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Abstract
Zhao, Rahardja and Qu consider sample size calculation for Wilcoxon-Mann-Whitney (WMW)
tests for data with ties, and present a straightforward formula. We observe that the “exemplary
dataset” approach, usually applied in more complex situations, has a close relationship to the
Zhao-Rahardja-Qu method for WMW sample size estimation and they are asymptotically
equivalent. Therefore, the exemplary dataset approach can be used to easily obtain estimates
similar to those the closed formula gives. We illustrate application of both methods for a WMW
sample size estimation example, and also extend the simulation study presented by Zhao, et al. We
find that the Zhao-Rahardja-Qu formula (and by extension the exemplary dataset method) can give
estimates just as accurate as those obtained using either the Kolassa approach (via nQuery
Advisor) or the O’Brien-Castelloe approach (via SAS 9.2 PROC POWER), for 1:1 and 1:2
allocation ratios. However, the latter two methods can be more accurate for a ratio of 1:4 or 1:19.
Finally, we note the general utility of the exemplary dataset approach for sample size estimation,
even in other situations where closed form sample size formulae exist.
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Background
The exemplary dataset approach

Ralph O’Brien [1] [2] [3] and others have advocated the use of exemplary datasets to
facilitate sample size and power calculations. While this has usually been in relatively
complex situations such as linear models [2], log-linear models [1], Poisson regression [4]
[5], or genetic analysis [6], there should be nothing to prevent its application in simpler
circumstances, even when closed form sample size and power formulae are available.

The exemplary dataset approach uses sample or synthesized data and a preliminary analysis
to generate an estimate of the effect size of interest, usually in the form of a non-centrality
parameter. Since a non-centrality parameter is directly proportional to the sample size, and
the analysis provides an easy link to the power for a given N, the sample size and power
calculation using an exemplary dataset can be straightforward.

Corresponding Author: George Divine, Department of Biostatistics and Research Epidemiology, 1 Ford Place, 3E, Detroit, MI
48202-3450, Phone: 313-874-6724, Fax: 313-874-6730, gdivine1@hfhs.org.

NIH Public Access
Author Manuscript
Stat Med. Author manuscript; available in PMC 2011 January 15.

Published in final edited form as:
Stat Med. 2010 January 15; 29(1): 108–115. doi:10.1002/sim.3770.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Wilcoxon-Mann-Whitney Sample Size Calculation
Noether [7] gave a useful sample size formula for the Wilcoxon-Mann-Whitney (WMW)
test. However, it was based upon an assumption that the variable of interest was continuous,
having no tied observations. Lesaffre, et al, [8] evaluated Noether’s formula and others
when the outcome variable is bounded and ties are present. They noted in particular that a
sample size calculation based upon a t-test and using a shift alternative can give drastically
inaccurate sample size or power estimates in this situation. However, they did not provide a
sample size formula. Instead they required a simulation-based approach to obtain estimates.

Whitehead [9] and Kolassa [10] presented formulae for WMW sample size calculation when
ties are present, but the formulations are framed in terms of the proportional odds and its
standard error. The O’Brien-Castelloe formulation [11] is used in PROC POWER in SAS
9.2. Their approach expresses the effect size in terms of the log(WMWodds) = log[(p″/(1−p
″)] and its standard error. Using Noether’s notation, p″=Pr(X<Y), where X and Y are
random observations from the two distributions being compared.

Finally, Zhao et al [12] present a generalization of the Noether formulation, but with an
explicit modification for ties. Their formula is:

(1A)

where D is the number of unique outcome levels, pc and qc are the hypothesized proportions
at level c for the two populations being compared, m and n are the sample sizes for the two
populations, N=m+n, t = n/N is the proportion of observations in the second population, and
zα and zβ are the z-values associated with the type I and type II error levels of interest. If the
weighted average of pc and qc is denoted as Pc and the expression for

, is replaced by that symbol, formula (1A) becomes:

(1B)

Here  reflects the reduction in variance that is associated with ties.

The Zhao-Rahardja-Qu paper notes that formula (1A) is flexible enough to handle either tied
or untied data, as well as data that include a mixture of tied and untied or continuous
observations. In fact, in the latter situation they point in a direction consistent with use of the
exemplary dataset method when they suggest that “In this case one needs to obtain (a table
of proportions) from existing data in order to compute N using formula” (1A).

To compute power starting with the Zhao-Rahardja-Qu formula, the relevant equation would
be:

(2)
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Derivations of the Noether and Zhao-Rahardja-Qu WMW Sample Size
Formulae

The Noether and Zhao, et al papers begin their sample size derivations by solving an
equation of the form:

(3)

where μ and σ2 reflect the expected value and variance for a statistic used for the test. (For
Noether it was the rank sum statistic, while Zhao, et al used p̂″.) Here the subscripts 0 and 1,
denote the null and alternative, respectively. It is assumed thatσ1≈σ0 (and hence the ratio σ1/
σ0=1), and expressions appropriate to the WMW test are substituted for μ1, μ0 and σ0.

We may replace  by the symbol X2 to denote the formula for a chi square statistic.
The Noether and Zhao-Rahardja-Qu sample size formulae are based upon factoring the
algebraic expression for X2 into N and a second term which will be denoted as G. Therefore,
we have X2 = NG, and formula (3) becomes:

(4)

There can be considerable effort required to factor the formula for X2 to isolate N. For
WMW testing, notable instances of this are the original work of Noether [7] for the general
case without ties, Whitehead [9] with ties assuming proportional odds, and Zhao, et al [12]
for the situation with ties.

In Noether’s case he found G=12t(1−t)(p″−0.5)2. For Zhao-Rahardja-Qu, as reflected in
formulae (1A) and (1B), they derived:

Derivation of the Exemplary Data Set Formula
To obtain the parallel derivation for the exemplary dataset formula, we can use equation (3),
but instead of using an algebraic expression for the left hand side, we can use an actual value
of a chi square test statistic. If the sample size for this calculation was Nobs and we denote
the chi square statistic by , we have . If both sides of equation (4) are divided
by Nobs, we have:

(5)

2The PROC POWER tolerance for the group probabilities summing to 1.0 is extremely tight.
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Multiplying both sides by Nobs then yields:

(6)

That is, if  is an actual realization of the test statistic, but using data which reflects the
alternative hypothesis of interest and which has a sample size of Nobs, it follows that
equation (6) gives the desired exemplary dataset sample size estimate. The “exemplary
dataset” provided the data used to calculate .

Although the validity of equation (6) is immediate when a version of equation (4) exists, it is
merely the potential existence of a factorization of X2 into the product of N and G that is
required for equation (6) to work. It is important to note that formula (6) may need to rely
upon an approximation where the term G may retain or omit components which are low
order with respect to N, and therefore, may be ignored for moderate to large sample sizes.
The derivation for the Zhao-Rahardja-Qu formula incorporates one such approximation.

If an estimate of power is needed using the exemplary data approach, starting with the
sample size of Nobs, and the effect size implicit in the test statistic , equation (6) may be
solved for zβ, giving:

(7)

Finally, to consider the relationship of the effect size to sample size and power, we note that
under the alternative X2 has a non-central chi square distribution. If we write X2 = NG = Nθ/
K, the whole expression has an interpretation as the non-centrality parameter. Here θ= (p″
−0.5)2 (or its square root) might be thought of as the effect size and

 represents the variance for p″. If it is reasonable to assume that

θ can vary without a major change in ( ), a change in the effect size from θa to
θb would call for a corresponding change in N, from N to Nθa/θb. Put another way, for a
given power, N ∝ 1/θ, so N and 1/θ must vary together.

Illustration of Exemplary Dataset Sample Size Estimation for a WMW Test
Wilcoxon Mann-Whitney Test

The Puff City [13] randomized trial of a tailored asthma management program for urban
African-American high school students, had among its outcome variables, the 12 month
post-intervention number of emergency department (ED) visits among the study
participants. Figure 1 shows the observed distribution of visits for the two study groups. As
might be expected among subjects not selected on the basis of ED use, majorities have no
visits in the follow-up period. However, overall the distribution appears to be shifted toward
zero for the intervention group. The WMW chi square test statistic for the comparison of the
two groups is 3.393 (p=0.0655), for the total sample size of 260. The observed value for p″,
the probability that an intervention subject has a lower number of ED visits compared to a
control, is 0.54778. The associated WMWodds value is 1.21. A follow-on trial might be
contemplated, with a goal of definitively demonstrating that the intervention results in a
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reduction in ED visits. For the sample size calculation, it could be assumed that the
difference in ED visit distributions is comparable to that in the observed data. To apply the

Zhao-Rahardja-Qu formula, in this circumstance we also need the quantity ( ),
which for the data in this example equals (1−0.47718). Applying formula (1B) for equal
group sizes, two-tailed alpha=0.05 and 80% power, gives:

Or N=600.2 using formula (1B). More straightforwardly, formula (6) can be used, giving its
estimate for the total sample size, which is 260*7.849/3.393 = 601.4, or ~301 per group.

It should be noted that the proportion of the observations in this example which are equal to
zero was 0.78077. When this proportion is cubed, the resulting quantity, 0.4759, represents
99.7% of the total reduction in variance due to ties.

There are 11 unique visit count values observed in this example, but nQuery Advisor only
accommodates up to 8 outcome levels. Therefore, nQuery Advisor was not used to estimate
a sample size estimate. PROC POWER in SAS 9.2 gave an estimate of 598 (299 per group).
However, to get PROC POWER to produce this estimate, the proportions were expressed
using up to 9 digits1. Also, an adjustment (made to the zero cell proportions), was required
to get the sum of the probabilities to add up to “exactly” 1.0 for each group, even when the
proportions were expressed using a large number of digits2.

When 10,000 simulations with N=602 and 598 were carried out for the proportions shown in
Figure 1, the observed power estimates were 80.2% and 79.4% respectively, suggesting that
both methods worked well for this example.

Extension of the Zhao-Rahardja-Qu Simulations
Methods

Zhao, et al illustrated their formula using data published by Bender [14] for smoking and
retinopathy status among diabetes patients. They also evaluated the accuracy of the sample
size estimates using simulations for two allocation ratios and for 12 different alternative
hypotheses cases. The first 6 cases required sample sizes up to 45,264, and may not be of
major additional interest given how close the p″ values were to the null (0.5) and the fact
that the power estimates agreed closely with the simulation estimates. The last 6 cases,
however, may be more interesting, in particular for the last three instances for the 1:19
(t=0.95) allocation ratio. For these latter cases, there was evidence that the sample size
estimates could be too large.

The distributions being compared for the last six cases are presented in Table 1A. We
undertook simulations for these 6 cases, with allocation ratios of 1:1, 1:2, 1:4 and 1:19. The
first and last ratios respectively, almost and exactly replicate those used by Zhao, et al, but
the middle two represent other unbalanced allocation ratios that might realistically be
considered for use in randomized trials. As was the case for the Zhao-Rahardja-Qu
simulations, we used 10,000 replications.

1When the observed proportions were approximated to only 3 decimals, the PROC POWER sample size estimate was 560, or 7
percent lower, due to the impact of rounding. (The value of p″ increased to 0.54945, and [(0.5−0.54945)/(0.5−0.54778)]2 =1.07.)
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Since nQuery Advisor and SAS version 9.2 are two software options to do sample size and
power estimation for WMW testing with ties, they were evaluated as well as the Zhao-
Rahardja-Qu approach. To compare methods, but to avoid having to undertake three very
similar sets of simulations, one set of simulations was performed using the sample size(s)
estimated to give 80% power using the Zhao-Rahardja-Qu formula. As expected, power
estimates computed using the exemplary dataset method were nearly identical to the Zhao-
Rahardja-Qu values (all were within 0.03% of 80%), so those two methods will be
considered as being the same for this analysis.

nQuery Advisor and SAS were then used to calculate power estimates, given the Zhao-
Rahardja-Qu sample sizes. Accordingly, good performance of the Zhao-Rahardja-Qu
formula and the exemplary dataset method would be reflected in simulation estimates close
to 80%, while good performance of nQuery Advisor (using the Kolassa formula) or SAS
(using the O’Brien-Castelloe method) would be reflected in their power estimates being
close to the simulation estimates (whether or not the latter are close to 80%). With
n=10,000, the simulation based power estimates can be expected to have 95% confidence
intervals of ±0.8%.

Simulation Results
Table 1B shows power estimates from a) 10,000 simulations, b) nQuery Advisor v6.0, and
c) SAS 9.2. In all cases, nQuery Advisor and SAS gave comparable estimates. For cases 10–
12, the nQuery Advisor and SAS estimates are better than Zhao for allocation ratios of 1:4
and 1:19 (t=0.8, t=0.95). For instance, for case 12 and an allocation ratio of 1:4, the
observed power is 4.0% higher than estimated by the Zhao-Rahardja-Qu formula, while
nQuery Advisor and SAS give power estimates within 0.2% and 0.7% of the observed
power, respectively. In cases 7–9 for all allocations ratios, and for allocation ratios of 1:1
and 1:2 for all 6 cases, the three different estimation methods all appear to match the
empirical power relatively well (within 3.0%). From these results, we would conjecture that
the Zhao-Rahardja-Qu formula may be quite suitable when the allocation ratio is 1:1 or 1:2,
but that the nQuery Advisor and SAS formulae might be better when the ratio is larger than
1:2. Given the fact that the Zhao-Rahardja-Qu formula may overestimate the sample size
requirement and a major component of randomized trial costs can be a function of the
sample size requirement, it could be worthwhile using the nQuery Advisor/Kolassa or the
SAS/O’Brien-Castelloe formula in such cases. In other situations, convenience may suggest
that a Zhao-Rahardja-Qu estimate is preferable.

Discussion
Exemplary Dataset Method Application

In a situation where the hypothesized alternative distribution is well expressed by
preliminary data, use of the exemplary dataset method for sample size estimation can be
seen to be very natural and straightforward. Since software to compute a test statistic might
be much more accessible than software for sample size, the only essential extra step is a
simple calculation using formula (6). If calculation of power is of interest, using the
exemplary dataset formula for Zβ is also convenient, as can be seen when formula (2) and
formula (7) are compared. If calculation of a detectable “effect size” is the goal, the
exemplary dataset calculation can again be helpful. That is, if along with the p-value for the
test, the Mann-Whitney U statistic or the rank sum statistic is obtained, p″ may be easily
computed as U/nm (noting that U can easily be computed from the rank sum). In this
situation all the important quantities are in hand, since N is directly proportional to 1/(p″
−0.5)2.
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Even if preliminary data are not readily available, there are some situations where an
exemplary dataset might be a natural way to express the alternative hypothesis. A very
simple example of this might be comparison of two proportions, where the percentages
could be used to fill in a two-by-two table with 100 observations per group, and the
associated chi square statistic could be used with formula (6) for a sample size estimate.
Extension to a small number of ordered categories for a WMW test need not be conceptually
different. Kruskal-Wallis test sample size estimation could be approached the same way.
Other, related tests with less commonly available sample size solutions, such as a
Jonckheere-Terpstra procedure might also benefit from the exemplary dataset approach.
Finally, it should be clear that the potential utility of the exemplary data method for basic
sample size estimation is not limited to tests related to the Wilcoxon.

One limitation of the exemplary dataset method is that it is generally only well suited to
asymptotic tests. Where a small sample size is planned, requiring an exact test, another
method such as simulations might be required. Another limitation of the exemplary dataset
method is that the test statistic will likely make the assumption that the null hypothesis
holds, while its distribution under the alternative may be important for an accurate power
estimate. Since the exemplary dataset method incorporates the test statistic assumptions, it
may also only assume the variance under the null. For instance, for the WMW test statistic
considered here, the null is assumed. This point might partially explain the somewhat better
performance of the Kolassa and O’Brien- Castelloe estimates for some of the simulations
represented in Table 1B, since both of those methods take the variance under the alternative
into account.

Mixed Tied and Untied (Continuous) Wilcoxon-Mann-Whitney Sample Size Estimation
A very minor technical limitation of formula (1A), is that although it handles a fixed number
of tied and untied categories, when increasing the sample size implies additional unique
outcome categories, the formula becomes slightly inaccurate. That is, additional untied
observations would increase the value of D. This implies that D becomes a function of N.
However, since D is still on the right hand side of formula (1A), the formula technically fails
to provide a completely closed form solution for N. Fortunately, it can be argued that the
inclusion or exclusion of such additional categories does not appreciably affect the estimate
for N.

If pilot data are not readily available for an outcome that will include both tied and untied
data, and generation of hypothetical data is not easy, this would be a situation where the
Zhao-Rahardja-Qu formula (1B) could be more useful than the exemplary dataset approach.
For instance, as long as it might be possible to do a reasonable prediction of the proportions
of tied observations for the planned study, these might be used to generate an estimate for
ΣPc

3. If an estimate for a biologically important value for p″ can be made, these might be
combined using formula (1B), to give a useful sample size estimate for the study.

An example of a situation where such an approach might be used, would be for a laboratory
value outcome, where a significant proportion of the observations will be zero (or
equivalently, below the limits of detectability). In this case, a WMW test might be
contemplated, and sample size estimated using formula (1B). In this case, if there will be a

few small sets of ties other than at zero, the quantity  could still be closely
approximated by P0

3, where P0 is the proportion of observations expected at zero. That is,
even a very large number of small proportions, when cubed and summed, will not add up to
a very large amount. An extension of this argument suggests that the potential of the number
of outcome categories D to be a function of N is of little, if any consequence with respect to
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the variance contribution to the sample size estimate. Thus, the Zhao-Rahardja-Qu formula
should remain a good approximation, as long as p″ is estimated reasonably.

Summary
An exemplary dataset sample size estimate for a Wilcoxon-Mann-Whitney test is basically
identical to what can be computed using the Zhao-Rahardja-Qu formula. In an example with
real data, and for simulations with a group size ratio not more unbalanced than 1:2, these
sample size calculation options performed as well as the Kolassa and O’Brien-Castelloe
methods. Most usefully, the exemplary dataset approach to sample size estimation can be
much easier to apply for WMW estimation, despite the availability of closed form solutions.
Finally, the same considerations suggest that the exemplary dataset method should be
considered in other circumstances, whether or not a closed form solution is known.
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Figure 1.
Distributions of Emergency Department Visits During 12 Month Follow-up for Puff City
Trial Intervention and Control Groups
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