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Abstract
In case-control Single Nucleotide Polymorphism (SNP) data, the Allele frequency, Hardy
Weinberg Disequilibrium (HWD) and Linkage Disequilibrium (LD) contrast tests are three
distinct sources of information about genetic association. While all three tests are typically
developed in a retrospective context, we show that prospective logistic regression models may be
developed that correspond conceptually to the retrospective tests. This approach provides a
flexible framework for conducting a systematic series of association analyses using unphased
genotype data and any number of covariates. For a single stage study, two single-marker tests and
four two-marker tests are discussed. The true association models are derived and they allow us to
understand why a model with only a linear term will generally fit well for a SNP in weak LD with
a causal SNP, whatever the disease model, but not for a SNP in high LD with a non-additive
disease SNP. We investigate the power of the association tests using real LD parameters from
chromosome 11 in the HapMap CEU population data. Among the single-marker tests, the allelic
test has on average the most power in the case of an additive disease; but, for dominant, recessive
and heterozygote disadvantage diseases, the genotypic test has the most power. Among the six
two-marker tests, the Allelic-LD contrast test, which incorporates linear terms for two markers and
their interaction term, provides the most reliable power overall for the cases studied. Therefore,
our result supports incorporating an interaction term as well as linear terms in multi-marker tests.
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INTRODUCTION
A genome-wide association study with case-control data aims to localize disease
susceptibility regions in the genome. Single Nucleotide Polymorphism (SNP) markers,
which are usually diallelic, have been used to cover the whole genome. Two categories of
tests have been applied to these data: single-marker association tests, which examine
association between affection status and the data one SNP at a time, and multi-marker
association tests, which examine association between affection status and multiple SNP data
simultaneously.
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For single-marker association tests, we can consider the allelic frequency contrast test
(allelic test) [Sasieni 1997], and the Hardy Weinberg Disequilibrium (HWD) contrast test
[Song and Elston 2006]. In genome-wide association studies, the allelic test has been
predominantly used (e.g. The Wellcome Trust Case Control Consortium [2007]). However,
this test often fails on account of a relatively strict correction for multiple comparisons,
because it does not take advantage of marker linkage disequilibrium (LD) structure
efficiently, and/or it is not suitable for detecting rare disease variants. For these reasons,
multi-marker association tests may have more power than single-marker association tests.
Such tests include the haplotype-based test [Schaid 2004; Schaid, et al. 2002], Hotelling's T2

test [Chapman, et al. 2003; Clayton, et al. 2004; Xiong, et al. 2002] and the LD contrast test
[Nielsen, et al. 2004; Wang, et al. 2007; Zaykin, et al. 2006]. The original LD-contrast test
requires phased genotype data, but Zaykin et al. [2006] proposed the composite-LD contrast
test that does not require phased genotype data. From now on in this paper, when it applies
to unphased data, we use the term “LD contrast test” to denote the composite-LD contrast
test.

Several authors have proposed that either of the HWD and LD contrasts be jointly tested
with the allele frequency contrast [Song and Elston 2006; Zheng, et al. 2008; Zheng, et al.
2007]. Recently, Won and Elston [2008] described the allele frequency, HWD and LD
contrasts as three distinct sources of information about case-control differences and
suggested performing these tests in a joint or multi-stage manner. While these three sources
of information are often close to being independent, they are only strictly independent under
limiting conditions [Won and Elston 2008]. This fact has restricted a systematic use of the
three tests, because extra work is required to adjust for their correlations.

The allele frequency, HWD and LD contrast tests are typically developed in what has been
termed a retrospective context; i.e. case-control status is considered fixed and the genotypes
are considered random. However, for case-control data, epidemiologists typically take
advantage of the properties of the odds ratio and use the prospective logistic regression
model, making the case-control status the random variable dependent on the predictors (i.e.
genotypes and covariates) which are considered fixed [Prentice and Pyke 1979]. This
prospective modeling tends to allow for greater flexibility, especially when adjusting for
covariates. It also provides a natural way to adjust for any correlations between the tests or
other covariates and can be extended to quantitative traits. The allele frequency contrast test
has been performed in a prospective logistic regression model [Longmate 2001]. However,
there is little discussion in the literature concerning the prospective modeling of the other
two tests.

Here, for unphased case-control data, we discuss how the allelic, HWD and LD contrasts
tests may be combined, either pairwise or all three together, in the retrospective context. We
then show that these joint tests correspond very closely to analogous tests based on certain
prospective models. Using these general models, various specific models and their
corresponding tests are presented. After deriving “true” models in terms of the penetrances
of a single disease SNP and the LD structure, we look for the best test in terms of power.
Lastly, under the assumption that LD among two markers and the disease locus is similar to
that among three markers, we compare the power of each test using the SNP data on
chromosome 11 of the HapMap CEU (Utah residents with ancestry from northern and
western Europe) population data.
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METHODS
Notation and Assumptions

We assume that there is a single diallelic disease SNP in the genomic region being
considered, but we allow multiple disease SNPs to exist that are not in LD with any SNP in
the region. We suppose there are two diallelic SNP markers, A and B, having alleles
{A1,A2} and {B1,B2}, respectively, where A1 and B1 are the minor alleles. Let X and Y
denote random variable for genotypes of markers A and B coded as follows:

The random variables X and Y for the i-th individual are denoted by Xi and Yi. Icase and Ictrl
denote the sets of cases and controls. We assume a multinomial distribution for unphased
genotype data in the general population and denote their probabilities as in TABLE I. Note
that we make minimal assumptions about the general population sampled; in particular, we
do not assume HWE in the population. The allele frequencies of A1 and B1 are given by

 and . We use  and σX,Y to denote the expected value
of X, the variance of X and the covariance of X and Y, respectively. Note that μX = 2PA − 1
and μY = 2PB − 1. We similarly assume a multinomial distribution for cases and controls,
denoting any parameters associated with these populations respectively by the subscripts
“case” and “ctrl”. The HWD parameter for marker A and the composite LD parameter for
alleles A1 and B1 of markers A and B are respectively given by [Weir 1996;Zaykin 2004]

The HWD parameter dAcan also be expressed in a different form. It can be shown that

. Under HWE (i.e. ), this become

. Thus the the HWD parameter can be expressed by 
This means that the HWD parameter, dA, is half the the deviation of the variance from the
variance expected under HWE.

Tests in the Retrospective Context
The allele frequency and HWD contrast tests for marker A and the LD contrast test for
markers A and B test the equalities, between cases and controls, of the parameters, PA, dA

and Δ, respectively. Suppose we have ncase cases and nctrl controls. Since , the

test statistic for the allele frequency contrast can be written , where

 and . This corresponds to the
univariate version of Hotelling's [1931] T2 test. Estimates for the HWD and LD parameters
dA and Δ of a population from a sample with size n are obtained by

 and . Then the T2 statistics for the
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HWD and LD contrast tests are given by  and . It
can be easily verified that, under the assumption of known and μX and μY,

(1)

In practice, when μX and μY are unknown, we may replace them by the consistent estimates
 and . Other tests exist that utilize allele frequency, HWD and LD contrasts. However,

these tests are in form and perform similarly.

The joint test of allele frequency and HWD contrasts between cases and controls tests the
null hypothesis H0: (PA|case dA|case) = (PA|ctrl dA|ctrl). Note the important point that the
parameter vector (PA dA) determines the genotype distribution and therefore this test is
equivalent to the genotypic test. We denote this test the Allelic-HWD contrast test. In the
following, M′ denote the transpose of a column vector, M. Letting Zi ≡ (Xi Xi

2)′, the sample
mean  is a sufficient statistic for (PA dA)′. Thus the Allelic-HWD contrast test can be
performed by comparing  and . The T2 statistic for this test is given by

(2)

where  and ⊖
denotes a generalized inverse. Under the null hypothesis, T2 asymptotically follows the chi-
square distribution with degrees of freedom equal to the rank of ST2. Similarly, we can build
a joint test of the allele frequency contrasts of two markers and their LD contrast, which
tests the null hypothesis H0: (PA|case PB|case Δcase) = (PA|ctrl PB|ctrl Δctrl). We denote this test
the Allelic-LD contrast test. Letting Zi = (Xi Yi XiYi)′,  is a sufficient statistic for (PA PB
Δ)′. Thus, the Allelic-LD contrast test can be performed using a version of Hotelling's T2.

Therefore, it can be seen that the additional case-control differences that can be captured by
the HWD and LD contrast tests, given the allele frequency contrast(s), are equivalent to the
differences in quadratic and interaction terms, respectively. The joint test for the case-
control difference in allele frequency and HWD of two markers and their LD (the Allelic-
HWD-LD contrast test) can be constructed, in a similar manner, by contrasting the mean

vector of  between cases and controls.

Prospective Single-marker and Two-marker Association Models and Tests
Tests of regression coefficients in a logistic model with case control data, possibly with
covariates, are known to be valid and widely used when covariates need to be included in
the model as we mentioned earlier. In fact, the score test statistic is of the same form as (2),
but with  replaced by the similar matrix
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This implies that the T2 and score test statistics are asymptotically equivalent as the null and
the alternative hypothesis approach each other (i.e. they become a Pitman sequence
[Davidson and MacKinnon 1987]). Because the likelihood ratio test (LRT) for a logistic
model is also very close to the score test for the same model, we expect all three tests, the T2

test, score test and LRT, to behave similarly.

A single marker model for the Allelic-HWD contrast test incorporating covariates is

(3)

where we suppress the index i and μ denotes the probability that an individual is affected.
Similarly, the two marker model for the Allelic-HWD-LD contrast test incorporating
covariates is

(4)

Based on these two models or a reduced form of them, we can set up various types of
association tests that examine the significance of all or a subset of the regression
coefficients. Six models and their global hypotheses that may be tested in a single stage
analysis are numbered and presented in TABLE II and, for each of these hypotheses, we can
set up the corresponding score test or LRT. For genome-wide association analysis, we can
perform a single marker test with every single SNP and/or a two-marker test with every
consecutive pair of SNPs.

The models in TABLE II are specific genotype-based models and it may be helpful to
review the relationship between these genotype-based models and haplotype-based models.
Let Hij be the number of (Ai,Bj) haplotypes an individual has. Then the haplotype-based
model for two markers, taking H22 as a baseline, is written as

(5)

and the haplotype-based test is set up as a global test of their effects, that is a test of H0: (β12
β21 β11)′ = O. Ignoring covariates, the saturated haplotype-based model has four parameters
for main effects (i.e. we rewrite model (5) to include β22H22 instead of β0) and six
parameters for their first-order interaction effects. This model, with a total of ten parameters,
is equivalent to the genotype-based model that includes the six terms in (4), together with
the higher order terms X2Y,XY2,X2Y2 and an extra term for phase [Schaid 2004].
Therefore, each test in TABLE II and the haplotype-based test examine the case-control
differences summarized in a different way. In particular, for two-marker data, Test 2–3 is
comparable to the haplotype-based test because both of them are generally 3-degree-of-
freedom tests [Conti and Gauderman 2004].

Multi-stage analysis, which utilizes the allele frequency, HWD and LD contrasts in
sequential stages of the analysis, can be created by using a sequence of the tests in TABLE
II in a prospective model. Suppose, for example, that SNPs have been selected for
genotyping by an allele frequency contrast test based on pooled DNA samples. Then the
HWD contrast test adjusted for the information which is used in the first stage can be
performed by the test of H0:(βx

2|βx)=0 in the model of Test 1–2, whether the second test is to
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be applied to the same or a new sample of persons. Therefore, based on these marker
association models, using this framework in a multi-stage study we can perform the allele
frequency, HWD and LD contrast tests and their joint tests in a more systematic and
convenient way.

Penetrance Model and True Marker Association Model
We can obtain true marker association models from knowing the genotype penetrances and
the LD structure among the disease and marker alleles. The tests in TABLE II do not require
HWE in the general population, but we will consider true marker association models under
the assumption of HWE in the general population. Let the disease SNP have alleles
{D1,D2}, where D1 is the minor allele. Let D denote the disease genotype variable coded as

We write the penetrance model as:

(6)

Note that for simplicity of exposition this is not written on a logit scale. Consider the four
disease models: additive, dominant, recessive and heterozygote (dis)advantage. These can be
obtained by constraining the coefficients of the penetrance model (6) as indicated in TABLE
III. In the following, we assume that the homozygote with the major allele D2 has the lowest
risk. This implies that the minor allele is the disease susceptibility allele for the additive,
dominant and recessive diseases, and that we are considering a heterozygote disadvantage
disease. Nevertheless, the same test statistics are appropriate, and their power will be
similar, for the diseases in which the homozygote with the major allele D2 has the highest
risk.

Now consider the LD structure between a single marker locus and a disease locus in the
general population. Let pD denote the disease allele frequency and DXD denote the LD of the
marker allele A1 and the disease allele. The LD structure implies that E(D|X) = aX + b and

E(D2|X) = −a2X2 + abX + c, where  and

 (see Appendix A). Given the true disease
model and the LD structure, we can set up the true single-marker association model between
the phenotype and single-marker data X, as follows:

(7)

This true association model, which has the same form as the penetrance model (6), allows us
to understand how the disease model and the LD structure affect the SNP association
pattern. It clearly implies that a marker allele that is in LD with the disease allele would be
observed in the cases and controls as if it were a disease SNP with a particular disease
model. Now, in the model (7), as DXD approaches 0, the coefficients of both the linear and
quadratic terms go to 0. However, the ratio of the coefficient of the linear term to that of the
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quadratic term in model (7) is . When ,
as DXD approaches 0, the absolute value of the ratio approaches infinity. Thus as the LD
decreases, the coefficient of the quadratic terms generally approaches 0 faster than does that
of the linear term, and the association model becomes similar to that of an additive disease.

However, if  holds for the disease model, it can be shown that μX|case =
μX|ctrl = μX (Appendix B). This implies that a test based on a model with only a linear term,
such as the allelic test, cannot identify the association at all when it is applied to any SNP
correlated with the disease SNP, even the disease SNP itself. This condition holds only in
over- or under-dominant disease models.

For given LD parameters and allele frequencies, the true two-marker association model can
be obtained in a similar way to the single-marker case as follows:

(8)

which is a full model with 9 polynomials of X and Y, or a reduced form of this model.
While the regression coefficients cannot be expressed simply in general, we may easily
write out E(D|X, Y) and E(D2|X, Y) for computational purposes (see Appendix A).

Consider a disease allele on a multi-dimensional LD structure, by which we mean that E(D|
X, Y) deviates from a linear combination of the variables X and Y. This often happens when
there is high three-locus LD among the three SNPs. The case E(D|X, Y) = βXX + βYY +
βXYXY + β0 with a relatively large absolute value of βXY is a “simple” multi-dimensional
LD structure. In this case, the true marker association model for an additive disease is
written as μ = P(affected|X, Y) = γD(βXX + βYY + βXYXY) + γ0. This implies that tests that
include the contrast of an interaction term (i.e. Tests 2–5, Test 2–3 and the LD contrast test)
may gain power by taking into account the multi-dimensional LD structure. On the other
hand, tests that do not take into account the multi-dimensional LD structure (any single
marker tests, Test 2–2 and Test 2–4) might have less power. The haplotype-based test also
takes multi-dimensional LD structure into account, and its gain in power in a multi-
dimensional LD structure has been observed by Nielsen et al. [2004].

We can consider the models in TABLE II as reduced, full, or extended in comparison to the
true model. However, the models in TABLE II and the true association models are written
with different link functions (the logit and identity functions, respectively); whereas the
identity link function simplifies exposition for the relationship between the disease model
and the association model, the logit link function is more convenient for data analysis. For
small effect sizes the two link functions should yield similar models. Therefore, our true
marker association models are sufficient to provide an intuition about which predictors will
be important components of the logistic model.

Finding the most powerful test among the tests in TABLE II is not straightforward because
the test under the full true model, which examines contrasts of all the predictor variables in
the full model, is not always the most powerful. When a reduced model explains the data
parsimoniously, its corresponding test becomes more powerful than the corresponding tests
under the full model because of the smaller number of degrees of freedom. Therefore, we
compared various association tests with different penetrance models and LD structures -
which together determine the true association model.
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Power Computation
As mentioned earlier, the T2 test in a retrospective model and the score test and LRT in a
prospective logistic model are expected to perform similarly. We first derive the theoretical
power calculated from the noncentrality parameter of the T2 test and compare this with the
empirical power of the T2 test, score test and LRT. The noncentrality parameter of the T2

test for Test 2–5 is

where μcase = (μX|case μY|case μXY|case μX2|case

Here, and Σcase Σctrl are symmetric, so we only indicate the diagonal and above diagonal
elements. The number of degrees of freedom,r is the rank of Σ. Given the penetrance model
and LD structure, we can derive the entries of μcase,μctrl,Σcase and Σctrl (see Appendix C).
The noncentrality parameters for the other tests in TABLE II can be obtained by using the
corresponding sub-matrices of (μcase − μctrl) and (Σcase + Σ). Then the power of the
significance level test with noncentrality parameter λis given by

where  is the cumulative density function of a chi-square distribution with noncentrality
parameter λ and degrees of freedom r, and  is the 1 − α quantile of a central chi-square
distribution with r degrees of freedom.

We compared this theoretical power of the T2 test with the empirical power of the T2 test,
score test and LRT. For each of the four disease models, we generated 100,000 replicate
datasets, performed Test 1–2 on each dataset with each of the three test statistics and
obtained their empirical power from the 100,000 replicate datasets. Specifically, the
parameters were set as follows: pD =0.2, pA = 0.3, DXD = 0.048 (D′ = 0.8) K = 0.05, (5%),
and μbase = 0.04 (4%), where K is the disease prevalence and μbase is the baseline risk. By
fixing K and μbase instead of the effect size, for each region and each disease model we can
condition on a constant attributable risk calculated as K − μbase. The coefficients γD2, γD and
γ0 are determined by the disease model, the prevalence K and baseline risk μbase using the
constraints shown in TABLE III and the following equations:

The significance level was set toα = 0.05/500,000 for a genome-wide association study with
500K independent SNPs. Each dataset compromised 2,000 cases and 2,000 controls (n =
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ncase = nctrl =2,000) for the additive, dominant and heterozygote disadvantage diseases, and
500 cases and 500 controls (n = 500) for a recessive disease so that its power would not be
too high. Empirical power was obtained by the ratio of the number of rejected replicates to
the total number of replicates.

The theoretical power of the T2 test was close to the empirical power of the score, LRT and
T2 tests (TABLE IV) while the three test statistics led to almost identical (but very small),
departure from nominal Type I error [Data not shown]. The T2 test is slightly more powerful
than the other two, while the LRT is slightly more powerful than the score test. The power
under a recessive disease showed relatively greater inconsistencies because of the smaller
sample size. Therefore the theoretical power of the T2 test can be a good estimate for any of
the three tests. For the purpose of comparing the power of the tests in TABLE II and any
other association tests, it is sufficient to compare the theoretical power of the corresponding
T2 test.

RESULTS
Power Comparisons

The theoretical power of the HWD contrast test, LD contrast test and haplotype-based test
can be computed from their noncentrality parameters. The noncentrality parameters for the

HWD contrast test and the LD contrast test are given by  and

, where the denominators are given in (1). The noncentrality parameter of
the haplotype-based test,λHAP, can be also computed (see Appendix D). These three
noncentrality parameters are given under the assumption that the true minor allele
frequencies of markers A and B (pA,pB) are known, or that the haplotype frequencies are
determined with certainty, in both cases and controls. The theoretical power from these
noncentrality parameters somewhat overestimate the power in a real situation because the
variances in the denominators of the noncentrality parameters would be greater. Therefore,
our theoretical power comparisons of these three tests and the tests in TABLE II may give
results which are a little favorable to these three tests.

We compared power among the single-marker tests and among the two-marker tests. For the
single-marker tests, we present the power as a function of the LD (Lewontin's D′) between
marker and disease allele (Fig. 1). Test 1–1 (the allelic test) always had more power than
Test 1–2 (the genotypic test) or the HWD contrast test in the case of an additive disease. But
in the other disease models, Test 1–2 had more power than the allelic test when LD is high.
The HWD contrast test had less power for all four disease models. However, although the
HWD contrast test performed poorly by itself, when it was combined with the allele
frequency test to be Test 1–2, power was maximized.

For the two-marker tests, two cases of LD structure were considered for each disease model:
a case with low multi-dimensional LD (LD structure 1) and one with high multi-dimensional
LD (LD structure 2), as defined in the legend to TABLE IV. In LD structure 1, Test 2–2,
which examines the allele frequencies of the two markers, had the most power except in the
case of a recessive disease (TABLE V). However, in LD structure 2, the haplotype-based
test, Test 2–5 and Test 2–3 had more power than Test 2–2 by taking into account the multi-
dimensional LD. The LD contrast test, like the HWD contrast test, performed poorly alone
but, when it was combined with the allele frequency contrast test, power was maximized.
Our findings were not materially affected by different values of the prevalence or sample
size [Data not shown].
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For a given disease model, none of the tests were found to be the most powerful in both
cases of LD structure. Therefore, specifying the LD structure that the markers and a real
disease SNP take on would suggest the best test for a particular association study, were it
known. If we assume that the LD structure among the marker and disease SNPs is similar to
that among the marker SNPs, we can compute and compare the power of each test given that
LD structure by estimating the necessary parameters from the marker LD structure.

Power Comparisons Based on Real Data
We estimated LD parameters and marker allele frequencies from the HapMap CEU
population data [The International HapMap Project 2005]. These data consist of 120
haplotypes estimated from 30 parent-offspring trios. We split chromosome 11 into mutually
exclusive consecutive regions containing 3 SNPs each. For each region we estimated the LD
and allele frequency parameters. We excluded regions where the minor allele frequencies of
three consecutive markers were less than 0.1, leaving 4,648 regions. Following the method
in Nielsen et al.'s [2004] simulation, we chose the disease SNP to be the one with the
smallest allele frequency, assuming the disease allele would have a smaller allele frequency
than the ascertained marker SNPs. Parameters other than the LD parameters were set to be
the same as before, i.e. n = 2,000 (500 for recessive),K=0.05, μbase =0.04,α=0.05/500,000.
For each region, we computed the power of the single marker tests based on the first of the
non-disease SNPs, and we computed the power of the two marker tests based on the two
non-disease SNPs. Then the mean power over all regions was computed (TABLE VI).

In a comparison of the single marker-tests, while Test 1–1 was the most powerful on
average for an additive disease, Test 1–2 was the most powerful on average for the other
three disease models. Comparing among the two-marker tests, the most powerful tests on
average were: Test 2–2 for an additive disease, Test 2–3 for a dominant disease, and Test 2–
5 for a recessive or heterozygote disadvantage disease. However, among these tests, Test 2–
3 had relatively consistent power. It had greater overall average power than the haplotype-
based test except for an additive disease, but it nevertheless had comparable power to the
haplotype-based test. As seen before, the purely HWD contrast test and LD contrast test had
the lowest power.

DISCUSSION
In this paper, we have represented the case-control HWD and LD contrasts, given the allele
frequency contrast(s), as a quadratic term and an interaction term, respectively. Accordingly,
we have written single-marker and two-marker association models with the predictors
expressed as simple polynomials. The joint tests of the allele frequency, HWD and LD
contrasts may be performed by testing the regression coefficients in a prospective marker
association model. By considering these models in the prospective context, the allele
frequency, HWD and LD contrasts can be utilized and understood better as follows. First,
we gain some intuition as to how these contrasts are related to the disease model and LD
structure. For example, the observation that the HWD contrast test has power only in the
case of a non-additive disease is obvious in a prospective model because the HWD contrast
corresponds to a quadratic term. Second, we can test the three contrasts more systematically
in a multi-stage analysis by adopting a sequential test or any other testing procedures
developed in regression modeling. Third, these contrasts can easily be tested together with
other covariates. Therefore, under this framework population stratification can be modeled
by any method that uses covariates for ancestry, as was developed in the context of the allele
frequency contrast test [Price, et al. 2006; Pritchard, et al. 2000]. Last, the tests can be easily
extended to quantitative traits.
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By using the LD structures actually observed in HapMap data, we concluded that Test 2–3,
which has an extra interaction term as well as linear terms, provides reliable power in any
disease model. This suggests that, in tests involving more than two markers, it may be
reasonable to include interaction terms as well as linear terms. Of course, it is difficult to
speculate as to which of the many possible interaction terms should be included. In fact,
multi-marker models with interaction terms have been presented by several authors [Conti
and Gauderman 2004; Cordell and Clayton 2002; Devlin, et al. 2003]. Conti and Gauderman
[2004] compared various two-marker tests, some of which are equivalent to the tests in
TABLE II. They introduced a modified interaction term and gained comparable power to the
haplotype-based test. In this paper, we compared a different set of two-marker tests under a
more comprehensive set of disease models. We also show how the interaction term may be
interpreted as an LD contrast. Therefore, our results provide further support for the inclusion
of interaction terms in multi-marker tests.

Interaction variables have been also included in association models for the purpose of
evaluating a biological interaction, or epistasis [Cordell 2002; Wu, et al. 2008; Zhao, et al.
2006]. They are built for unlinked markers in two regions each of which has been shown to
be associated with a disease. As opposed to this, our model concerns relatively close
markers that may be in pairwise-LD or multi-dimensional LD. Of course, close markers may
also have biological interaction, and distinguishing between these two possibilities to
identify the true disease pattern is an area for future research. However, localization of
disease SNPs is the first step in a genome-wide study, and here we have been concerned
with the inclusion of interaction terms to increase power at this screening step.

We showed theoretically that the model with a linear term will fit well for a SNP in weak
LD with a causal SNP, whatever the disease model, except a special case. However, for non-
additive diseases, as the LD between a disease and marker SNP increases, a test that
includes an extra quadratic term has more power than a test that does not. Therefore, as the
markers become denser, a test that includes the quadratic term may be preferable. Although
the power of the HWD and LD contrast tests were by themselves very low, when combined
with the allele frequency contrast(s), the joint tests gained power. Therefore we conclude
that it is not advisable for HWD or LD contrast tests to be used alone when conducting a
whole genome-wide association study, but rather they should be used in conjunction with
the allele frequency contrast test.

Our results showed that in most cases our genotype-based tests have greater power than a
haplotype based test. The practical benefit of genotype-based tests is that they do not require
phase inference. Estimating haplotypes for a genome-wide association study not only
introduces another source of variation in the test, but it also entails significantly more
analysis time. However, it should be noted that we only considered two-locus haplotypes
and our power comparisons using HapMap data are valid under the assumption that a
disease SNP would be part of the same LD pattern as neighboring marker SNPs. Specifying
a more realistic distribution for a disease allele and its LD structure with marker alleles –
perhaps, for example, using coalescent theory [Zöllner and Pritchard 2005] - could provide a
fairer comparison of the tests in real data analysis.
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TABLE I

Probabilities for unphased genotypes

A1A1 A1A2 A2A2

B 1 B 2 g (1,1) g (0,1) g (−1,1) p B 1 B 1

B 1 B 2 g (1,0) g (0,0) g (−1,0) p B 1 B 2

B 2 B 2 g (1,−1) g (0,−1) g (−1,−1) p B 2 B 2

p A 1 A 1 p A 1 A 2 p A 2 A 2 1
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TABLE II

Single-marker and two-marker association tests with corresponding models and hypotheses

Test Model Null hypothesis (H0) Test Description

Single-marker association

Test 1–2
log( μ

1 − μ ) = β0 + βX X + β
X 2X

2 (βX βX
2 = 0 Allelic-HWD

contrast test
(Genotypic test)

Test 1–1
log( μ

1 − μ ) = β0 + βX X
(βX) = 0 Allele frequency

contrast test
(Allelic test)

Two-marker association

Test 2–5
log( μ

1 − μ ) = β0 + βXX + βYY + β
X2

X2 + β
Y2

Y2βXYXY
(βX βY βXY βX2

βY2)= 0
Joint Allelic-
HWD-LD
contrast test

Test 2–4
log( μ

1 − μ ) = β0 + βXX + βYY + β
X2

X2 + β
Y2

Y2
(βX βY βX2 βY2) = 0 Joint Allelic-

HWD contrast
test

Test 2–3
log( μ

1 − μ ) = β0 + βXX + βYY + βXYXY
(βX βY βXY) = 0 Joint Allelic-LD

contrast test

Test 2–2
log( μ

1 − μ ) = β0 + βXX + βYY
(βX βY) = 0 Joint Allelic

contrast test
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TABLE III

Constraints for disease models

Disease Model Constraint

Additive γD
2 = 0

Dominant or Recessive γD
2 = ±γD

Heterozygote (Dis)advantage γD = 0
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TABLE IV

Comparisons of Theoretical and Empirical Power of Test 1–2

Theoretical Power Empirical Power

T2 test T2 test LRT Score test

Additive 0.532 0.533 0.527 0.523

Dominant 0.366 0.366 0.361 0.359

Recessive 0.734 0.741 0.736 0.708

Heterozygote Disadvantage 0.284 0.283 0.277 0.275

For each of the four disease models, parameters are set as follows: pD = 0.2,pA = 0.3, K = 0.05, DXD = 0.048(D′ = 0.8),n = 2,000 (500 for
recessive), α = 0.05/500,000. Empirical power is obtained by the ratio of the number of rejected replicates to the total 100,000 replicates.
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