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Abstract
With the advent of rapid and relatively cheap genotyping technologies there is now the
opportunity to attempt to identify gene-environment and gene-gene interactions when the number
of genes and environmental factors is potentially large. Unfortunately the dimensionality of the
parameter space leads to a computational explosion in the number of possible interactions that
may be investigated. The full model that includes all interactions and main effects can be unstable,
with wide confidence intervals arising from the large number of estimated parameters. We
describe a hierarchical mixture model that allows all interactions to be investigated
simultaneously, but assumes the effects come from a mixture prior with two components, one that
reflects small null effects and the second for epidemiologically significant effects. Effects from the
former are effectively set to zero, hence increasing the power for the detection of real signals. The
prior framework is very flexible, which allows substantive information to be incorporated into the
analysis. We illustrate the methods first using simulation, and then on data from a case-control
study of lung cancer in Central and Eastern Europe.
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INTRODUCTION
Complex diseases such as cancers are the result of a multifactorial process, and the interplay
between many risk factors including environmental exposures and genetic susceptibility
(Adami et al., 2008; Weinberg, 2007). Specifically, the biological dosage of environmental
exposures may be modified by an individuals biological response to the exposures, including
their specific metabolism, DNA repair capacity and cell cycle control. On the other hand,
genetic expression of specific cancer-related genes can be induced or altered by specific
environmental exposures, and the extent of this alteration can be influenced by sequence
variation. Thus it is important to identify interactions between various etiological factors for
better understanding of the disease mechanism. A number of important gene-environment
interactions have already been identified. One example concerns the interaction between
alcohol dehydrogenase (ADH) genetic variants and alcohol consumption for upper
aerodigestive cancer, in which increased alcohol consumption strengthens the association
between ADH genetic variants and upper aerodigestive cancer risk (Hashibe et al., 2008).
As a second example, Boccia et al. (2008) describe the interaction between
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methylenetetrahydrofolate reductase (MTHFR) and folate intake with respect to gastric
cancer risk, in which a more prominent genetic effect was observed when the folate intake
level was low. Clayton and McKeigue (2001) provide a discussion of the differences
between biological and statistical interpretations of “interaction”. Here we concentrate on
case-control data and refer to an interaction as a departure from main effects only in a
logistic model.

In this paper we describe a method for modeling interactions when the number of single
nucleotide polymorphisms (SNPs) is moderate (we have experimented with up to 100 SNPs
and 5 exposures), for example in a candidate gene study, or following an initial screen in a
genome-wide association study. An obvious strategy in such a situation is to fit separate
models for each SNP/exposure combination. This requires a large number of models to be
fitted, and a formal comparison between these models is not straightforward under a
frequentist approach since the models are not nested. An additional, and more significant,
problem is that the exposures will often be correlated and so fake associations will be
induced due to confounding, since there is no control for additional exposures in a model
containing a single exposure. These drawbacks suggest that a better approach is to include
all of the SNPs, exposures and interactions in a single model. Unfortunately this leads to an
increase in the standard errors of estimates, since there are a large number of parameters to
simultaneously estimate, an example of the usual bias-variance trade-off in regression
modeling. Numerical instability may also result, particularly with a large number of
correlated exposures. In general, multiple comparisons issues must be considered, though
common approaches such as the control of the family-wise error rate through a Bonferroni
correction lead to a loss of power due to their overly conservative nature. A stepwise
strategy in which main effects models are first fitted and then interactions are considered
when the main effects are significant is fraught with problems in terms of interpretation,
since the search through model space is data driven, which causes standard type I and type II
error probability calculations to be incorrect (Miller, 1984).

Many methods have been suggested for the modeling of interactions (Motsinger et al.,
2007). These range from conventional, parametric logistic regression driven approaches
(Kraft et al., 2007; Marchini et al., 2005), to exploratory approaches such as multifactor
dimensionality reduction (MDR) (Ritchie et al., 2001, 2003). MDR is a popular technique
which we briefly describe in the context of detecting SNP-SNP interactions. For a fixed
number of factors (SNPs), K, to include in the model MDR finds the optimal set by first
splitting the data into multiple training and validation sets. Based on the training data,
contingency tables corresponding to each possible combination of K factors are then
constructed, with each cell in the table being labeled as high/low risk depending on whether
the case/control ratio is >/< 1 within that cell. The “training error” is then calculated for each
set of factors, and the set producing the lowest error is deemed the best for this value of K.
Prediction errors and the consistency across different training sets are then computed for
different values of K, to give the “best” K. MDR has recently been critiqued by Park and
Hastie (2008). In particular they highlight that the power of MDR will suffer when the real
effects are additive (since no structure is imposed on the form of the model). In addition, for
high-dimensional tables many of the cells will contain zero cells, and the classification to
high/low risk may be highly unstable. We would add the lack of flexibility in allowing prior
information to be incorporated, and the ad hoc nature in labeling each cell as high/low risk.

Several tree-based methods have also been proposed to detect subgroups of interest, for
example, classification and regression trees (CART) and random forests (Lunetta et al.,
2004; Strobl et al., 2008; Wu et al., 2006). These type of methods have the advantage of
dealing with large number of parameters with small sample sizes. However they too cannot
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take into account available prior information (Ziegler et al., 2008). An additional critique is
that subgroup effects detected in the tree-based methods are often difficult to interpret.

A number of methods have been proposed that build a semi-parametric model based on a
logistic regression framework with a flexible regression model. Kooperberg and Ruczinski
(2005) use logic regression, a technique for finding interesting combinations of binary
regressors. Chen et al. (2007) proposed a method based on trees to detect gene-gene and
gene-environment, while Chen et al. (2008) suggest another algorithmic method, support
vector machines, to detect interactions. Again these approaches do not use prior information,
and so cannot be tuned to specific applications.

Alternative suggestions begin by assuming independence of SNPs and exposures, in order to
increase power. Methods for the case-only design that assumes and exploits the
independence between SNPs and exposure, in order to increase power, have been proposed
by a number of authors (Piegorsch et al., 1994: Umbach and Weinberg, 1997). Other
methods assume independence and use case and control data (Chatterjee and Carroll, 1995;
Chatterjee et al., 2006). The presence of gene-environmental non-independence can greatly
bias the interaction estimates in this design, however (Albert et al., 2001: Kraft et al., 2007).
To overcome this a hybrid estimator has recently been proposed (Mukherjee and Chatterjee,
2008), and appears promising in comparative simulation studies (Mukherjee et al., 2008).
These methods have not been used in the multiple SNP/multiple exposure scenario.

Throughout we assume a rare disease and refer to odds ratios as relative risks. The approach
we follow is Bayesian and is based on a mixture prior for the effect sizes. Specifically we
assume that with probability 1 − π a single log relative risk arises from a normal prior
centered at zero with a small variance (the null component of the prior), and with probability
π the log relative risk arises from a zero mean normal with a larger variance reflecting
anticipated effects (the non-null component). Such mixture priors have a long history in
Bayesian linear model selection contexts (George and McCulloch, 1993, 1997; Mitchell and
Beauchamp, 1988). The extension of such models in the context of modeling interactions in
a linear model was suggested by Chipman (1996). Here we use a hierarchical model for the
case-control context with a logistic regression model at the first stage of the hierarchy, with
the mixture prior on the coefficients at the second stage. A similar model has been proposed
in this context by Conti et al. (2003), though there are differences in the prior set-up, and in
the reporting, as we will highlight.

We briefly describe two approaches to the detection of gene-environment interactions that
we consider in detail later in the paper. The first is to fit single models containing a single
SNP main effect, a single exposure main effect, and the interaction. Alternatively the full
model containing all main effects and all interactions may be fitted. Unfortunately both of
these strategies have serious drawbacks. The single models do not control for other
variables, which can lead to serious problems of false positives, due to dependence between
exposures. In the full model the standard errors can be very large due to the estimation of
multiple parameters, which leads to a loss of power. The supplementary material contains a
more formal critique of the full and single model strategies, and describes the difficulties of
controlling meaningful criteria such as the false discovery rate (FDR) in a correlated
multiple testing setting.

The structure of this paper is to first describe the Bayesian mixture model, before examining
its behavior on simulated data. We then apply the model to data from a case-control study of
lung cancer, before concluding with a discussion.
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METHODS
Conventional Hierarchical Approach

Although we are primarily interested in modeling interactions, we motivate the mixture
model by initially considering models for estimating the effects of multiple SNPs only. Let
Yi = 1/0 denote a case/control indicator with i = 1, …, n1 corresponding to cases and i = n1 +
1, …, n1+ n0 = n to controls. Further let xis = 0/1/2 be the minor allele count for SNP s, s =
1, …, S, i = 1, …, n.

A standard three-stage hierarchical model is given by:

Stage 1 Data Model: Yi|α, β ~ Binomial(1, pi) where β = (β1, …, βS) and

so that we have a linear predictor in the number of minor allele copies with exp(βs)
corresponding to the relative risk associated with a single copy of the minor allele for SNP s,
s = 1, …, S.

Stage 2 Prior for Log Relative Risks: Assume a common prior for the log relative risks:

The s subscript is necessary here since later we will extend the notation to incorporate
environmental exposures and interaction effects. We assign an improper flat prior to α.

Stage 3 Hyperprior:  for suitable as, bs

The latter stage may be neglected if  are fixed a priori, or if they are estimated from the
data via empirical Bayes, or related methods (Greenland, 1992, 1993; Witte and Greenland,
1996). In the remainder of the paper we will fix the parameters of the prior model based on
the context, since the majority of SNPs will be null, and so there will be limited information
available to estimate the parameters of the prior.

We relate this model to the penalized logistic regression method of Park and Hastie (2008)
which maximizes

for fixed λ where L(α, β) = log p(y|α, β) denote the log-likelihood. This method can be
viewed from a Bayesian standpoint as finding the posterior mode with independent priors βs
~ iid N(0, 1/λ), s = 1, …, S, so that λ is the reciprocal of the variance. Sandwich estimation is
used to obtain standard errors (which is more difficult to justify via a Bayesian argument),
and cross-validation is used to choose λ.
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A difficulty with the above three stage model is that it assumes that the prior is the same for
all of the log relative risks βs, when in the present context the vast majority of SNP effects
will be zero, or very close to zero. We now describe a model that allows for each parameter
to be effectively set to zero, thus aiding in interpretation, and allowing the remaining
parameters to be estimated with greater power.

Mixture Hierarchical Approach
We describe a hierarchical mixture model which extends the above model by assuming that
a proportion πs of SNPs are non-null, with a common prior for their effects, while the
remaining proportion 1 − πs of null SNPs arise from a distribution with its mass very close
to zero. Mixture models, with components corresponding to null and non-null signals, were
suggested in an epidemiologlcal multiple testing situation by Thomas et al. (1985, 1992). A
similar logistic model to that described below was proposed in the gene-environment
context by Conti et al. (2003). Stage 1 is as in the conventional model with Stages 2 and 3
given by:

Stage 2 Prior for Log Relative Risks: We assume the mixture prior:

where Ts is an indicator for SNP s that takes the value 1 for a non-null SNP, and the value 0
for a null SNP. We assume that the non-null effects arise from  with the null effects

from . The latter is chosen so relative risks in the range e±εs for small εs can be

treated as null. In what follows we choose  which corresponds to the belief that
the null relative risks lie in the range (0.98, 1.02) with probability 0.9. It is useful to allow
values slightly either side of 1 in order to “soak up” small amounts of bias arising from, for
example, small differential genotyping errors, or confounding due to population
stratification.

Stage 3 Prior for Non-Null/Null Indicators: Without additional information we assume that

so that πs is the proportion of non-null SNPs.

As we have noted, often the number of non-null SNPs will not be large, and so it will not be
possible to estimate  and πs from the data, so we fix them in advance. We set the
standard deviation so that we expect 100(1 − q)% of non-null SNPs to have relative risks
that lie within exp(±R), to give σs = log R/Φ−1(1 − q/2). As an example, for 90% within
[e−2.5, e2.5] we obtain σs = log 2.5/1.645 = 0.557. The anticipated proportion of non-null
SNPs is given by S × πs, which aids in the fixing of πs. For example, with S = 50 SNPs in
total a best guess of 5 non-null SNPs gives πs = 0.10. Note that under this prior set-up, the
prior on the number of non-null SNPs is binomial with parameters S and πs, which allows
the prior probability of a particular number of non-null SNPs to be evaluated.

We note the following about this model:

1. Setting Ts = 1 for all s gives the conventional hierarchical model.

Wakefield et al. Page 5

Genet Epidemiol. Author manuscript; available in PMC 2011 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



2. If we average out over the Ts (i.e. collapse stages 2 and 3 into a single stage) we
obtain the mixture model

3. If we have prior information on particular SNPs being non-null we can relax the
Stage 3 assumption that the indicators Ts are independent and identically
distributed to independent with πss, for s = 1, …, S. Such information may reflect
information such as whether the SNP is missense, or has been previously
implicated with the disease. Setting πss = 1 indicates that we believe SNP s is
important.

Figure 1(a) shows the two components of the prior (for the choices discussed above, namely
95% points of 1.02 and 2.5 for the null and non-null components). The densities cross at a
log relative risk value of 0.033 so that |β|’s less than this are more likely to be null, with
values larger more likely to be non-null. For a given log relative risk β, one can evaluate the
false discovery rate (FDR):

and this quantity is displayed in Figure 1(b) (with πs = 0.8). The FDR associated with this
prior shows desirable behavior in that it is monotonic decreasing from zero (Rice and
Spiegelhalter, 2008). This is desirable since it means that as |β| increases it becomes
increasingly less likely that the coefficient corresponds to a false discovery.

Gene × Environment Interactions
Turning now to gene-environment interactions we let zie denote exposure e on individual i, i
= 1, …, n, e = 1, …, E. We assume that continuous exposures are standardized to have mean
0 and standard deviation 1, so that associated log relative risks are on the same scale. We
extend the model of the previous section:

Stage 1 Data Model: Yi|α, β, γ, δ ~ Binomial(1, pi) where

so that γ = (γ1, …, γE) are the main effects associated with exposure, and δ = (δ11, …, δSE)
are the interactions. We have assumed that the interactions act in the same fashion on 1 or 2
copies of the minor allele, though the mixture formulation is easily extended to other
interaction models.

Stage 2 Prior for Non-Null/Null Indicators:
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Stage 3 Priors for Non-Null/Null Indicators:

We also assume that the collections Ts, Te and Tse are independent. Again we fix
, πs, πs and πse.

We make four observations:

1. A special case of this model is to take Tse = TsTe, which equals 1 only if both main
effects are in the model, and is zero otherwise, thus obeying the “hierarchy
principle” in which an interaction term is only included if the main effect is present.
A further extension is to take Tse = TsTeΔ where Δ < 1 so that we have a reduced
probability of an interaction, relative to the product of the SNP and exposure
interactions (Chipman, 1996). In both the simulations and the real data example,
the number of exposures is small, and we will assume that πe = 1 so that we do not
have a null prior for exposures, and we take Tse = TsTe = Ts. In this case we only
need to specify πs.

2. The above model can be applied in an obvious fashion to three- and higher-way
interactions, and to the analysis of SNP-SNP interactions.

3. Interpretation of the results requires care in situations in which the majority of the
probability mass of Pr(T|y) is not at T = 0 or T = 1. If the mass is distributed more
equally between these points then interval estimates for the corresponding
regression coefficient may be deceptive. One possibility is to report posterior
intervals given that T = 1, along with Pr(T = 1|y).

4. The model of Conti et al. (2003) differs from the above in the following respects.
We place a tight normal prior around the log odds ratio under the null, while Conti
et al. set the parameter to zero. Under the alternative (T = 1) we fix the variance of
the effect sizes, while Conti et al. estimate these variances and have a specific prior
on variance inflation parameters. We fix these variances because we want to be as
context-specific as possible. In the situations in which we are envisaging, the
number of non-null effects will be small, and so the variance will be difficult to
estimate. Similarly, Conti et al. assign Beta prior distributions to, and estimate, the
mixture probabilities, whereas we fix these a priori. In terms of reporting, Conti et
al. recommend, for a generic parameter θ, tabulation of E[θ|T = 1, y], var(θ|T = 1, y)
and Pr(θ < 0|T = 1, y), whereas we will examine credible intervals for the
unconditional parameter, for example, we report those values (l, u) such that Pr(l <
θ < u|y) = 0.95, along with Pr(θ > 0|y). Conti et al also explicitly emphasize model
averaging and calculate posterior probabilities of each model (where the class of
models is obtained by considering all values of T = 0/1). We view the analysis as
more exploratory in nature and hence concentrate on the posterior probabilities of
coefficients being “significantly” different from zero.

Computation
The posterior distribution is given by
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The first stage logistic model means that marginalization short-cuts available for the linear
model (which allow the random effects to be integrated out analytically) are not possible
here, but Markov chain Monte Carlo (MCMC) techniques, in which a Markov chain is
constructed whose stationary distribution is the posterior distribution, may be utilized.

As noted by George and McCulloch (1997) it is important that the ratios

, should not be made too large since this will lead to poor
convergence of the Markov chain, because the sampler can become “stuck” at values of β
close to zero. Intuitively, if the two variances are not too different then the sampler will
move easily between the T = 0 and T = 1 models, but if one is highly peaked it is difficult to
move since the ratio of the peaked to the flatter densities is too large.

To assess convergence we recommend that multiple chains be run. In the examples that
follow we run two chains, one with starting values T = 0 and each regression parameter set
initially to zero, and the other setting T = 1 for those parameters that are significantly
different from zero from the fit of the full model (with initial values for the significant
regression parameters set to the estimates from this model). Figure 2 illustrates the mixing
for a particular parameter, β, with associated indicator variable T, from two chains. These
data were taken from one of the simulations of the next section. Panel (a) shows that T = 0
for the majority of the iterations, but there are visits to the T = 1 state. Panel (c) shows how β
is more varied when T = 1. Panels (b) and (d) display histogram representations of the
conditional posterior densities, β|y, T = 0 and β|y, T = 1, respectively. When T = 0 the
posterior for β essentially corresponds to the narrow prior.

RESULTS
Simulation Study

We assume binary exposures and to simulate data, first fixed SNP and exposure prevalences,
and then set a number of relative risks for SNP and exposure main effects, and interactions
to be non-null. There are clearly many characteristics of the simulation that can be varied,
and we explored only a subset. Null SNP minor allele frequencies (MAFs) were set to 0.3,
with non-null SNPs having MAFs of 0.1 and relative risks of 1.2. The prevalences of
exposed individuals was 0.1 in all cases and non-null exposure and interaction relative risks
were set to 2. In the dependent exposure simulations the correlation was approximately 0.75.
We examine the performance of three models: (1) S × E “single” models that contain four
parameters only (the intercept, main effects for SNP and exposure, and the interaction); (2)
the full model that contains all SNPs/exposures and interactions; (3) the Bayesian mixture
model. We set πs = 0.2 and πe = 1 so that the non-null exposure prior is always used; we
also have Tse = Ts so that the hierarchy principle is obeyed.

For the mixture models a pair of Markov chains were run for a minimum of 50,000
iterations, discarding the first 10,000 as burn-in. A number of the models with a larger
number of SNPs/exposures required longer runs.

Figure 3 displays 95% interval estimates for each parameter for simualtion 9 (since the same
main effects are estimated multiple times under the single models, we report the interactions
only for these models). This figure clearly shows the wide intervals that result from the full
model, and the effective setting to zero of the majority of parameters under the mixture
model. The supplementary material contains plots analogous to Figure 3, for all of the
simulations.

Table 1 summarizes the results for each of the combinations of parameters we examine. We
concentrate on inference for the interactions and report the number of false discoveries (type
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I errors), and missed signals (type II errors), where these are (somewhat arbitrarily)
evaluated based on 95% confidence/credible intervals. In each simulation, and for each of
the interactions we also evaluate the posterior probabilities of exceedence of 0, and these are
presented in Figure 4. For true null signals these should be close to 0.5, and for true non-null
signals they will be close to zero (for protective effects) or one (for detrimental effects,
which is the case in our simulations). We also consider the mean squared error of the
interactions, which is given by the sum of the variance and the square of the bias:

where S × E is the number of interactions, and δse is the interaction parameter corresponding
to SNP s and exposure e.

We make some general conclusions, and discuss each simulation in more detail in the
supplementary material. In general:

• The single models perform better, in terms of MSE, than the full models, with the
mixture models having orders of magnitude lower MSEs than either.

• The 95% interval estimates are widest for the full model, and shortest for the
mixture model.

• There is slight bias towards zero in the Bayesian mixture model, due to the prior
being centered at zero, but so far as MSE is concerned, this is more than offset by
the reduced variance.

• The full model approach tends to have higher type I error rates than the single
model analyses, while in only one simulation did the mixture model give a type I
error.

• Using the 95% credible interval criteria the mixture model has a number of Type II
errors. However, as Figure 4 shows, the mixture model is ranking the associations
reasonably well. Figure 4 shows the posterior probability of exceedence of 0, for all
of the interaction parameters. We see that although for a number of the simulations
(numbers 8, 12, 16 and 17 in particular) signals are missed at the 95% level, they
are detected at level 90% without any increase in the number of type I errors. In
simulation 10, in which the exposures are correlated, the “wrong” SNP-exposure
interaction is detected, but the correct signal is the second most significant. Figures
1 and 2 of the supplementary material give the p-values associated with each
interaction and for each simulation for the single and full model examples,
respectively. An advantage of examination of Pr(δ > 0|y) is that for null signals
these posterior probabilities tend to concentrate around 0.5. In contrast, under the
null p-values are uniform on (0,1) and so it is more difficult to discern the true non-
null signals from the null effects.

• Simulation 18 represents a situation similar to many in practice with 100 SNPs, two
correlated exposures, and a single non-null interaction. For this simulation all three
of the methods correctly identify the interaction, though the full model gives a very
wide interval estimate. The full model also gives 20 false positives, while the single
models give 7 and the mixture model 0.
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Real Data
We analyze data previously described in Hung et al. (2004), from a study conducted in
centers within six countries of Central and Eastern Europe including the Czech Republic,
Hungary, Poland, Romania, Russia and Slovakia. Within each country an identical protocol
was followed with a consecutive group of newly diagnosed cases of lung cancer and a
comparable group of controls being recruited between 1998 and 2002. Controls in all centers
except Warsaw were chosen among subjects admitted as in-patients or out-patients in the
same hospital as the cases, and were frequency matched with the case group by sex, age (+/
− 3 years), center and referral (or residence) area. The eligible diseases for controls were
non-tobacco related diseases including minor surgical conditions, benign disorders, common
infections, eye conditions (except cataract or diabetic retinopathy) common orthopaedic
diseases (except osteoporosis), etc. In Warsaw, population controls were selected by random
sampling from the Polish Electronic List of Residents. Both cases and controls underwent an
identical face-to-face interview during which they completed a detailed questionnaire
including sections on: (a) demographic variables; (b) medical history; (c) family history of
cancer; (d) tobacco smoking and involuntary smoking; (e) alcohol drinking; (f) intake
frequency of selected food items: (g) occupational history. Blood samples were collected at
the time of interview.

For illustration of the model we here examine 20 SNPs, two of which, CHEK2I157T
(rs17879961, Brennan et al. 2007) and loc123688 (rs8034191, Hung et al. 2008), are known
to be associated with lung cancer. As exposure we take a binary smoking variable (0=never,
1=ever) which has a known and strong association with lung cancer. The model we fit has
48 parameters (plus an intercept): 20 main effects for SNPs, a main effect for smoking, 20
interactions between the SNPs and smoking, and seven additional variables coding countries
1–5 (so that country 6 is the baseline), gender and age. Since CHEK2I157T and loc123688
are known to be associated we set T = 1 for these SNPs, and for the remainder we take πs =
0.2. We placed flat priors on the intercept and the log relative risks corresponding to age,
gender and the country indicators. For simplicity we consider the 1752 individuals with full
data.

Figure 5 shows 95% interval estimates for each of the 48 parameters from the full logistic
model and single models (all fit via MLE), and the Bayes mixture model. There was
numerical instability for the logistic models — for example, the standard errors for the main
effect of CHEK2I157T, and the interaction between CHEK2I157T and smoking were both
395 (the y-axis in Figure 5 is truncated) for the full model. The single model containing this
interaction was also highly unstable. Two interactions were flagged as “just” significant
under the full model, and one by the single model. Under the Bayesian mixture model (for
which the results are stable) no signal interaction was categorically flagged as “significant”.
For 18 of the 20 interactions, the values of Pr(δ|y) lay between 0.38 and 0.61 indicating no
evidence of an interaction. Of the remaining SNPs, NAT2C282T gave a probability of 0.83.
However, the interaction between loc123688 and smoking gave a posterior probability of
0.93 giving a hint of significance, and indicating that the harmful allele combined with ever
smoking further increased the risk of lung cancer.

DISCUSSION
In this paper we have proposed the use of a Bayesian mixture model for modeling
interactions, and have shown, via simulation, that this model has good performance when
compared to fitting a full model, or multiple single models. All of the Bayesian mixture
models were fitted using the freely-available WinBUGS software (Spiegelhalter et al., 1998).
Example code is presented in the supplementary material, and is also available at:
http://faculty.washington.edu/jonno/cv.html
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In practice there are often missing genotype data, the MCMC approach is ideally suited to
imputing these missing data see, for example, Lunn et al. (2006). We have assumed a binary
phenotype (case-control data) but the hierarchical model could easily be altered for
continuous phenotypes including survival data. Often in studies of environment and
occupation the exposures are subject to measurement error. The incorporation of a
parametric measurement error model is also straightforward within the Bayesian framework.

The choice of the π parameters will determine the operating characteristics (type I errors and
power) and varying these parameters will give a more or less conservative procedure. For
example, if we are in exploration mode we should set the π’s to be relatively large, since we
would rather have a longer list of possible interactions to investigate. Sensitivity of the
results to the specific values of π chosen is an important step.

In the hierarchical model that we have described the number of relative risks is fixed and
equal to the maximum number of main effects and interactions that we wish to consider. An
alternative approach is to allow the model dimension to change as terms are “dropped” and
“added” to the model. This is an attractive strategy but requires specialized reversible jump
MCMC (Green, 1995) and great care in diagnosis of convergence/posterior summarization.
Some progress has been made in the former with the WinBUGS software (Lunn et al., 2006),
though logistic regression models are not currently available.

The implementation for the model we use is computationally expensive and so the use of the
model in a genome-wide association study (GWAS) is not currently feasible. However,
Lewinger et al. (2007) use a similar mixture model for prioritizing signals in a GWAS.

In summary, we have described a Bayesian mixture model framework to assess gene-
environment and gene-gene interactions in higher dimensional case-control studies. We have
shown that this framework performs much better than traditional methods, and dramatically
reduces both the MSE and the number of false positives, especially when exposures are
correlated. The discovery of interactions in the setting we have considered is an intrinsically
difficult endeavor, however, and so we would recommend the use of the mixture model in
tandem with complementary alternative methods such as recently-proposed tree-based
approaches.
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Figure 1.
(a) Two component mixture prior, and (b) false discovery rate Pr(null |β).
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Figure 2.
(a) Realizations of indicator variable T associated with parameter β, for two Markov chains
(displayed in blue and red). (b) Histogram representation of the posterior of the conditional
β|y, T = 0. (c) Realizations of the parameter β, for two Markov chains (displayed in blue and
red). (d) Histogram representation of the posterior of β|y, T = 1.
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Figure 3.
Summaries of three modeling approaches for simulation 9. Parameters 1–20 represent SNP
main effects, 21–22 are the exposure main effects, and 23–62 are the 40 interactions. The
latter are ordered so that 23 and 24 correspond to the interaction between SNP 1 and
exposures 1 and 2, respectively, etc. The five short horizontal lines represent the true effect
sizes.
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Figure 4.
Posterior probabilities that interactions exceed 0, Pr(δ > 0|y). The null signals should cluster
around 0.5. The top dashed line is at 0.975, which corresponds to the cut-off for a 95%
credible interval. Horizontal lines are also drawn at probabilities of 0.95, 0.5, 0.05 and
0.025.
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Figure 5.
95% interval estimates under the full and mixture models. The dashed vertical lines denote
distinct sets of parameters: 20 main effects for SNPs, a main effect for smoking, 20
interactions between the SNPs and smoking, and seven additional variables coding centers
1–5, gender and age.
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