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ABSTRACT

Motivation: Identification and characterization of protein–protein
interactions (PPIs) is one of the key aims in biological research. While
previous research in text mining has made substantial progress in
automatic PPI detection from literature, the need to improve the
precision and recall of the process remains. More accurate PPI
detection will also improve the ability to extract experimental data
related to PPIs and provide multiple evidence for each interaction.
Results: We developed an interaction detection method and
explored the usefulness of various features in automatically
identifying PPIs in text. The results show that our approach
outperforms other systems using the AImed dataset. In the tests
where our system achieves better precision with reduced recall, we
discuss possible approaches for improvement. In addition to test
datasets, we evaluated the performance on interactions from five
human-curated databases—BIND, DIP, HPRD, IntAct and MINT—
where our system consistently identified evidence for ∼60% of
interactions when both proteins appear in at least one sentence in
the PubMed abstract. We then applied the system to extract articles
from PubMed to annotate known, high-throughput and interologous
interactions in I2D.
Availability: The data and software are available at:
http://www.cs.utoronto.ca/~juris/data/BI09/.
Contact: yniu@uhnres.utoronto.ca; juris@ai.utoronto.ca
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Identification and characterization of protein–protein interactions
(PPIs) is one of the key aims in biological research. Although
numerous PPIs have been manually curated into databases such
as BIND (Bader et al., 2001), DIP (Xenarios et al., 2000), HPRD
(Peri et al., 2003), IntAct (Kerrien et al., 2007) and MINT (Zanzoni
et al., 2002), information about many PPIs is still only available
through the PubMed database. The PubMed database contains over
17 million papers, making complete coverage by manual curation
difficult. Several systems have been developed to make the curation
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process more accurate, faster and effective (Donaldson et al.,
2003; Hoffmann and Valencia, 2004). Information extraction (IE)
aims to identify prespecified types of relations from unstructured
text, and thus can help in automated PPI detection (Bunescu and
Mooney, 2005; Fundel et al., 2007; Romano et al., 2006; Temkin
and Gilder, 2003; Yakushiji et al., 2005). An IE approach to PPI
detection has two major and relatively independent subtasks: entity
recognition and relation detection. First, protein names must be
identified in text. Entity recognition is challenging due to non-
standard name forms, multiple synonyms for most proteins and the
ambiguity of protein names across organisms. Second, interaction
identification, i.e. relation detection, identifies protein pairs in the
sentence with additional support for their physical interaction. Since
the two problems are usually addressed by different computational
techniques, they are often investigated separately. In this article,
we use entity recognition from (Otasek et al., 2006), and focus on
relation detection. Our goal is to systematically evaluate multiple
linguistic features, context features, keywords and patterns as cues
in the automatic extraction of interaction relation to improve our
understanding of how individual features or their combination affect
system performance. We then applied the system to find evidence
for PPIs in the I2D database. This annotation of PPIs resulted
in: (i) identifying more evidence for curated PPIs and providing
more biological context for them, and (ii) providing some level
of validation for PPIs detected by high-throughput methods and
predicted computationally (human interpretation and curation of
extracted evidence is still required).

Most automatic relation detection approaches use pattern
matching techniques (Bunescu et al., 2005; Hao et al., 2005; Jang
et al., 2006; Plake et al., 2005; Romano et al., 2006; Yakushiji
et al., 2005), in which a set of syntax patterns are usually developed
to specify how an interaction is described in literature. A pattern,
serving as a rule, is a sequence of words, or part-of-speech tags,
describing an interaction. The locations of the two interaction
partners are defined in each pattern. In the pattern matching process,
a sentence matches the rule if it satisfies the word constraints in the
given order. When a pattern is found in a sentence, the text at defined
locations will be extracted as the two interaction partners.

The pattern-based method is intuitively straightforward and
conceptually simple. However, manually constructing patterns is
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a time-consuming process, and is not feasible to cover all the
possibilities or compute and evolve all the necessary rules. Thus,
several alternative approaches have been proposed (Bunescu and
Mooney, 2005; Fundel et al., 2007; LLL, 2005; Temkin and Gilder,
2003). Fundel et al. (2007) made use of rules based on dependency
parse trees of sentences. Grammar-based approaches use a parser
with grammar production rules for the detection of interactions
(Temkin and Gilder, 2003). The rules were derived by manually
analyzing sentences that contain interactions in a corpus. Bunescu
and Mooney (2005) developed a machine learning approach that
explores a sequence kernel measuring the similarity of two sentences
by evaluating the common string sequences that they contain.
Systems that participated in the 4th Learning Language in Logic
Workshop (LLL, 2005) explored knowledge representation methods
to detect PPIs. Despite the substantial success of automatic PPI
detection approaches, there is still a need to improve the precision
and recall of the process. In the BioCreAtIvE 2 interaction pairs
extraction subtask, the best results of all the participating systems
(measured by precision and recall) were about ∼0.30 (BioCreAtIvE,
2006).1

We aim to improve automatic PPI detection by combining
multiple linguistic clues via machine learning. While systems using
linguistic features achieve good performance in extracting social,
part-of and locational relations between entities such as person,
organization and location (Zhou et al., 2005), they have not been
fully explored for identifying PPIs. Nielsen (2006) built a system
to detect PPIs, using manually identified ‘interaction words’ and
some lexical and context features. The system was evaluated on a
small corpus containing 255 relations. Mitsumori et al. (2006) only
applied context features. Haddow and Matthews (2007) explored
n-grams and context features. In the BioCreAtIvE 2 interaction
pairs extraction subtask, Erkan et al. (2006) used features from
dependency trees, while Huang et al. (2007) used profile features.

In this article, we evaluate the contribution that context, lexical
and syntactic information, as well as keywords and patterns have on
PPI detection. In addition, we propose a new feature, ‘interaction
sentence’, and evaluate its contribution to improving accuracy.
Our goal is to identify the most important features for detecting
interaction relations in sentences, and after validation, apply the
system to validate curated, high-throughput and predicted PPIs.
The evaluation results on the AImed dataset (Bunescu and Mooney,
2005) show that our approach outperforms other systems. Automatic
interaction extraction may directly contribute to our knowledge
of PPIs. For instance, it can be used to enhance human-curated
databases (e.g. BIND, DIP, HPRD, IntAct and MINT), since in
these databases an interaction is often supported by a few or only
one PubMed references. Generally, an increased number of PPI
sources results in higher confidence in the interaction as multiple
literature links may provide alternative biological methods and
biological context, and provide further evidence about its nature,
dynamics and affinity. In addition, relation extraction can also be
used to verify PPIs predicted computationally or detected by high-
throughput experiments. We have built a system and applied it
to find evidence for interactions in the Interologous Interaction
Database (I2D, http://ophid.utoronto.ca/i2d; Brown and Jurisica,
2007).

1Note that this is a comprehensive evaluation in which proteins must be
disambiguated with respect to the organism source.

2 METHOD
A sentence may contain multiple protein mentions. For each pair of protein
mentions, referred to as a candidate hereafter, the task is to determine whether
the text describes an interaction by observing the whole sentence. We treat
this as a classification problem and use support vector machines (SVMs) as
the classification model. SVMs have been effective in many classification
problems. Their goal is to find an optimal hyperplane so that examples on
the same side of the hyperplane share the same label. SVMs learn decision
functions:

f (�x)=sgn[(�w×�x)+b]=
{ +1 : �w×�x+b>0

−1 : otherwise
,

where �x denotes data vector, �w and b are parameters. Each function
corresponds to a hyperplane in the feature space. The optimal hyperplane
that SVMs chose is the one with the largest margin. The classification task
is then to determine on which side of the hyperplane a data point lies. In the
experiment, we use SVMlight implementation of SVMs (Joachims, 2005)
with a linear kernel.

3 FEATURES
We assume that a candidate is represented by a vector of features, including
context, lexical forms and positions within the sentence. M1 and M2 refer to
the two target protein mentions of a candidate (M1 is to the left of M2 in the
sentence). We investigate multiple factors that may contribute to identifying
interactions, and evaluate the effectiveness of their use as features.

3.1 Position
Three types of features are used to describe positions of the two protein
mentions in a sentence: indices of M1 and M2 in the sentence, the distance
(in tokens) between M1 and M2 and the number of other proteins between
M1 and M2.

3.2 Lexical forms and context
The lexical forms of proteins may provide clues about interactions.
Neighbors of M1 and M2 in a sentence often provide context information
about their relation, which may be important, and it comprises lexical forms
of three parts: n tokens on the left of M1, n tokens on the right of M2 and
all tokens between M1 and M2. Since multiple proteins often occur within
a sentence (∼40% in the dataset), a small window of context would cause
less ambiguity. We set n to 3 in our experiment, as it was shown to be the
optimal number of tokens in context (Mitsumori et al., 2006).

3.3 Keywords
Some words are important in identifying interaction relations, and have been
used in pattern-matching approaches as cues in rule construction, e.g. bind,
activate. Our set of keyword features is developed based on the list in Plake
et al. (2005).2 The final keyword collection comprises each word in the list
together with all its morphological variations. Several features are generated:

• The lexical forms of keywords occurring in a sentence.

• Position of a keyword—to the left or to the right of the candidate, or
between M1 and M2.

• The distance (in tokens) between a keyword and the protein mention
(M1 or M2) nearest to it.

2Plake et al. (2005) describes a pattern-based PPI detection approach and
provides complete information on the list of cues and the set of patterns
used.
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Sentence:
In the complex, one interferon gamma homo-dimer binds two
receptor molecules.

Parse tree:
( (S
(PP (IN In) (NP (DT the) (NN complex) (, ,)))
(NP (CD one) (NN interferon) (NN gamma) (NN homo-dimer))
(VP (VBZ binds) (NP (CD two) (NN receptor) (NNS molecules)
(. .)))))

Part-of-Speech tags in the example:
NN: Noun, singular or mass CD: Cardinal number
VBZ: Verb, 3rd person singular present DT: Determiner
NNS: Noun, plural IN: Preposition
Syntactic categories in the example:
NP: Noun phrase VP: Verb phrase PP: Prepositional phrase

Fig. 1. A sentence parsed by Collins’ parser.

3.4 Patterns
We incorporate patterns constructed in pattern-matching methods by
generating a binary feature for each pattern. If M1 and M2 in a sentence
match a specific pattern, then the corresponding feature will be turned on.
We adopt patterns from Plake et al. (2005) in the feature set, and present
some simplified examples below:

• proteinA word* [form|forms] word* complex with word* proteinB;

• proteinA word* [inhibitor|repressor] of word* proteinB;

• interaction between word* proteinA word* and word* proteinB.

In these patterns, bold words have to be matched exactly. The symbol ‘|’
separates options. Tag word* indicates a word gap that will be filled with at
most n tokens. Plake et al. (2005) developed an approach to optimize n. In
our experiment described in Section 4, n is set to 5, as this achieves the best
performance (Plake et al., 2005).

3.5 Phrase information
In order to characterize PPIs at the syntax level, we consider the phrases
and word dependency in a sentence. Phrase information may be helpful in
detecting relations such as part-of and location (Zhou et al., 2005). Word
dependency may be informative since it examines which word a protein is
related to. In our experiment, phrase information is derived from full parse
trees of sentences obtained using the Collins’ parser (Collins and Singer,
1999). An example of a sentence and its parse tree (in bracket format) is
shown in Figure 1.

The parse tree shows that the sentence comprises a prepositional phrase
‘in the complex’, a noun phrase ‘one interferon gamma homo-dimer’ and a
verb phrase ‘binds two receptor molecules’.

For easy processing, detailed phrase information is then extracted from
the full parse tree using a Perl script (http://ilk.uvt.nl/~ sabine/chunklink/).
The output of the script for the sentence in Figure 1 is shown in Table 1
(to reduce space requirement, some irrelevant columns are omitted in the
table).

Each token in the sentence is presented on a single line. Every column
represents one type of information. The first column is the index of the current
token within the sentence. The second column indicates whether this token
is the beginning (B-), end (E-) or inside (I-) of a specific phrase. The fourth
and third columns list the words and their part-of-speech tags. The function
of a phrase is described in the fifth column on the line of the head word of
this phrase. Other words in the same phrase are marked by NOFUNC in this
column. For example, the head of the noun phrase one interferon gamma

Table 1. The output of the phrase extraction script

0 C-PP IN In PP B-S/B-PP
1 B-NP DT the NOFUNC I-S/I-PP/B-NP
2 I-NP NN complex NP I-S/I-PP/I-NP
3 O COMMA COMMA NOFUNC I-S/E-PP/E-NP
4 B-NP CD one NOFUNC I-S/B-NP
5 I-NP NN interferon NOFUNC I-S/I-NP
6 I-NP NN gamma NOFUNC I-S/I-NP
7 E-NP NN homo-dimer NP I-S/E-NP
8 C-VP VBZ binds VP/S I-S/B-VP
9 B-NP CD two NOFUNC I-S/I-VP/B-NP
10 I-NP NN receptor NOFUNC I-S/I-VP/I-NP
11 I-NP NNS molecules NP I-S/I-VP/I-NP
12 O . . NOFUNC E-S/E-VP/E-NP

Table 2. An output example from Minipar (Lin, 1994)

E0 (() fin C * )
1 (In Prep E0 mod (gov fin))
2 (the Det 3 det (gov complex))
3 (complex N 1 pcomp-n (gov in))
4 (, U E0 punc (gov fin))
5 (one N 8 nn (gov homo-dimer))
6 (interferon N 8 nn (gov homo-dimer))
7 (gamma N 8 nn (gov homo-dimer))
8 (homo-dimer N 9 s (gov bind))
9 (binds V E0 i (gov fin))
10 (two N 12 nn (gov molecule))
11 (receptor N 12 nn (gov molecule))
12 (molecules N 9 obj (gov bind))
13 (. U * punc )

homo-dimer is homo-dimer. In the sixth column, the syntactic categories of
all the constituents on the path from the root to the leaf node of the parse tree
are presented. Given the index of M1 and M2, phrase features are extracted
from these three columns, including:

• First, last and other phrase heads between M1 and M2;

• First and second phrase heads before M1;

• First and second phrase heads after M2;

• Path of phrase labels connecting M1 and M2;

• Path of phrase labels connecting M1 and M2 augmented with head
words, if at most two phrases are in between.

3.6 Dependency information
This feature considers words that M1 (M2) is dependent on, i.e. the word that
M1 (M2) has a direct syntactic relation with. Dependency relations of words
in a sentence are obtained using a dependency parser Minipar (Lin, 1994).
The output of Minipar for the sentence in Figure 1 is shown in Table 2. The
information for each token in the sentence is on a single line. Column 1 is
the index of a token. Lexical form of the token is at column 2. Column 4
lists the index of its dependent word, and column 3 has its part-of-speech
information. Column 5 specifies the type of syntactic relation. As shown in
the table, molecules is the object of binds.

To construct dependency features, the dependent word and its part-of-
speech tag are extracted for M1 and M2, respectively. A protein name often
contains more than one token, and each token may have a dependent word.
Thus, the dependent word of M1 (M2) is determined by selecting the word
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with the smallest index (indicates its location in the sentence), which is
related to one of the tokens in M1 (M2) and is not part of M1 (M2).

3.7 Overlap
A recognizable protein name is sometimes embedded in another longer
protein name. In such cases, it is unlikely that the embedded protein
participates in an interaction. Although we do not address entity recognition
in this paper, we still can measure the overlaps of the two target proteins that
are known to us. The overlap feature takes this into account by evaluating
whether M1 (M2) is embedded in M2 (M1), and whether M1 (M2) is
embedded in another protein name. We also evaluate whether the two proteins
are mentioned in the same noun phrase, prepositional phrase or verb phrase.

3.8 Interaction sentences
Identifying protein name co-occurrence ensures high recall but poor precision
for the system. Determining that a sentence contains at least one interaction
relation, i.e. it is an interaction sentence, may help to increase precision.
For sentences with multiple protein mentions, this information may promote
recovering interactions in the sentences. When multiple protein mentions
are present in a sentence of no interaction, no protein pairs should be
classified as interactions. To verify this hypothesis, we determine whether a
sentence is an interaction sentence. We applied a mixture model combining
a supervised model with a rule-based method to automatically identify
interaction sentences and achieved an F-score of 63.3%. Details of this
model are described in Niu et al. (2008).3 The feature value is set to 1 for a
candidate protein pair if it appears in an interaction sentence; otherwise, the
value is 0.

4 PERFORMANCE EVALUATION
Most of the systems have been evaluated on different datasets,
specific to a given work (Zhou and He, 2008). In an attempt
to standardize the validation of text mining algorithms for
PPI detection, BioCreAtIvE workshops established a PPI corpus
(BioCreAtIvE, 2004, 2006). BioCreAtIvE 2 evaluation considers
the full complexity of PPI recognition, and does not separate the
task of finding protein names, normalizing a protein name to its
SwissProt IDs, and identifying the interaction relations. In this
article, we describe a method that focuses only on the last task, and
thus it is difficult to make a fair comparison with the participants of
BioCreAtIvE 2. Nonetheless, we report the results of our system
on the test set of the BioCreAtIvE 2—protein interaction pairs
subtask. In the following experiments, we first evaluate our system
on AImed corpus [developed at University of Texas at Austin
(Bunescu and Mooney, 2005)], where interactors in a sentence are
explicitly annotated. Since AImed has been used to evaluate several
systems on a PPI detection task, we have used this dataset to directly
compare performance of our approach to the other systems. We then
summarize our results using the BioCreAtIvE 2 test set.

AImed contains about 200 PubMed abstracts (1944 sentences in
total) from the Database of Interacting Proteins (DIP; Xenarios
et al., 2000) with manually annotated interactions. Each abstract
is in sentence-per-line format. Protein mentions and interactions are
marked with specific XML tags. Multiple interactions in a sentence
are numbered so they can be easily distinguished.

3Detecting interaction sentences cannot provide information on the specific
proteins involved in an interaction. Therefore, the method and evaluation has
no overlap with this paper.

Table 3. Pair-level evaluation of individual features and their combination
on data from AImed (Bunescu and Mooney, 2005), using 10-fold cross-
validation and measuring precision, recall and F-score

Features Precision Recall F-score
(%) (%) (%)

position+lexical forms+context (1) 57.4 25.3 35.1
(1)+keywords 56.2 17.6 26.8
(1)+patterns 66.7 11.0 18.9
(1)+phrase 58.6 29.8 39.5
(1)+dependency 64.0 29.3 40.2
(1)+phrase+dependency (2) 61.6 31.6 41.7
(2)+overlap (3) 65.4 33.0 43.9
(3)+interaction sentence 65.0 35.9 46.2

Since our work in this article focuses on relation detection,
we assumed the knowledge of protein names in this dataset. A
pair of proteins is a positive case if it is manually labeled as an
interaction; otherwise, it is a negative case. We applied our approach
for interaction relation detection to this data, and compared the labels
predicted by the SVM classifier with this benchmark. All results
reported are using 10-fold cross-validation.

4.1 Feature comparison
We first evaluate how individual features and their combination
affect classification performance. Similar to other approaches,
precision (TP/TP+FP), recall (TP/TP+FN) and F-score (2×
precision×recall/(precision+recall)) are used as metrics. In the
evaluation, every pair of distinct proteins in a sentence is a candidate.
This is a pair-level evaluation, i.e. the correctness of each candidate
is measured. Results are summarized in Table 3.

As shown in the first row of Table 3, combining position, lexical
forms and context has an F-score of 35.1%, considered as the
baseline. Adding keywords does not improve the performance.
Instead, recall drops by ∼8%, indicating that the keywords do not
provide good clues in this setting. (We see a decline of recall in
Table 3 because of the combination result of keywords and baseline
features using SVM.) In fact, of the 1330 sentences that do not
express any PPIs, we found 731 containing at least one keyword.
However, among the 614 sentences that describe at least one PPI, 498
have a keyword. As expected, it shows that keywords alone provide
high recall but low precision for PPIs. Thus, additional features will
be necessary to improve precision.

Patterns are rules combining keywords with extra constraints.
Compared with the baseline, adding the patterns feature achieves
high precision but low recall. In the third row of Table 3, we can see
that precision is improved by ∼9%, but recall decreases by ∼14%.
Thus, patterns are more useful to systems in which precision is
more important, such as for providing verification evidence for
high-throughput or computationally predicted interactions, and for
providing additional evidence for human-curated interactions.

As shown in Table 3, the two syntactic features are both helpful.
While dependency improves precision by ∼7% and recall by ∼4%,
incorporating the phrase feature improved recall and to a certain
degree precision. F-score is 5% higher in comparison with the
baseline. It shows that the dependent words of two proteins are
strong cues indicating whether they interact.

114



[12:30 2/12/2009 Bioinformatics-btp602.tex] Page: 115 111–119

Evaluation of linguistic features

After adding overlap to features, the performance is further
improved. This simple feature increases precision by ∼4% compared
with feature set (2). The highest F-score is achieved, which is
significantly better than the baseline (P < 0.001). Both precision
and recall are improved by ∼8%.

In general, good precision but low recall is achieved. After adding
the automatically generated interaction sentence feature, recall
is improved by 2.9%, while precision drops by 0.4%. In order to
determine the upper bound of possible performance improvement
by incorporating this feature, we tested the ideal case by manually
labeling sentences as interaction or non-interaction. The results show
an increase of ∼11% in recall at the same precision as feature
set (3) in the table. This increase is larger than adding any other
feature alone. Therefore, knowing that a sentence describes an
interaction greatly increases the chance of recovering PPIs from that
sentence. This suggests a possible direction for building a better
PPI detection system. However, since an automatic approach for
obtaining an interaction sentence still needs to be improved, this
feature is not included in the following experiments.

In this article, we used a dataset with sentences containing both
two proteins (∼60%) and three or more proteins (∼40%). Therefore,
our evaluation is not strongly biased to either case. In order to
provide some additional information, we further calculate precision
and recall on three groups of sentences separately. Group 1 contains
sentences with only two proteins; precision is 83.3%, and recall is
33.7%. Group 2 includes sentences with three proteins; precision is
67.8%, and recall is 36.3%. Group 3 contains sentences with more
than three proteins; precision is 58.0%, and recall is 30.8%.

4.2 Comparison to other systems
AImed has been used to evaluate several systems (Bunescu et al.,
2005; Bunescu and Mooney, 2005; Romano et al., 2006; Yakushiji
et al., 2005); thus, to enable a direct comparison we adopt
their evaluation scheme. Abstract-level evaluation is conducted by
measuring correct identification of an interaction in an abstract. The
interaction is considered correct if at least one of possible several
descriptions is detected by the system. The feature set that has
the best performance in the previous pair-level evaluation is used
[without interaction sentence, feature set (3) in Table 3]. The results
are shown in Table 4. The results of Bunescu et al. (2005) and
Bunescu and Mooney (2005) are obtained by taking the points in
the precision–recall curve that has approximately the same recall
as in our system (43%). The results of Mitsumori et al. (2006) are
obtained by using their features in the same experimental settings
of SVM that is used to test our own features (linear model, default
parameters). As shown in the table, with similar recall, our approach
achieves the highest precision. The SD of the 10 runs in terms of F-
score is 3.55. We also trained our system on a training set of 60% of
the whole dataset (randomly selected), and tested on the rest 40% of
the data. The precision is 67.1%, recall 46.8% and F-score 55.1%.

4.3 Evaluation using BioCreAtIvE 2 test set
In order to evaluate our system on the BioCreAtIvE 2 protein-
interaction pair subtask test set, we performed the three steps. First,
the system identifies protein names in the text. We developed a
machine learning approach using SVM to identify protein names
in text. We use several features that have been shown effective in
this task and are commonly used to detect protein or gene names

Table 4. Abstract-level evaluation of different systems on AImed dataset.

System Recall Precision F-score
(%) (%) (%)

Bunescu and Mooney (2005) 43 60 50.1
(10-fold cross-validation)
Bunescu et al. (2005) 43 48 45.4
(10-fold cross-validation)
Yakushiji et al. (2005) 45.3 37.3 40.9
(10-fold cross-validation)
Mitsumori et al. (2006) 36.7 64.2 46.7
(10-fold cross-validation)
Romano et al. (2006) (unsupervised) 29 42 34.3
(development: 60%, test: 40%)
Our approach 43.2 70.2 53.5
(10-fold cross-validation)

The 10-fold splits follow (Bunescu et al., 2005).

Table 5. Results obtained for the SwissProt-only test set

Precision Recall F-score

Average (11 articles) 0.5454 0.3918 0.4560
Macro-average 0.0246 0.0176 0.0205
Micro-average 0.5714 0.0094 0.0186

(Fundel et al., 2005; Hakenberg et al., 2005). These features include
unigrams, part-of-speech tags, orthography, prefix/suffix and the
previous and following tokens. Second, our interaction detection
system is applied to find interactions. Third, a protein name is
normalized to its UniProtKB ID (http://www.uniprot.org/) using
the dictionary in our database. Since one protein name may be
mapped to several UniProtKB IDs because of different organisms,
we attempted to constrain the mapping using the Medical Subject
Heading (MeSH) terms. Unfortunately, sometime the MeSH terms
are not always available. For some articles, there are more than one
MeSH terms. In such cases, we did not apply further techniques to
resolve the ambiguity. Since our database does not contain CHEBI
IDs (http://www.ebi.ac.uk/chebi/), we evaluate our system on the
SwissProt-only article set, i.e. ‘the set of articles that exclusively
mention interaction pairs that can be normalized to SwissProt’
(Krallinger et al., 2007). This set comprises 228 articles. After
automatically identifying protein names in the test articles, our
interaction detection system identified 677 positive pairs in 166 (of
the 228) articles (over 85% of interaction relations). However, using
the normalization method described above, we uniquely identified
UniProtKB IDs for both interactors for only 14 pairs in 11 articles.
There are two major reasons for this loss. One is that the UniProtKB
ID could not be found for at least one of the interactors, which
happened to 527 pairs. The second reason is that zero or multiple
MeSH terms were found, which occurs in 231 pairs. The average
results on the 11 articles and the whole test set are shown in Table 5.
The micro-averaged performance is evaluated by weighing equally
every pair in the test set. To get the macro-averaged scores, each
document is evaluated and then the result is averaged on the whole
set (Krallinger et al., 2008).
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The micro-average precision is higher compared with systems
at BioCreAtIvE 2 (although evaluated on a small subset of
articles, caused by the issues described above). As no sophisticated
normalization method was explored, most detected interactors
cannot be mapped to unique UniProtKB IDs. Therefore, the macro-
and micro-average recall are very low. However, when averaged on
the articles with at least one prediction (the 11 articles), the precision
is similar to the micro-score, whereas the recall is substantially
higher. Note that we evaluated all pairs with unique UniProtKB
IDs for both interactors. While the 14 pairs is a small sample set, it
represents a selection of the positive pairs detected by our system.

5 VERIFYING PROTEIN–PROTEIN
INTERACTIONS

5.1 System architecture
The automatic detection of PPIs can be applied to find
supporting evidence for predicted and high-throughput
interactions, and additional evidence for curated PPIs. The
I2D (http://ophid.utoronto.ca/i2d) includes interactions from
6 species (Homo sapiens, Rattus norvegicus, Mus musculus,
Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces
cerevisiae), and I2D version 1.71 integrates 444 277 PPIs (Brown
and Jurisica, 2007). These interactions fall into three broad groups:
(i) known interactions from PubMed; (ii) experimental interactions
from high-throughput screens; and (iii) computationally predicted
interactions inferred between species using homology (Brown and
Jurisica, 2005).

For human, I2D comprises PPIs from curated databases (Bader
et al., 2001; Kerrien et al., 2007; Peri et al., 2003; Xenarios et al.,
2000; Zanzoni et al., 2002), combined with human PPIs from high-
throughput experiments (e.g. Barrios-Rodiles et al., 2005; Ingham
et al., 2005; Jones et al., 2006; Rual et al., 2005; Stelzl et al., 2005)
and predicted from model organism PPI databases (Bader et al.,
2001; Gavin et al., 2002; Giot et al., 2003; Ho et al., 2002; Ito et al.,
2000; Li et al., 2004; Mewes, 2002; Mering et al., 2002), resulting
in 100 083 unique human PPIs (I2D ver. 1.71). The architecture of
the verification system is shown in Figure 2.

In I2D, interactions are represented by a pair of UniProKB IDs.
For automated PPI verification using text mining, IDs are first
mapped to multiple corresponding protein names using a synonym
dictionary. The dictionary includes synonyms for all proteins listed
in UniProtKB. Since, unfortunately, gene names are often used in
the protein interaction literature instead of protein names, all gene
names from the available data in Entrez Gene are also added to

Fig. 2. System architecture for PPI verification. To speed up analysis, we use
a copy of NLM Medline/PubMed stored in an IBM DB2 ver. 9.2 database on
IBM p595 server. Individual abstracts are indexed using the relevant MeSH
terms and protein name synonyms found in each abstract.

the dictionary. Then, the NLM Medline/PubMed abstract database
is searched to find the co-occurrence of the two proteins. The
lack of standards in research writing allows referencing a single
protein in multiple ways. For example, cyclophilin 3, cyclophilin
III, cyp3, Cyclophilin F, PPIF, PPIase, Rotamese and Peptidyl-
prolyl cis-trans isomerase are all valid references to the same
protein (P30405). This presents great challenges in protein name
identification (Tsuruoka and Tsujii, 2004). In order to increase
coverage in co-occurrence finding, both synonyms and abstracts
were normalized before searching as follows: (i) removing dashes,
spaces, and commas; (ii) Converting letters from upper case to lower
case; and (iii) converting Roman digits to Arabic digits.

Evidence of PPIs is presented at three levels. First, abstracts
with two proteins co-occurring are listed (target abstracts). Second,
these abstracts are searched for sentences that contain both proteins
(target sentences). Third, interactions in the sentences are selected
by the feature-based classifier. Our confidence in an interaction
increases as more refined filter is applied. Interactions identified by
the classifier provide direct evidence, and target abstracts and target
sentences can provide complementary information to aid interaction
confirmation. Moreover, even if target abstracts and sentences do not
describe an interaction relation, they may suggest useful relations
between the two proteins. This could be particularly valuable in
investigating previously unknown PPIs.

5.2 PPI verification on curated databases
Here, we describe verification of PPIs from five human-curated
sources in I2D: BIND (Bader et al., 2001), DIP (Xenarios et al.,
2000), HPRD (Peri et al., 2003), IntAct (Kerrien et al., 2007), and
MINT (Zanzoni et al., 2002). Each source specifies a set of PPIs
and one or more PubMed abstracts that support these interactions.
Each source has a different focus and distribution of incorporated
organisms, and thus overlap among them is small (Ramani et al.,
2005). (With the effort of IMEx, http://imex.sourceforge.net, the data
combining multiple sources is also available.) In order to understand
how this difference will impact PPI detection, we search for PPI
evidence in each of the sources separately (note that our experiments
are not organism specific).

We first collected the UniProtKB IDs of all PPIs from the five
curated sources in I2D. The number of PPIs from each source is
shown in the first row in Table 6. For evaluation purpose, it is
sufficient to search for evidence in the supporting abstracts specified
in each source instead of all of PubMed. All the results reported in
Sections 5.2.1–5.2.3 are based on these abstracts.

5.2.1 Co-occurrence in abstracts The number of distinct
interactions for the co-occurrence of the two interaction partners
in at least one abstract is shown by the second row of Table 6.
HPRD has the highest number of abstract-level co-occurrence.

Table 6. Number of distinct interactions in individual human-curated
databases

HPRD BIND DIP MINT IntAct

No. of PPIs in a database 34 177 44 391 4443 58 733 55 182
No. of PPI partners in abstracts 11 182 3410 473 1620 1892

Please note that human curation uses full papers, not just abstracts.
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Table 7. Number of distinct interactions, considering simple co-occurrence
and SVM classification

HPRD BIND DIP MINT IntAct

Co-occur in abstracts 300 300 300 300 300
Co-occur in sentences 247 258 234 266 241
Detected by the classifier 149 158 128 168 126

Number of target abstracts in HPRD, BIND, DIP, MINT, IntAct: 357, 315, 315, 331,
326, respectively.

Target abstracts are found for 32.7% of PPIs in HPRD. About
10% of the interactions in BIND and DIP are found to co-occur
in at least one abstract, and occur at a rate of ∼3% for MINT and
IntAct. Multiple factors may account for this. First, some PPIs are
described only in the full article rather than in the abstract. It has
been noted that only approximately half of the PPIs in HPRD can be
found in PubMed abstracts (Fundel et al., 2007). Second, individual
curator teams use different strategies to extract PPIs, and focus either
on broader PubMed coverage or on topical subset of journals (as
described at http://imex.sourceforge.net). Third, an interaction in a
database is often supported by only one or two abstracts. Fourth,
protein name identification may improve with enhanced synonym
coverage. As discussed in Section 5.1, the dictionary used by our
system comprises synonyms from two major databases of protein
and gene names, UniProtKB and Entrez Gene. As more sources
are incorporated, higher coverage will be achieved. The downside
is that more false positives may be generated, and the searching
time may increase. Fifth, spelling variations in protein synonyms
cannot be solved perfectly using current approaches. Also, while
other databases provide evidence for all PPIs, 2530 interactions in
BIND do not have the supporting abstracts available. As shown in
the table, compared with other databases, more abstracts were found
for PPIs in HPRD, which focuses on human interactions. This may
be due to the synonym dictionary having a better coverage for human
proteins, especially disease-related proteins.

5.2.2 Co-occurrence in sentences For further analysis, we
randomly selected 300 distinct interactions from each database in
Table 6 as examples to demonstrate our three-level system (ensuring
each had at least one target abstract). All corresponding target
abstracts (1634 in total) are presented in Supplementary Table 1.

When two proteins co-occur in a single sentence, they are more
likely to interact. In this step, sentences containing both proteins
of an interaction were retrieved. The number of distinct pairs that
co-occur in at least one sentence is shown Table 7 (2nd row). About
80% of proteins co-occurring in abstracts also co-occur in sentences,
and this number is consistent for all five sources.

5.2.3 Automatically detecting interactions As a final filter, we
applied our classifier, trained on AImed, using the best feature
set [feature set (3) in Table 3] to determine whether two proteins
mentioned in a sentence interact. The last row in Table 7 shows
the number of distinct interactions detected by the classifier. For
each database, evidence was found for ∼60% of interactions where
both proteins appear in at least one sentence. This indicates that
interaction descriptions are consistent despite the great variations in
the content of the five databases.

Table 8. Results of identifying new evidence for 300 pairs in DIP (showing
numbers of distinct pairs)

ABS SEN SVM > 0 SVM > 0.5

SIN MUL SIN MUL

Search provided abstracts 300 234 123 5 84 1
Search an entire PubMed 300 295 26 243 69 128

ABS, co-occur in abstracts; SEN, co-occur in sentences; SIN, PPIs with single abstract
as evidence; MUL, PPIs with multiple abstracts as evidence.

5.2.4 Identifying new evidence It is worth noting that results in
the previous three sections are obtained by searching for only one or
two supporting abstracts for each interaction. We further compared
this with the result of looking for evidence in the entire PubMed
collection (PubMed07). As shown in Table 7, a smaller number of
distinct interactions were found co-occurring in sentences for the 300
interactions from Bind or DIP compared with those from the other
three databases. Since fewest distinct interactions were detected by
the classifier for DIP, we used DIP as an example and searched
PubMed for evidence supporting the 300 randomly selected PPIs.
The results are summarized in Table 8.

At the abstract level, co-occurrence was found for all interactions.
In total, 131 522 abstracts were detected by searching the entire
PubMed. Therefore, on average, each pair has 438 co-occurrence
abstracts. These abstracts include 309 out of the 315 abstracts
provided in DIP. Among the six abstracts that were missing,
only one contained both of the two target proteins. Two hundred
and ninety-five pairs were found co-occurring in at least one
sentence in PubMed. In comparison, only 234 pairs were found in
abstracts provided in DIP. The SVM classifier produces a score for
each protein pair candidate, and this score implies the confidence of
a candidate being an interaction. Applying different threshold to the
scores, we can adjust precision and recall of the classification results.
Using the default threshold, we take all candidates with scores above
zero as positive interactions. In this case, the classifier identified
evidence for 269 interactions. Among them, evidence was found in
multiple abstracts for 243 pairs, as shown in Table 8. For 95 out of the
243 pairs, each was detected in more than 10 abstracts. By searching
abstracts provided in DIP, evidence was found for only 128 pairs.
As mentioned in Section 5.2.2, only one or two manually annotated
abstracts are shown in DIP as an evidence of an interaction. In the
second case, we set the threshold to 0.5, the average score of the
provided evidence (manually curated evidence in DIP). With this
higher threshold (the distribution of the scores of all the positive data
points can be found in Supplementary Figure 1), evidence was found
for 197 pairs, and multiple abstracts were indicated as supporting
evidence for 128 of them (52% is overlapped with the 128 pairs
in Table 7). Compared with manual curation in DIP, the automatic
approach collected much more evidence for these interactions, and
thus provided additional information on the method and system used
for PPI detection.

Our interaction detection system has been used to identify
evidence for human PPIs in I2D (Brown and Jurisica, 2007),
which contains 148 580 distinct pairs of proteins (self-interactions
excluded). By searching PubMed with our system, we found 58 489
pairs with the two interaction partners co-occurring in at least one
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Fig. 3. PPIs with new evidence from automatic text mining. Expanding
the original set of 1433 proteins and 845 interactions by including PPIs
from I2D results in a network with 8250 proteins and 21 652 interactions.
Subgraph from Supplementary Figure 3, showing only the largest connected
component and highlighting new evidence for human-curated PPIs, predicted
PPIs and PPIs from high-throughput experiments. Combined network
comprises 392 interactions on 322 proteins. Node color is according
to Gene Ontology, as shown in the legend. Node size is based on
node degree in the network. For simplicity, only protein names of high
degree nodes are shown. Edge color is according to the PPI source, as
described in the legend. The figure was generated in NAViGaTOR 2.1.12
(http://ophid.utoronto.ca/navigator), (Brown et al., 2009).

abstract. On average, the number of co-occurrence abstracts for one
pair is 78.11. The total number of pairs with SVM score >0.5
is 14 054, and each pair has 1.8 abstracts in average. We have
also explored proteins of degree zero (no PPIs available) in I2D.
The system assessed 23 831 pairs, and identified PubMed evidence
for 184 pairs of them with SVM score >0.5. Highlight of the
network related to this new evidence is presented in Supplementary
Figures 2–3. First, we show 110 PPIs with novel evidence are
identified by the system (Supplementary Fig. 2). Second, we extend
this network to include all related PPIs from I2D (Supplementary
Fig. 3). Third, we focus on a subgraph in this network, and highlight
PPIs with new evidence for human-curated, high-throughput and
predicted PPIs, as well as novel evidence (Fig. 3).

6 CONCLUSION
In this article, we described a system for automatic PPI detection
in the text. Diverse features were studied and their effectiveness,
individually or in combination, were evaluated. We tested system
performance on the AImed and BioCreAtIvE 2 datasets. Compared
with other systems using AImed, our approach achieves the highest
precision at approximately the same recall. On the BioCreAtIvE 2
test set, we get high micro-average precision, although as noted in
Section 4.3, while the system identified 677 positive pairs in 166
articles, the final comparison reported in Table 5 was done only on
the 11 articles. The results in Table 3 show that using sentence-
level interaction information as a feature can improve recall of PPI
detection. Improving the performance of this additional filter may
lead to a more accurate text mining system for PPI detection and

characterization. Analyzing the performance of individual steps is
useful to identify bottlenecks in the pipeline. However, combining
them to achieve the best performance may require additional
analysis, since it is possible that combining the best algorithms for
individual steps in the pipeline for PPI recognition may not result in
the most optimal system (Ponzielli et al., 2008). In the future, we also
plan to integrate the analysis with BioCreative Meta Server (BCMS;
Leitner et al., 2008, http://bcms.bioinfo.cnio.es/), to identify known
PPIs from PubMed.

We applied our system for PPI detection to two tasks: (i) to
find more evidence for PPIs from five human-curated databases,
BIND, DIP, HPRD, IntAct and MINT and (ii) to validate high-
throughput and predicted interactions in I2D database. Although
individual human-curated PPI databases are often used to evaluate
automatic PPI identification systems, to the best of our knowledge,
no comparison study of multiple databases has been reported.

Implementing the IE as a pipeline system enables us to identify
bottlenecks with high precision or recall impact. Since the process
of finding co-occurrence in abstracts incurs the largest loss, it
suggests that the spelling variation of protein names is still a
challenge in automatic PPI detection, although multiple factors
may account for this. Nevertheless, when only a few supporting
abstracts are available, evidence can be found for ∼60% of the
interactions with the two proteins co-occurring in at least one
sentence using our automatic PPI detection approach. Furthermore,
this coverage is fairly consistent across the five databases that
have different distributions of incorporated organisms. The entire
PubMed collection was searched for evidence of 300 interactions in
DIP. With high confidence (SVM scores >0.5), evidence was found
for about 2/3 of them, and new evidence was found for ∼40% of
the pairs. Searching the whole PubMed increases average number
of supporting abstracts from 1.05 to 9.5.
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