to decrease the blood volume ratio and vessel length by 20±7% [154].
Immunostaining for the proangiogenic factor VEGF (vascular endothelial growth factor) and
a marker of endothelial cell proliferation, the von Willebrand factor (vWF), following PBN
treatment indicated decreased expression of VEGF and vWF which was similar to normal brain
tissue [154]. The neuroprotective [99], anti-inflammatory [100], anti-ischemic [155] and anti-
carcinogenic [136] properties of PBN, coupled with its ability to freely cross the blood-brain-
barrier, and also being both lipophilic and hydrophilic, makes PBN an interesting therapeutic
candidate that may potentially be used for gliomas in humans, particularly following surgery
and/or radiation to prevent tumor reoccurrence. PBN has been previously shown to decrease
iNOS activity [102]. Increased iNOS levels have been found to occur in human brain tumors
[156] and is strongly correlated with the degree of malignancy of a carcinoma [157]. Nitric
oxide and VEGF tightly cooperate to promote angiogenesis. PBN has been found to down-
regulate cytokines and NF-κB expression [45], which promotes iNOS expression [158], and
therefore PBN may prevent or reduce angiogenesis in gliomas through NF-κB and/or
suppression of iNOS, which would result in decreased NO production and subsequent reduced
VEGF expression.

Diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) was also recently used
to assess the white matter neuronal fiber tracts following glioma formation and treatment with
PBN. In this study, we found that the displacement, loss of connectivity and disappearance of
neuronal fiber tracts resulting from C6 glioma formation, was prevented if PBN treatment was
implemented [159]. In some of these animals the C6 gliomas completely disappeared in 6
weeks after cell implantation, resulting in a total disappearance of the compressed neuronal
fibers observed in non-treated rats [159]. In non-treated animals, the C6 glioma growth
compressed surrounding tissues, inducing a hematogenous disorder such as ischemia, which
led to destruction of the neuronal cells and fibers [159]. It is thought that perhaps PBN may be
protecting the neuronal fibers from compression-induced ischemic injury [159]. PBN has been
previously shown to increase cortical cerebral blood flow in rats by inhibiting the breakdown
of NO [160].
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Nitrones and Hearing Loss
Acute acoustic trauma (AAT) and oxidative stress

An abundance of scientific data is accumulating supporting the thesis that oxidative stress plays
a substantial role in the induction of cochlear injury and permanent hearing loss after excessive
acute noise exposure [161–167]. Acute acoustic trauma (AAT) has been associated with a
variety of changes in mammalian cochleae, including excessive release of glutamate, ischemia-
reperfusion, mitochondrial injury, glutathione depletion, and ionic fluxes leading to an increase
in oxidative stress [165,167].

AAT induced by steady state noise and, presumably, a variety of other types of noises, is
associated with the production of reactive oxygen species (ROS), reactive nitrogen species
(RNS), and lipid peroxidation species both with the onset of the noise trauma as well as some
days after cessation of noise exposure [168–172]. Additionally, recent evidence suggests that
there is a significant upregulation of iNOS activity in the mammalian cochlea after intense
steady state noise exposure. In one study mice were exposed to high level steady state noise
and tissues of the lateral cochlear wall and stria vascularis were examined [173]. This region
of the cochlea is highly vascularized and very metabolically active as it generates endocochlear
potential responsible for sound transduction. The investigators found that in the noise exposure
condition there was a greater expression of iNOS immunoreactivity as well as increased
detection of NO production and ROS activity leading to apoptosis of cells in these tissues.
These changes were attenuated with the administration of an iNOS inhibitor [173]. An
additional study reported increased iNOS immunoreactivity in afferent nerve fibers, outer hair
cells and a variety of supporting cells in the cochlear organ of Corti as well as cells of blood
vessels and marginal cells of the stria vascularis in the lateral cochlear wall [174]. Importantly,
one of the consequences of the excessive oxidative stress induced by excessive noise is the
onset of programmed cell death associated with mitochondrial release of cytochrome c,
activation of caspases and the c-jun NH2-terminal MAP kinase pathway [175,176].

PBN and toxin-potentiated, noise-induced hearing loss (NIHL)
Further evidence for the importance of oxidative stress in producing the cochlear injury
associated with AAT includes the extensive experimental therapeutic benefit demonstrated
with compounds having antioxidant properties. For example, free radical scavengers, such as
mannitol, salicylate and ebselen, have been reported to decrease permanent hearing loss due
to acoustic overexposure [167]. Also, approaches to enhance glutathione replenishment have
been successful strategies to reduce NIHL in animal models [171,172,177–179]. Glutathione
replenishment with NAC (N-acetylcysteine) has been reported to be effective in the prevention
and treatment of NIHL in several animal models from several different independent
laboratories and has been studied in an initial pilot study in humans [178].

A variety of early experiments were conducted with PBN. Fechter and colleagues reported that
several compounds, such as carbon monoxide (CO), hydrogen cyanide (HCN) and acrylonitrile
(ACN), can potentiate the hearing loss associated with acoustic overexposure [63,180–183].
Fechter and colleagues hypothesized that the mechanism of the potentiation of NIHL by these
toxins involved increasing cochlear oxidative stress. They noted that PBN given systemically
before and after high level steady state noise was able to decrease the toxin-induced potentiation
of the noise-induced threshold shifts [181,182]. However, PBN was unable to reduce the
auditory threshold shifts induced by noise alone [181,182].

4-OHPBN and AAT
Surprisingly, a compound closely related to PBN, 4-hydroxy phenyl-n-tert-butyl-nitrone (4-
OHPBN), has recently been reported to decrease permanent hearing loss induced by AAT in
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a chinchilla model [184]. The compound 4-OHPBN is a major metabolite of PBN. This was
surprising based on the previously noted work by Fechter and colleagues that PBN was
ineffective in decreasing noise-induced auditory threshold shifts. In the study reported by Choi
et al., chinchilla were exposed to high level steady state noise for 6 hours and treated with
intraperitoneal injections of 4-OHPBN alone or in combination with NAC or NAC plus acetyl-
L-carnitine (ALCAR) four hours after cessation of noise exposure and continuing twice daily
for another 48 hours. Treatment with 4-OHPBN alone reduced permanent hearing threshold
shifts and outer hair cell loss in a dose-dependent manner. A summary of these recently
published results is presented in Figure 5. The results show that when 4-OHPBN is combined
with either NAC or NAC plus ALCAR permanent hearing loss was reduced from 35 dB to 5
dB or less, and outer hair cell loss was reduced from 60% to 10% or less. Current studies
suggest that substantial reduction in permanent hearing loss can still be obtained using the
combination of 4-OHPBN plus NAC and ALCAR when given even 24 hours after the noise
exposure (Choi et al, unpublished results). Utilizing these compounds in combination with 4-
OHPBN allowed for a substantial reduction in doses of compounds required while still
affecting a maximal reduction in hearing and hair cell loss.

The exact mechanisms by which 4-OHPBN reduces cochlear injury associated with AAT are
still unknown. Possibilities include free radical scavenging, inhibition of iNOS activation,
suppression of ROS and RNS formation, decreased mitochondrial ROS production and reduced
neuroinflammation and activation of MAP kinase cascades [185]. Preclinical testing to further
define toxicity, mechanism of action, pharmacokinetics, and oral dosing parameters are now
underway.

Conclusions and Perspective on Antioxidant Therapeutics
What is the Candidate Drug-Therapeutic Target?

Our experience with the PBN-related nitrones has taught us many lessons in terms of the
development of therapeutics that are generally considered antioxidants. We have focused on
nitrones simply because the PBN-related nitrones have been shown to have potent biologic
activity in preclinical models of several pathologic conditions and in age-related diseases where
exacerbated oxidative stress is generally considered an etiological factor. Even though PBN
and related compounds are generally considered antioxidants, the truth is they are poor
antioxidants in several in vitro systems but in fact generally they do act in biological systems
to decrease oxidative stress at least in those systems where the condition has been evaluated.
Nitrones became widely known because of their ability to spin-trap free radicals yet the biologic
action of PBN, especially, is most likely not due to its ability to spin-trap radicals in biological
systems. It should be noted that in the case of NXY-059 it might act as a spin-trap simply
because its level in blood is so high (260 µm) under treatment conditions that it could act as a
spin-trap. But there certainly was no agreement as to its mechanism of action in preclinical
models [39,106]. Therefore there is considerable uncertainty and confusion about the
mechanism of action of the nitrones.

Our research has shown that the nitrones have potent anti-inflammatory properties and this is
probably important. Therefore, at first glance, in the case of the nitrones there is considerable
confusion regarding the drug-therapeutic target when compared to other well known drugs
such as the statin’s for instance. In truth, however, many well known drugs such as aspirin, the
statins and the non steroidal anti-inflammation drugs have action on many other processes and
biological parameters other than those that they are widely considered to act upon. Conversely
some well known drugs are also very potent antioxidants. This is the case for the well known
β blocker D-propranolol which has very potent antioxidant activity and this property is
considered to be an important reason for its therapeutic mechanism of action [186–188].
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Confusion over Antioxidants and Their Action
There is another widely unrecognized problem with defining the mechanism of action or drug-
therapeutic target for antioxidants. Simply stated, oxidative stress as well as the activity of
antioxidants in quelling oxidative stress is an area of active research and as such, a well defined
drug target is difficult to present at the present time when the therapeutic under question is
categorized as an antioxidant. It is therefore clear from the foregoing discussion that much
development research effort is necessary to understand and then clearly define the candidate
drug-therapeutic target for a specific “antioxidant” therapeutic. The case of alpha-tocopherol
(vitamin E) is instructive. Vitamin E was considered an essential vitamin since the 1920’s and
only later found to possess antioxidant properties. But its true mechanism of action, especially
how its position in the membrane and inferfaces with ascorbate in the cytosolic phase to quell
oxidative stress and oxidative damage was only elucidated in the last ten years. It is probable
that in the case of many so-called antioxidants that the therapeutic target may be very different
than what is generally considered an antioxidant property. As noted above this task is probably
harder for “antioxidant drugs” than many other drugs. Therefore in many cases the best that
can be done is to precisely define which biological processes are of vital importance in the
development of the pathologic indication where the therapeutic agent acts and then use this as
a first line screening tool. In most cases the basic science underling the processes involved in
causing the pathologic condition may be a major limitation as for instance in the case of stroke.
Also as in the case of stroke, several different processes combine to play a synergistic role
leading to the neuronal damage that occurs. Blocking only one of these processes is probably
not enough. In this case there is strong rationale for using a combination of compounds as was
pointed out as a suggestion for stroke [127]. Our observations on the synergistic effectiveness
of NAC combined with 4-OHPBN is a good illustration of this point in the case of acute
acoustical trauma-induced hearing loss [184]. It is possible that the active plant constituents
could be useful in this regard.
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Figure 1.
Chemical structures of nitrones, their reaction to trap free radicals and form spin adducts and
the chemical structure of PBN.
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Figure 2.
The influence of PBN and its 3-hydroxy and 4-hydroxy derivatives on the parameters of
preneoplastic lesions in the liver of rats administered these chemicals in a choline deficient and
choline sufficient diet. The values were calculated from the data presented in Floyd et al
[138].
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Figure 3.
(A) Representative T2-weighted images and histology (H&E, x4) staining of C6 gliomas from
the different treatment groups. (i–ii) Untreated C6 glioma at day 18 following cell implantation.
(iii–iv) PBN pre-treated C6 glioma at day 27. (v–vi) Post-tumor PBN treated C6 glioma
undergoing regression, shown at day 32. (vii–viii) Nonresponsive post-tumor PBN treated C6
glioma shown at day 16. (B) Tumor volumes (mm3) measured at the last MRI timepoint,
represented as means ± standard deviation.
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Figure 4.
(A) 2D vasculature projections in the horizontal plane of a representative non-treated C6 glioma
at day 8 (i) and 20 (ii) after cell implantation, and of a PBN pretreated C6 glioma at day 9 (iii)
and 39 (iv). The tumor boundaries are also represented (red). (B) 3D maximum intensity
projection (MIP) rendering of the brain vasculature. (C) Blood volume ratios for each treatment
group at the last time point (days 17–21 for untreated rats and non-responsive rats (PBN D
+14), and days 39–40 for treated rats (PBN D−5, PBN D+14 responsive), represented as means
± standard deviation.
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Figure 5.
Figure 5A. Auditory brainstem response (ABR) threshold shifts averaged at frequencies of 2–
8 kHz for control group, different 4-OHPBN dosage group, and different drug combination
group. The threshold shifts of control group were reduced with increases of 4-OHPBN dosage
and the number of drug combination. Asterisks of * and *** represent statistically significant
differences in ABR threshold shifts between control group and each experimental group at
p<0.05 and p<0.001, respectively. Asterisks of ***10, **20, ***20, **50, and ***50 indicate
statistically significant differences in ABR threshold shifts between each experimental group
(75 mg/kg, two, and three) and each different dosage of 4-OHPBN (10, 20, and 50 mg/kg) at
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p<0.001, p<0.01, p<0.001, p<0.01, and p<0.001, respectively. This figure has been published
previously by Choi et al [184] and is reproduced with the permission of the publisher.
Figure 5B. Percentage of missing OHC averaged at cochlear frequency regions corresponding
to 2–8 kHz for four 4-OHPBN dosage groups, different drug combination groups, and control
group. Outer hair cell (OHC) losses of control group were reduced with increases of 4-OHPBN
dosage and the number of drug combination. Asterisks of ** and *** represent statistically
significant differences in OHC loss between each experimental group and control group at
p<0.01, and p<0.001, respectively. Asterisks of *10–20 indicate statistically significant
differences in OHC loss between each experimental group and 4-OHPBN of 10–20 mg/kg at
p<0.05. This figure has been published previously by Choi et al [184] and is reproduced with
the permission of the publisher.
Figure 5C. Auditory brainstem response (ABR) threshold shifts averaged at frequencies of 2–
8 kHz for different antioxidant drugs and their combinations. Asterisks of ** and *** indicate
statistically significant differences between control group and each experimental group at
p<0.01 and p<0.001, respectively. The symbol # shown in the two-drug combination group
indicates significant differences in averaged ABR threshold shifts between the two-drug
combination and other experimental groups [4-OHPBN(20), NAC(325), ALCAR(100)] at
p<0.001, respectively while the symbol # shown in the three-drug combination groups shows
significant differences between the three-drug combination and other experimental groups [4-
OHPBN(20), NAC(325), ALCAR(100)] at p<0.001 and the three-drug combination and an
experimental group [4-OHPBN(50)] at p<0.05, respectively. Data for NAC (325 mg/kg) and
ALCAR (100mg/kg) were excerpted from Coleman et al [189]. This figure has been published
previously by Choi [184] and is reproduced with the permission of the publisher.
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Table 2

Effect of PBN Derivations on Apoptotic Index of Perneoplastic Lesion Cells and Surrounding
Tissue Cells*

% of Cells in Apoptosis

Treatment
Preneoplastic

Lesions
Surrounding

Cells

CDAA Diet Only 3.24 6.48

PBN Added 12.65 2.40

4-OHPBN Added 8.97 2.65

3-OHPBN Added 10.90 2.40

Control Diet Only -** 0.29

*
Experimental results obtained on liver tissue in the dietary choline deficiency rat model of hepatocellular carcinoma

conducted by Floyd et al(133).
**

There were no preneoplastic lesions observed in the livers of rats fed the control (choline sufficient) diet.
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