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Abstract
The construction of the components of Partial Least Squares (PLS) is based on the maximization of
the covariance/correlation between linear combinations of the predictors and the response. However,
the usual Pearson correlation is influenced by outliers in the response or in the predictors. To cope
with outliers, we replace the Pearson correlation with the Spearman rank correlation in the
optimization criteria of PLS. The rank-based method of PLS is insensitive to outlying values in both
the predictors and response, and incorporates the censoring information by using an approach of
Nguyen and Rocke (2004) and two approaches of reweighting and mean imputation of Datta et al.
(2007). The performance of the rank-based approaches of PLS, denoted by Rank-based Modified
Partial Least Squares (RMPLS), Rank-based Reweighted Partial Least Squares (RRWPLS), and
Rank-based Mean-Imputation Partial Least Squares (RMIPLS), is investigated in a simulation study
and on four real datasets, under an Accelerated Failure Time (AFT) model, against their un-ranked
counterparts, and several other dimension reduction techniques. The results indicate that RMPLS is
a better dimension reduction method than other variants of PLS as well as other considered methods
in terms of the minimized cross-validation error of fit and the mean squared error of fit in the presence
of outliers in the response, and is comparable to other variants of PLS in the absence of outliers.
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1. Introduction
An important aspect of microarray analysis is the modeling of patient survival times, in the
presence of censoring, taking into account the patients’ microarray gene expression data. One
popular regression model that incorporates the censoring information is the Cox Proportional
Hazards (PH) model.1 However, when the Cox model is not appropriate, an alternative is the
Accelerated Failure Time (AFT) model. Both the Cox and AFT models require less covariates
than cases. A typical microarray gene expression data consists of thousands of genes, but only
a small number of cases, often in the order of hundreds, is available. In this setting, the estimates
obtained from the Cox and AFT models are nonunique and unstable. A two-stage procedure
aims to cope with this issue by first reducing the dimension of the microarray data matrix from
N × p to N × K where K < N using dimension reduction techniques, and then applying the
regression model in the reduced subspace. 2,3,4,5,6,7,8,9

The performance of the different dimension reduction methods employing the two-stage
procedure was investigated extensively in the literature using the Cox model in the second
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stage.4,5,6,7,8,9,10,11,12 However, there are only a few comparison studies of the different
methods under the AFT model.13,14 In this paper, we apply a rank-based method of PLS to
three variants of PLS: 1) Modified PLS (MPLS)4, 2) Reweighted PLS14 and 3) Mean
Imputation PLS14. Both the rank-based approaches of Partial Least Squares (PLS) and their
un-ranked counterparts incorporate the censoring information. We compare the variants of PLS
(ranked and unranked versions) under an AFT model to several well-known dimension
reduction methods: Principal Component Analysis (PCA), Univariate Selection (UNIV),
Supervised Principal Component Regression (SPCR), and Correlation Principal Component
Regression (CPCR). The algorithm for rank-based PLS is implemented in R, and is available
upon request.

2. Methods
Let X be the N × p matrix of gene expression values with the p columns of X centered about
the mean, where N is the number of cases (patients), and p is the number of genes with N ≪
p. Let y be the N × 1 vector of true survival times, c be the N × 1 vector of right-censoring
times, and let y and c be independent. The observed data consists of the gene expression data
matrix X, the survival times Ti = min(yi, ci), and censoring indicators δi = I(yi ≤ ci) for i = 1,
…, N (δi = 1 if the true survival time for the ith individual is observed, and δi = 0 otherwise).

Accelerated Failure Time (AFT) Model
The Accelerated Failure Time (AFT) model represents the logarithm of the true survival time
for the ith individual as a linear regression model. That is,

(1)

where the yi’s are the true survival times, zi’s are the vector of covariates corresponding to the
ith individual, β is the vector of regression coefficients, μ is a location parameter or intercept,
and σ is a scale parameter. The errors ui are i.i.d. with some distribution. The model in Eq. (1)
can be written in terms of the survival function,

(2)

where S0(t) denotes the survival function for ui. The AFT model models the survival times
directly, and thus, the regression coefficients have a linear regression interpretation.15,16,17

Several papers in the literature have explored semiparametric estimation of the coefficients in
the AFT model with an unspecified error distribution. The least-squares method of Buckley-
James18 used the Kaplan-Meier estimator to adjust for the censored observations. Another
popular method is the rank-based estimator using the score function of the partial likelihood.
19,20 Using the two-stage procedure, the semiparametric AFT model can be used in conjunction
with the dimension reduction methods. For instance, the method of PLS can be used in the first
stage to reduce the dimension of the data. Adopting the modified version of PLS4, the
semiparametric AFT model is used in the construction of the PLS weights to incorporate the
censoring. In the second stage, the reduced data are fitted to a multivariate AFT model, where
the coefficients are obtained semiparametrically. Once the coefficients are estimated, the log
of the lifetimes can be estimated. However, a drawback of the semiparametric approach is the
difficulty in computing such estimators, even if there are only a few covariates.20
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In this paper, we focus on the parametric AFT model where the distribution of the error is
known. The AFT likelihood function for right-censored data is given as

(3)

Estimates for μ, β and σ are found by maximizing the likelihood function given in Eq. (3).16

We next describe the dimension reduction methods to be discussed. One approach to select
K, the number of components or the dimension of the reduced data after dimension reduction,
is to use Principal Component Analysis (PCA) to choose K components that explain a certain
percentage of total variation in the original data, and then use the same K across all the
dimension reduction methods.3,4 However, choosing the same number of components K for
all the methods may not reflect the inherent nature of the methods. A more popular approach
to select K for each method is to allow adaptive tuning, i.e. cross-validation, so as optimize a
certain criteria (for example, minimizing the mean squared error of prediction). In this paper,
we select K using cross-validation based on the minimization of the squared error of fit or
squared residuals.

2.1. Principal Component Analysis (PCA)—PCA constructs the set of orthogonal
components sequentially by maximizing the variance of the linear combinations of the original
predictors. In other words, a sequence of weight vectors is obtained as,

(4)

subject to the constraints w′ w = 1 and  for all 1 ≤ j < k, where k = 1,…, min(N,p).
Here, X′ denotes the transpose of the matrix X. The kth Principal Component (PC) is xk̃ =
Xwk. The constraints  ensure that the PCs are orthogonal. Geometrically, the PCs
represent a new coordinate system obtained by rotating the original coordinate system such
that the new axes represent the directions of maximum variability in the original data, and these
PCs are ordered in terms of the amount of variation explained in the original data.6 We should
observe that the construction of the PC’s does not involve the response, and hence, the
components with the highest variation explained to be included in the AFT model are not
necessarily predictive of the response.

2.2. Univariate Selection (UNIV)—Univariate Selection (UNIV) fits a univariate
regression model of y against each gene j, and obtains a p-value from the test of the null
hypothesis βj = 0 versus the alternative βj ≠ 0.7 The genes are then ranked according to
increasing p-values, and the top-ranked K genes are selected. In this paper, we use the AFT
model as the regression model.

2.3. Supervised Principal Component Regression (SPCR)—The method of SPCR
consists of two steps: first pick out a subset of the top λSPCR percent of the original genes that
are correlated with patient survival using UNIV, and then apply PCA to this subset of genes
to obtain K SPCR components.12,5 We should note that SPCR incorporates the response y in
the dimension reduction stage while PCA does not. There is no set rule for selecting λSPCR. In
practice, λSPCR can be chosen by cross-validation. We choose λSPCR= 20% in this paper.

2.4. Correlation Principal Component Regression (CPCR)—Another variant of PCA
that considers the response y is Correlation Principal Component Regression (CPCR).21 The
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method first uses PCA on the gene expression data matrix X, and then uses UNIV to pick out
the top-ranked K PC’s.

2.5. Modified versions of Partial Least Squares (PLS)—The components of PLS are
constructed sequentially by maximizing the covariance between linear combinations of the
original predictor variables X and the response variable y such that these components are
uncorrelated. In other words, a sequence of weights wk is obtained as,

(5)

subject to the constraints w′ w = 1 and  for all 1 ≤ j < k, where k = 1,…, min
(N,p). The kth PLS component is x̃k = Xwk.

Although PLS considers both the response y and predictors X in its construction of the weights,
it does not take into account the censoring information, which induces bias in the estimates.
Various approaches to incorporate the censoring into the construction of PLS components were
proposed in the literature by combining the construction of PLS components and the Cox
regression model.3,22,23 These approaches were proposed under the Cox model, and thus, are
not appropriate for the AFT model. In this paper, we consider one approach proposed by
Nguyen and Rocke,3 and two approaches proposed by Datta et al.14 to incorporate the censoring
information in PLS.

The method of Modified Partial Least Squares (MPLS) modifies the PLS weights in the
dimension reduction step by use of the Cox regression model to incorporate the censoring.3 In
other words, the weights wk, can be written as

(6)

where υi is the ith eigenvector of X′X. The constants θik depend on the response y only through
the dot product , where γi’s are the eigenvectors of XX′. When X is centered, ai is the
estimated slope coefficient of the simple linear regression of y on γi. To incorporate the
censoring information, Nguyen and Rocke proposed to replace this dot product ai by the slope
coefficient obtained from the univariate Cox PH regression of y on γi. However, since we adopt
the AFT regression model instead, we propose to replace ai by the slope coefficient obtained
from the univariate AFT regression of y on γi. The error distribution in the AFT model is
discussed in section 3. We also denote this modified version of PLS by MPLS.

Datta et al. applied three nonparametric approaches to incorporate right-censoring in the PLS
method: reweighting, mean imputation and multiple imputation.14 Since mean imputation and
multiple imputation perform relatively the same,14 we focus on the approaches of reweighting
and mean imputation. Although the mean imputation scheme outperforms the reweighting
scheme in terms of mean squared error of prediction of the estimated log survival times, it is
not clear that a similar relationship between the performance of the two approaches holds for
measures discussed in section 3. We now describe the reweighting and mean imputation
schemes.

1) Reweighting (RWPLS) (or Inverse Probability of Censoring Weighted): Under this
method, we replace the censored response with 0, but reweigh the uncensored response by the
inverse of the probability that it corresponds to an uncensored observation. In other words, let
ỹi = 0 for δi = 0 and ỹi = Ti/Ŝc(Ti–) for δi = 1, where Ti = min(yi,ci), Ŝc is the Kaplan-Meier
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estimator of the survival function of the censoring time c and – denotes the left limit. PLS is
then applied to (y˜, X). We denote this method by RWPLS.

2) Mean Imputation (MIPLS): We keep the uncensored response Ti, but replace the censored
Ti by its expected value given that the true survival time yi exceeded the censoring time ci. This
conditional expectation can be estimated by the Kaplan-Meier curve,

(7)

where tj are the ordered death times, ΔŜ(tj) is the jump of Ŝ at tj, and Ŝ is the Kaplan-Meier
estimator of the survival function of y. Under this method, we let ỹi = yi if δi = 1 and  if
δi = 0. As in the case of reweighted PLS, we apply the usual PLS method to (ỹ, X), and denote
this approach by MIPLS.

2.6. Rank-based versions of Partial Least Squares—The optimization criteria of PLS
involves the usual Pearson covariance/correlation measure between a linear combination of
the predictors X and the response y. We replace the usual Pearson correlation with the Spearman
rank correlation in the optimization criteria of PLS.

The orthogonal scores algorithm for PLS24 is:

1. The p columns of X and vector y are standardized (mean 0 and variance 1).

2.
Let w ̃= X′y define the weight vector w as .

3.
Let t̃ = Xw, define the scores vector t as 

4. Find q1 = y′t, and q2 = X′t

5. Deflate X and y:  and 

The K weight vectors are obtained sequentially by repeating the algorithm.

Our modification to the above algorithm is as follows. Since X and y are standardized, we have
cor(X, y) = X′y. In step 2, we then redefine w ̃= X′y by w ̃= ρ(X,y), where ρj(X, y) = ρ(Xj, y), for
j = 1,...,p, denotes the Spearman correlation between the jth column of X and y. In step 4 of the

algorithm, q2 can be expressed as . Since cor(X) = X′X, we change q2 = X′t to

. In step 5, we update RX and Ry instead of X and y. Here, the columns of RX
correspond to the ranks of the columns of X, and Ry denotes the ranks of y.

The rank-based approach is applied to the three variants of PLS considered in this paper, MPLS,
RWPLS, and MIPLS. Both the rank-based PLS methods and their corresponding un-ranked
versions take into account the censoring information. We should observe that for MPLS, the
q2’s in step 4 of the orthogonal scores algorithm are exactly the same as the dot product ai’s
mentioned by Nguyen and Rocke (2004). We denote the rank-based methods of PLS as Rank-
based Modified Partial Least Squares (RMPLS), Rank-based Reweighted Partial Least Squares
(RRWPLS) and Rank-based Mean Imputation Partial Least Squares (RMIPLS). Note that both
the reweighting and mean imputation schemes generally reduce the effect of outliers in the
response when these outliers are censored. Thus these rank-based methods may not show
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improvement over their un-ranked counterparts. Derivation of the weight vectors for RMPLS
as solutions to an optimization problem is described in detail in Nguyen and Rojo.9

3. Assessment of the Methods
We assess the performance of the different dimension reduction methods in a simulation study
and four real datasets.

3.1. Simulation Procedure
We follow the simulation setup from Nguyen and Rocke,3 which consists of generating the
gene expression values, and generating the lifetimes and censoring times.

3.1.1. Generating gene expression values—Let xij be the ijth entry of the gene
expression data matrix X, where i = 1,…, N denote the indices for the sample, and j = 1,…,p
denote the indices for the genes. As in Nguyen and Rocke,3 the gene expressions are generated
as a linear combination of d independent underlying components and an error component.

In other words, the ijth entry of the gene expression data matrix X is , where

, for k = 1,…, d, with i.i.d. underlying components , and
error components . Here, rki are the weights for the underlying components
τkj, which we simulate rki ∼ Unif(− 0.2,0.2) once to use in all the simulations (see Nguyen and
Rojo9 for discussion of the choice of rki’s). We fix the sample size N = 50, d = 6, με = 0, μτ =
5/d, στ = 1, and σЄ = 0.3. For each p ε 100, 300, 500, 800,1000,1200,1400,1600, we generate
5000 datasets.

We generate the true regression parameters, βj with j = 1,… ,p from a  distribution
once to use in all the simulations. We fix σπ =0.2 for all values of p ∈ 100, 300, 500, 800,
1000, 1200, 1400, 1600.

3.1.2. Generating life and censoring times—The lifetime of the ith individual, yi, is
generated independently from the censoring time, ci, with (i = 1,…, N), as follows:

Here, Xi is the vector of covariates corresponding to the ith individual. In this paper, we consider
an exponential, lognormal, log-t, and lognormal mixture model for the true lifetimes. For
example, in the case of the exponential model, the errors ui are taken to be from a standard
extreme value distribution, with density fui (t) = et−et for –∞ < t < ∞. The error for the censoring
times wi are taken to be from an exponential distribution, i.e. wi ∼ Exp(λc), with density
fwi(t) = λceλct. We pick λc in these simulations to obtain a censoring rate of 1/3. The true

censoring rate is . The observed survival time for the ith
individual is Ti = min(yi,ci), and the corresponding censoring indicator is δi = I(yi < ci). In the
case of the lognormal mixture model, the errors ui are taken to be from a normal mixture

distribution, with density . The error for the censoring times wi are
taken to be from a gamma distribution Gamma(aC, sC), with aC = 3, and sC chosen such that
the censoring rate is 1/3. The results of the simulation study for the exponential and lognormal
mixture models are presented in this paper, where outliers in the response are present for large
values of p and absent for small values of p. The results for other models for the true lifetimes,
such as lognormal and log-t models are given in the Supplementary Materials.
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In these simulations, we want to assess the performance of the different dimension methods in
the presence of outliers in the response. By fixing σπ = 0.2, we increase the absolute values of

 for large values of p. Since both the true and censoring times for the ith individual depend
on  the observed survival times will have outliers for large values of p (see Nguyen and
Rojo9 for detail on the β’s). The distribution of the errors for the true lifetimes and censoring
times, ui and wi respectively, also influence on the behavior of the outlying observations of the
observed survival times. For example, we would expect the observed survival times to have
less outliers under the exponential model than under the lognormal mixture model since the
lognormal mixture distribution has a longer tail than the exponential distribution.

Performance Measures: We select K, the dimension of the reduced data matrix after applying
dimension reduction techniques to the original data, based on the minimization of the cross-
validation squared error of fit or squared residuals of the log lifetimes, denoted by CV
(fit.error), for each method under the AFT model. The CV (fit.error) is defined as:

(8)

where i = 1,…, s is the index for the simulation run, s = 5000 simulations, m = 1,…, M is the
index for the cross-validation fold, M = 2, l = 1,…, Nm is the index for the individual in the
mth fold, Nm = 25 is the number of individuals in the mth fold, and δm,l(i) denotes the censoring
indicator for the lth individual in the mth fold of the ith simulation. The ’s are defined
as

(9)

where the ym,l(i)’s are the actual lifetimes. The  are the estimates of , and are given
by

(10)

where μ̂−m,AFT(i) and β ̂−m,AFT(i) are the coefficients estimated from the AFT model when the
mth fold is removed, and X̃ corresponds to the reduced data matrix after applying dimension
reduction techniques. Note that after dimension reduction, we first split the data into a training
set and a test set, then use the training set to obtain estimates for the coefficients in the AFT
model, and finally use the estimated coefficients to validate the test set.

Since the logarithm of the lifetimes is represented as a linear regression model, it is natural to
examine the squared error of fit or squared residual of the log lifetimes. For each dimension
reduction method, a CV (fit.error) is obtained for each value of λ, where λ < min(Nm, N–m). In
this paper, we let λ = 1,…, 15. Since CV (fit.error) is a measure of squared distance of the error
of fit, it is appropriate to select the K that corresponds to the minimal CV (fit.error). Thus, K
is the value of the optimal λ that minimizes CV (fit.error).

For microarray data, it is important to select the relevant genes that relate to biological processes
as well as accurately predicting the patients’ lifetimes. Thus, we are interested in assessing the
performance of the different dimension reduction methods based on the mean squared error of
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the estimated coefficients of the genes, and the mean squared error of fit. In other words, once
K is selected for each method, we compute the following measures.

The first measure, MSE(β), is the mean squared error of the estimated weights placed on the
genes,

(11)

where i = 1,…, s indicates the ith simulation, and j = 1,…,p indicates the jth gene. For the ith
simulation, the p × 1 vector β^ is obtained by β^ = W β^AFT where W is the vector of weights
obtained from the dimension reduction step (such as PCA, PLS,…), and β^AFT are the
coefficient estimates obtained from the AFT model.

The next measure, MSE(fit), is the average of the squared residuals of the true lifetimes,

(12)

where for the ith simulation and nth individual,

(13)

and

(14)

3.2. Real Datasets
We also investigate the performance of the different dimension reduction methods on four real
datasets. The Diffuse Large B-cell Lymphoma (DLBCL) dataset consists of 240 cases and
7399 genes, and 42.5% of the cases are censored.25,12 Five of the survival times are 0, so we
set these survival times to 0.001 in order to apply the AFT model. The Harvard Lung Carcinoma
dataset consists of 84 cases, 12625 genes, and 42.9% of the cases are censored.26 The Michigan
Lung Adenocarcinoma consists of 86 cases, 7129 genes, and 72.1% of the cases are censored.
27 The Duke Breast Cancer dataset consists of 49 cases, 7129 genes, and 69.4% of the cases
are censored.28 We used a 3–fold CV for the four datasets: 80 samples in test set and 160 in
the training set for the DLBCL data, 28 in test set and 56 in the training set for the Harvard
data, 28 in test set and 58 in the training set for the Michigan data, and 16 in test set and 33 in
the training set for the Duke data. For the Harvard data, we first screened out the genes using
UNIV under an AFT model to retain 7189 top-ranked genes. The cross-validation is based on
1000 repetitions. The comparison of the different dimension reduction methods is based on the
minimized CV (fit.error).

Nguyen and Rojo Page 8

J Bioinform Comput Biol. Author manuscript; available in PMC 2009 December 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



4. Results
4.1. Simulation

Figure 1 (top row) compares the CV (fit.error), MSE(β), and MSE(fit) for RW-PLS, RRWPLS,
MIPLS, RMIPLS, MPLS, and RMPLS for censoring rate of 1/3 under the AFT exponential
model. In terms of MSE(β), the ranked versions of PLS are comparable to their un-ranked
counterparts. RMPLS outperforms other methods, including MPLS, in terms of CV
(fit.error) and MSE(fit) for both cases when outliers are absent (p = 100) and present (p ≥ 300)
in the response. In the absence of outliers in the response (p = 100), the ranked versions of
RWPLS and MIPLS are comparable to their un-ranked counterparts in terms of CV
(fit.error) and MSE(fit). RMPLS and RMIPLS significantly improve their un-ranked
counterparts in terms of CV (fit.error) and MSE(fit) in the presence of outliers, while RRWPLS
does not necessarily outperform its un-ranked version. Similar results are obtained for the
lognormal mixture model (Figure 2), lognormal model and log-t models (Figures 4 and 5 in
Supplementary Materials).

Figure 1 (bottom row) compares the CV (fit.error), MSE(β), and MSE(fit) for PCA, MPLS,
RMPLS, CPCR, SPCR, and UNIV for censoring rate of 1/3 under the AFT exponential model.
In terms of MSE(β), PCA, MPLS, RMPLS, CPCR and SPCR perform relatively the same when
outliers are absent (p = 100) and present (p ≥ 300) in the response. UNIV performs worst among
the methods in terms of MSE(β). RMPLS outperforms all other methods in terms of CV
(fit.error) and MSE(fit) in the presence of outliers in the response. Similar results are obtained
for the lognormal mixture model (Figure 2), lognormal model and log-t models (Figures 4 and
5 in Supplementary Materials).

4.2. Real Datasets
Note that the survival times in the Harvard, Michigan and Duke datasets have longer tails than
those of the DLBCL dataset (Figure 3). Table 1 and Table 2 show the minimized CV
(fit.error) and the standard error of the 1000 repeated runs for the different methods under the
AFT exponential model and lognormal mixture model, respectively. Under the lognormal
mixture model, RMPLS outperforms other methods. Under the exponential model, RMPLS
generally outperforms other methods, except for the DLBCL (short tail) and Harvard datasets
in which the method is slightly outperformed by RMIPLS. The standard error for the minimized
CV (fit.error) over the 1000 repeated runs for RMPLS is comparable to other variants of PLS.
Results for the lognormal and log-t models (tables 4 and 5 in Supplementary Materials) are
similar to the results for the lognormal mixture model.

We compared the ranking of the significant genes based on the absolute value of the estimated
weights on the genes (AEW) between the ranked versions of PLS and their un-ranked
counterparts. The AEW is defined as,

(15)

where W are the weights obtained from the dimension reduction step using the whole datasets,

and . Table 3 shows the number of top-ranked genes in common between MPLS
and RMPLS, RWPLS and RRWPLS, and MIPLS and RMIPLS, out of K considered top-ranked
genes for the four datasets using only the first component. The number of common genes
selected by the ranked versions of PLS and their un-ranked counterparts for the Harvard,
Michigan and Duke datasets is generally less than that of the DLBCL dataset because the

Nguyen and Rojo Page 9

J Bioinform Comput Biol. Author manuscript; available in PMC 2009 December 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



survival times of the Harvard, Michigan and Duke datasets have longer tails than those of the
DLBCL dataset.

5. Conclusion
The results from the simulation study indicate that RMPLS outperforms all other methods in
terms of min(CV (fit.error)) and MSE(fit) in the presence of outliers in the response under the
AFT exponential, lognormal mixture, lognormal and log-t models. RMIPLS significantly
improves its un-ranked counterpart, while RRWPLS does not necessarily perform as well as
its un-ranked counterpart in terms of min(CV (fit.error)) and MSE(fit) in the presence of
outliers. In the absence of outliers, the method of RMPLS is comparable to other methods,
including other variants of PLS. The results from the real datasets indicate that RMPLS is a
better variant of PLS compared to MPLS, RWPLS, RRWPLS, MIPLS and RMIPLS in terms
of min(CV (fit.error)) under the considered AFT models.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
AFT exponential model: 1/3 censored. K is chosen by CV. min(CV (fit.error)), MSE(β), and
MSE(fit) comparing RWPLS, RRWPLS, MIPLS, RMIPLS, MPLS, and RMPLS (top row),
and comparing PCA, MPLS, RMPLS, SPCR, CPCR, and UNIV (bottom row) based on 5000
simulations.
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Fig. 2.
AFT lognormal mixture model: 1/3 censored. K is chosen by CV. min(CV (fit.error)), MSE
(β), and MSE(fit) comparing RWPLS, RRWPLS, MIPLS, RMIPLS, MPLS, and RMPLS (top
row), and comparing PCA, MPLS, RMPLS, SPCR, CPCR, and UNIV (bottom row) based on
5000 simulations.
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Fig. 3.
Histograms of the survival times for DLBCL, Harvard, Michigan and Duke datasets.
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