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Abstract
Context—β2*-nicotinic acetylcholine receptor (β2*-nAChR) availability is higher in recently
abstinent smokers compared to never smokers. Variations in β2*-nAChR availability over the course
of abstinence may be related to the urge to smoke, the extent of nicotine withdrawal and successful
abstinence.

Objective—To examine changes in β2*-nAChR availability during acute and prolonged abstinence
from tobacco smoking and to determine how changes in β2*-nAChR availability were related to
clinical features of tobacco smoking.

Design—Tobacco smokers participated in up to 4 [123I]5-IA-85380 ([123I]5-IA) single photon
emission computed tomography (SPECT) scans during abstinence: 1 day (n=7), 1 week (n=17), 2
weeks (n=7), 4 weeks (n=11), and 6-12 weeks (n=6). Age-matched nonsmokers participated in 1
[123I]5-IA SPECT scan. All subjects completed 1 magnetic resonance imaging study.

Setting—Academic imaging center.

Participants—Tobacco smokers (n=19) and an age-matched nonsmoker comparison group (n=20).

Main Outcome Measure—[123I]5-IA SPECT images were converted to distribution volume and
were analyzed using regions of interest.

Results—Compared to nonsmokers, β2*-nAChR availability in the striatum, cortex and cerebellum
of smokers was not different at one day of abstinence, significantly higher at 1week of abstinence
and not different at 4 or 6-12 weeks of abstinence. In smokers, at 6-12 weeks of abstinence, β2*-
nAChR availability was significantly lower in the cortex and cerebellum compared to 1 week of
abstinence. Additionally, cerebellar β2*-nAChR availability at 4 weeks of abstinence was positively
correlated with craving on the day of scan.

Conclusions—These data suggest higher β2*-nAChR availability persists up to 1 month of
abstinence, and normalizes to nonsmoker levels by 6-12 weeks of abstinence from tobacco smoking.
These marked and persistent changes in β2*-nAChR availability may contribute to difficulties with
tobacco cessation.
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A wealth of evidence from postmortem1-3 and preclinical4-7 studies demonstrate smoking-
and nicotine-induced elevations in nicotinic acetylcholine receptors (nAChRs) throughout the
brain. Previously, we demonstrated in vivo higher β2-subunit containing nAChR (β2*-nAChR)
availability in recently abstinent tobacco smokers compared to nonsmokers8. Higher β2*-
nAChR availability in smokers may be due to a variety of molecular changes including
increased assembly of α4 and β2 subunits in the endoplasmic reticulum9, increased transport
of receptors to the membrane10, decreased receptor turnover11, and/or the presence of nicotine
promoting intracellular maturation of the α4β2-nAChR to a high-affinity conformation12.
Higher β2*-nAChR availability is thought to functionally reflect higher numbers of
desensitized receptors13, 14. Additionally, smoking one cigarette led to greater than 88%
receptor occupancy13 suggesting that smokers maintain saturation of β2*-nAChRs over the
day. Thus, a chronic tobacco smoker who maintains persistently elevated nicotine levels may
experience repeated cycles of nAChR activation and desensitization over each day14.

Preclinical studies have demonstrated that nAChR levels return to control levels after
termination of nicotine exposure, but with great variability in the time course15-17. A
postmortem human study indicated that individuals who had quit smoking at least 2 months
prior to their death (range 2 months-30 years) had nicotine binding levels similar to control
nonsmokers2. A recent in vivo study in a small number of male smokers demonstrated a trend
for a normalization of the β2-nAChR by 21 days of smoking cessation18. However, these data
need to be confirmed in a larger, more heterogeneous population during prolonged abstinence.

The exact subunit combination of nAChR that upregulate in response to nicotine is emerging.
NAChRs that contain α4 and β2 subunits 19, 20 are the most abundant nAChRs in brain, and
nicotine demonstrates the highest affinity for these receptors [reviewed by 21]. In recent years
evidence has emerged that the β2*-nAChRs are a critical neural substrate mediating the effects
of nicotine in brain. Much of this information has been derived from studies in β2 knockout
mice. These studies have demonstrated that the β2-subunit is critical for self-administration
22, conditioned place preference23, discriminative stimulus and taste aversion24, dopamine
release 22, 25, 26, dopamine-dependent locomotor activation27 and enhancement of incentive
aspects of motivation28 of nicotine. Studies in wild-type animals further confirm the β2-subunit
is critical to the reinforcing properties of nicotine29. The β2-subunit also determines the
sensitivity to nicotine30-32, but does not play a critical role in nicotine withdrawal symptoms
in rodents33. Importantly, nicotine induced increases in nAChR, termed “upregulation”, are
conferred by a specific microdomain that is in the β2-subunit 34 and thus this upregulation is
confined to nAChR that contain the β2-subunit4, 19, 31, 35-38.

β2*-nAChR availability can be measured in vivo with [123I]-5-IA-85380 ([123I]5-IA) and single
photon emission computed tomography (SPECT). [123I]5-IA is a nicotinic agonist that binds
with high affinity to the nicotine binding site on nAChR that contain the β2-subunit39. This
ligand demonstrates low nonspecific binding40 and has acceptable dosimetry in human subjects
with high brain uptake41, 42 and good test-retest reproducibility43. Because [123I]5-IA is
administered at a “trace” dose (<1% occupancy) for SPECT imaging it does not interfere with
receptor and cell function. Imaging with [123I]5-IA SPECT in nonhuman primate and human
subjects results in a binding pattern that is consistent with the established regional distribution
of β2-nAChR and is highest in the thalamus and intermediate throughout the cortex and
cerebellum43, 44.

The primary goal of the present study was to evaluate the time course of change in β2*-nAChR
availability over prolonged abstinence using [123I]5-IA SPECT. A secondary goal was to
explore the relationships between β2*-nAChR availability and behavioral features of tobacco
smoking and withdrawal. We hypothesized that during acute abstinence, at 1 day of withdrawal,
β2*-nAChR availability would be lower compared to 1 week of abstinence due to the presence
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of nicotine in the brain, which would block radiotracer binding. Consistent with our previous
study8, we hypothesized that compared to control nonsmokers, β2*-nAChR availability would
be higher at 1 week of withdrawal, and then would progressively decline over prolonged
abstinence.

Methods
Subjects

Nineteen healthy tobacco smokers (9 men, 10 women; 41.1±9.0 years; 13 Caucasian, 5 African
American, 1 Hispanic) and 20 age-matched healthy controls (9 men, 11 women; 42.4±9.8
years; 10 Caucasian, 7 African American, 2 Hispanic, 1 Asian) participated in this study.
Smokers participated in up to four [123I]5-IA SPECT scans and one magnetic resonance
imaging (MRI) study. Subjects were grouped into the following time points of abstinence: 1
day (1.0±0 days; mean ± SD, n=7), 1 week (7.7±1.4 days, n=17), 2 weeks (17.9±3.0 days,
n=7), 4 weeks (30.5±4.3 days, n=11), and 6-12 weeks (69.0±23.5 days, n=6). Subjects were
grouped as described due to the difficulty in retaining subjects who remained abstinent over
long periods and due to the challenges in having subjects complete time consuming (e.g., >8
h day) scans on multiple days. Subjects were scanned during a range of days at each time point
due to scheduling constraints. Nonsmoker controls (n=20) participated in one [123I]5-IA
SPECT scan and one MRI study.

This study was approved by the Yale University School of Medicine Human Investigation
Committee, the West Haven Veterans Administration Human Subjects Subcommittee, and the
Radiation Safety Committee. The use of the radiotracer, [123I]5-IA, was approved by the Food
and Drug Administration. Subjects were recruited by word of mouth, posters, and newspaper
advertisements from the community. Eligibility was determined as follows. All subjects had
a medical examination by a study physician to exclude any major medical issues or neurological
disorders. This included a physical examination, electrocardiogram, serum chemistries, thyroid
function studies, complete blood count, urinalysis, and urine toxicology screening. Subjects
were given structured interviews using the Structured Clinical Interview for Diagnostic and
Statistical Manual of Mental Disorders (SCID) to rule out any Axis I Disorder except for
Nicotine Dependence. All tobacco smokers had to smoke ≥10 cigarettes per day for at least
one year. Smoking status was confirmed by plasma cotinine levels >150 ng/mL, urine cotinine
levels >100 ng/mL and carbon monoxide levels >11 on the day of intake. Smokers were helped
to quit smoking using Clinical Practice Guidelines and contingency management45-47. Briefly,
contingency management is a behavioral therapy in which reinforcement is provided
contingent upon a successful response. In this study, monetary reinforcement was provided
contingent upon abstinence from smoking measured by urine cotinine and breath carbon
monoxide levels. Breath carbon monoxide and urine cotinine levels were monitored daily for
the first 8 days of smoking cessation and a minimum of twice weekly thereafter. Subjects were
instructed that they could not use any form of nicotine replacement therapy or medication
throughout the study. All control subjects were nonsmokers (defined as <100 cigarettes in
lifetime) and had no history of significant medical illness or major head trauma. Nonsmoking
status, was confirmed by plasma cotinine levels <15 ng/mL, urine cotinine levels <100 ng/mL
and carbon monoxide levels <11 ppm on the day of intake and day of scan. All women were
required to have a negative pregnancy test during the screening process and prior to radiotracer
injection on each study day. Plasma nicotine and cotinine levels were measured as previously
described8. Urine cotinine levels were measured with either Accutest NicoMeter™ cotinine
test strips (Jant Pharmacal, Encino, CA) or NicAlert™ cotinine test strips (Nymox
Pharmaceutical, Hasbrouck Heights, NJ).

The severity of nicotine dependence was assessed at intake with the Fagerström Test for
Nicotine Dependence (FTND)48, and craving and nicotine withdrawal symptoms were
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assessed with the Urge to Smoke Questionnaire (QSU)49 and the Minnesota Nicotine
Withdrawal Scale (MNWS)50, respectively, at baseline, e.g., on the day of their intake prior
to quitting smoking, and on each day of their participation in [123I]5-IA scans. The QSU has
two main factors, the intention/desire to smoke (QSU-Intent) and relief of negative affect and
withdrawal (QSU-Relief).

MR Imaging
MRI studies were obtained on a 1.5 Tesla Siemens camera in a standard orientation (TE=5-7
ms; TR=24ms; a 256×192 matrix; 1 NEX; FOV 30 cm; 124 contiguous slices with 1.2 mm
thickness) and were used for coregistration to the SPECT images to provide an anatomical
guide for placement of regions of interest.

[123I]5-IA SPECT scan
All subjects received a 0.6-g saturated solution of potassium iodide, to protect their thyroid
from possible exposure to radioactive iodide, in the hour prior to radiotracer administration.
[123I]5-IA was synthesized as previously described 51 and administered as a bolus to constant
infusion at a ratio of 7.0 for 8 hours. Subjects were injected with equivalent doses of a bolus
(mean±SD, MBq) and constant infusion (mean±SD, MBq/h) as follows: control nonsmokers
(157.9±14.6 MBq, 22.8±2.1 MBq/h), 1 day abstinent smokers (134.5±24.6 MBq, 20.5±3.8
MBq/h), 1 week abstinent smokers (154.3±15.9 MBq, 22.2±2.6 MBq/h), 2 week abstinent
smokers (159.4±5.6 MBq, 23.3±0 MBq/h), 4 week abstinent smokers (158.9±7.4 MBq, 22.6
±1.7 MBq/h) and 6-12 week abstinent smokers (141.5±30.5 MBq, 21.9±3.5 MBq/h). Three
consecutive 30-min emission scans and one 15-min simultaneous transmission and emission
protocol scan (STEP) were obtained between hours 6 and 8 of the [123I]5-IA infusion on a
Picker PRISM 3000 XP (Cleveland, OH) SPECT camera. The PRISM 3000 XP is a 3-headed
camera equipped with a low energy, ultra-high resolution fanbeam collimator (photopeak
window, 159 keV ± 10%; matrix 128×128) with a uniform sensitivity across the field of view.
A 57Co-distributed source was measured with each experiment to control for day-to-day
variation in camera sensitivity. The axial resolution (full width at half maximum) is 12.2 mm,
measured with a 123I line source in water in a cylindrical phantom. Blood was drawn prior to
injection and at the beginning and end of the emission scans for analysis of plasma total parent
and free fraction of parent tracer in plasma (fP, free fraction). The chemical fate of [123I]5-IA
post injection was assessed in plasma as previously described51. Briefly, plasma total parent
was assessed by acetonitrile protein denaturation, while free fraction was determined by
ultrafiltration using Centrifree units.

Image analysis and outcome measures
Images were reconstructed and analyzed as previously described including a nonuniform
attenuation correction 43 with one exception. Specifically, in subjects who had more than one
SPECT scan, the second and subsequent SPECT scans were coregistered to the same position
as the first scan in order to apply the same region of interest template for that subject. MRIs
were coregistered to the SPECT images to provide an anatomical guide for placement of the
regions of interest using Medx (version 3.4) software (Medical Numerics, Inc., MD). Regions
of interest chosen were those known to contain β2-nAChRs and included frontal, parietal,
anterior cingulate, temporal and occipital cortices, thalamus, striatum (an average of caudate
and putamen) and cerebellum. Regions-of-interest are corrected to account for differences in
size. Two raters conducted the analysis. Variability between raters was <12 % across regions-
of-interest. The mean of the analysis from the two raters is reported.

The outcome measure VT/fP (regional activity divided by free plasma parent between 6 and 8
hours), was used to correct for possible differences in radiotracer metabolism or plasma protein
binding between groups and subjects. Specifically, VT/fP equals [123I]5-IA uptake in a region-
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of-interest (kBq/cc) / free plasma parent (kBq/mL)52. We refer to VT/fP as β2*-nAChR
availability because we are only measuring receptors that are “available” to be bound by
radiotracer. Receptors that are already occupied, e.g., by residual nicotine, a pharmacologically
active metabolite (cotinine or nornicotine) or by endogenous neurotransmitter (acetylcholine)
are not available. VT/fP is proportional to the binding potential (BP, mL/g=Bmax/KD), which
is proportional to the receptor number (Bmax) at equilibrium, given the assumptions that there
is no change in affinity (KD) and that nondisplaceable (nonspecific and free) uptake does not
differ between subjects or comparison groups. As described previously43, there is no
appropriate reference region for this radiotracer, so nondisplaceable [123I]5-IA uptake could
not be measured. The measures of total plasma parent (kBq/mL), fP and free plasma parent
(kBq/mL) which is defined as total parent * fP were compared between groups to determine
differences in radiotracer metabolism or protein binding.

Statistical Analyses
Data were analyzed using SAS version 9.1 (SAS Institute Inc, Cary, NC). Differences in blood
measures (total and free parent, and fP) and regional β2*-nAChR availability, VT/fP, between
subjects in the nonsmoker control group and each of the 1 day, 1 week, 2 week, 4 week, and
6-12 week abstinent smoker groups were assessed using two-sample t-tests. Differences in
regional brain VT/fP and behavioral measures of tobacco smoking and withdrawal between
subjects in the abstinent smoker groups were assessed using repeated measures, mixed-effects
regression models with group as a fixed effect and compound symmetry covariance structure
across repeated measurements. These between group differences were evaluated using repeated
measures, mixed-effects models in order to account for the observations between abstinent
smoker groups that were not entirely independent, given that some abstinent smokers
contribute observations to more than one group. For models examining between-group
differences for which there was a significant effect of group, four planned post hoc between-
group comparisons were conducted, i.e., between 1 week abstinent smokers and 1 day, 2 week,
4 week, and 6-12 week abstinent smokers. For these post hoc tests, p-values were Bonferroni
corrected for multiple comparisons, and statistical significance was considered at p≤0.00625.
Correlational analyses for the associations between receptor availability and smoking
assessments were conducted using SPSS version 16.0 (SPSS Inc. Headquarters, Chicago, IL).
Correlations between β2*-nAChR availability, VT/fP, at each time point and clinical variables
(smoking, craving, withdrawal) were assessed with Spearman's rho correlation coefficients.
Different slopes for each abstinence time point were estimated to illustrate the relationship
between significant clinical variables and β2*-nAChR availability. Due to multiple
comparisons, statistical significance was considered at p≤0.01.

Results
Clinical population

Nineteen tobacco smokers and 20 age-matched nonsmokers were included in the study.
Smokers who participated in scans at different times since the last cigarette were equivalent in
age, level of nicotine dependence (as assessed by the FTND at intake), cigarettes smoked per
day, and years of smoking (Table 1). Plasma cotinine and nicotine levels and carbon monoxide
measurements were negligible in nonsmokers and in smokers were highest at 1 day of
abstinence and decreased over time, confirming abstinence from smoking (Table 1).

β2*-nAChR availability during acute and prolonged abstinence
There were no differences between groups in injected dose, bolus to infusion ratio, or time of
scan (data not shown). Concentrations of [123I]5-IA activity in the blood (kBq/mL) were
measured in order to correct for potential differences between groups in radiotracer metabolism
or protein binding. There were significant differences in total parent (kBq/mL) between
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nonsmokers and 1 day abstinent smokers and in fP between nonsmokers and 2 week abstinent
smokers (Table 2). There were no differences in total parent (kBq/mL) or fP between groups
at other time points, or between groups at any time point in free parent (kBq/mL). There was
also variability between smokers who participated in multiple scans in changes in β2*-nAChR
availability over time with some abstinent smokers showing dramatic changes in β2*-nAChR
availability (up to 48% change in the cortex) and others showing barely any difference, e.g.,
less than 5%, over time (individual data not shown).

Regional β2*-nAChR availability, reflected by VT/fP, was compared between nonsmokers and
each of the abstinent smoker groups and between the abstinent smoker groups (Table 3 and
Figures 1 and 2). In 1 day abstinent smokers as compared to nonsmokers, VT/fP was
significantly reduced in the thalamus. In 1 week abstinent smokers as compared to nonsmokers,
VT/fP was significantly higher in the striatum, cerebellum and throughout the cortex. In 4 week
abstinent smokers as compared to nonsmokers, VT/fP was significantly higher in the occipital
cortex (Table 3 and Figures 1 and 2).

Among the abstinent smoker groups, there were significant between group differences in VT/
fP in the thalamus (F[4,25]=4.12, p=0.011), parietal cortex (F[4,25]=2.95, p=0.040), frontal
cortex (F[4,25]=2.88, p=0.043), anterior cingulate (F[4,25]=3.75, p=0.016), occipital cortex
(F[4,25]=3.42, p=0.023), and cerebellum (F[[4,25]=4.00, p=0.012). Compared to 1 week
abstinent smokers, 1 day abstinent smokers had significantly lower VT/fP in the thalamus (t
[25]=-3.51, corrected p=0.007) and cerebellum (t[25]=-3.02, corrected p=0.023). Compared
to 1 week abstinent smokers, 6-12 week abstinent smokers had significantly lower VT/fP in
the parietal cortex (t[25]=-2.87, corrected p=0.033), frontal cortex (t[25]=-2.80, corrected
p=0.039), anterior cingulate (t[25]=-3.21, corrected p=0.014), occipital cortex (t[25]=-3.10,
corrected p=0.019) and cerebellum (t[25]=-3.17, corrected p=0.016). There were no significant
differences in VT/fP between 1 week abstinent smokers compared to smokers at 2 or 4 weeks
of abstinence (Table 3 and Figures 1 and 2).

Relationship between β2*-nAChR availability and clinical features
There were significant differences in QSU-Intent (F[4,25]=7.41, p<0.015) and QSU Relief (F
[4,25]=5.63, p=0.002), but not in MNWS scores (F[4,25]=0.33, p=0.857), between groups of
abstinent smokers (Table 4). Specifically, overall group differences in QSU-Intent and QSU-
Relief were attributable to significantly higher levels of each of these measures on the day of
the scan in the 1 day abstinent smoker group as compared to smokers at other time points.

There were significant correlations between regional β2*-nAChR availability and clinical
features and assessment scores at baseline, e.g., at intake prior to quitting smoking (Table 5).
Specifically, baseline QSU-Intent scores correlated negatively with β2*-nAChR availability at
1 day of abstinence in the thalamus (rho=-0.90, p=0.006) and parietal cortex (rho=-0.88,
p=0.008). There were also significant correlations between regional β2*-nAChR availability
and assessment scores taken at each abstinent time point (Table 6). Specifically, a positive
correlation was observed between cerebellar β2*-nAChR availability and craving on both the
QSU-Intent (rho=0.74, p=0.01) and QSU-Relief (rho=0.74, p=0.01) at 4 weeks of abstinence.
There were no significant correlations between baseline smoking variables, e.g., FTND,
number of years smoked, or number of cigarettes smoked per day with β2*-nAChR availability
at any time point (data not shown).

Comment
The present study examined the time course of changes in β2*-nAChR availability during acute
and prolonged abstinence in tobacco smokers compared to nonsmokers using [123I]5-IA
SPECT. The present findings demonstrate higher β2*-nAChR availability in the striatum,
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cerebellum and cerebral cortex in tobacco smokers at 1 week of abstinence compared to
nonsmokers, but similar or lower β2*-nAChR availability to nonsmokers smokers at 1 day and
6-12 weeks of abstinence. While there is not a significant difference between β2*-nAChR
availability in smokers at 2 and 4 weeks of abstinence compared to nonsmokers, there remains
a robust difference, e.g., higher β2*-nAChR availability in smokers at 2 weeks (16-23%) and
4 weeks (14-18%) of abstinence in the striatum, cerebellum and cortex compared to
nonsmokers, that does not return to nonsmoker levels until 6-12 weeks of abstinence (-4-5%
difference). There are two primary implications to these results. First, at 1 day of abstinence
there is still residual nicotine, or a pharmacologically active metabolite of nicotine, such as
cotinine or nornicotine present in the brain that interferes with radiotracer binding, thus leading
to the appearance of lower β2*-nAChR availability. Second, the normalization of the β2*-
nAChR is prolonged, requiring up to 6-12 weeks of abstinence to fully return to nonsmoker
levels.

Interestingly, in the smokers at 1 day of abstinence, the levels of total parent of the radiotracer
were significantly lower, but normalized quickly, by 1 week of abstinence. This highlights the
impact of nicotine or another chemical in tobacco smoke on metabolism, e.g., because nicotine
was still present, it may have changed the metabolism of the radiotracer, resulting in lower
total parent at 1 day of abstinence. Cytochrome P450 (CYP 2A6) is primarily responsible for
the metabolism of nicotine to its main metabolite cotinine53. There is evidence that nicotine is
metabolized faster in smokers than in nonsmokers and there are genetically-mediated
differences in the metabolism of nicotine in smokers54. Additionally, nicotine can interfere
with metabolism of other drugs55. Consistently, we expect that [123I]5-IA is metabolized in
the liver by enzymes in the cytochrome P450 family, such as CYP2A6, which acts on nicotine,
and CYP2B6 and CYP2D6, which catalyze the dealkylation of aromatic ethers56, 57. In
radiotracer imaging studies it is imperative that brain uptake is corrected for radiotracer
metabolism, since differences in metabolism of the radiotracer determine how much radiotracer
is available to the brain, e.g., fast metabolizers will have less radiotracer available to brain,
while slow metabolizers will have more radiotracer available to brain for a given dose. By
using the outcome measure VT/fP, we correct for individual differences in radiotracer
metabolism and protein binding.

In the present study we report a negative correlation between baseline craving scores, e.g.,
prior to quitting smoking, and β2*-nAChR availability at 1 day of abstinence in the thalamus
and parietal cortices. Because receptor availability is defined as receptors that are available to
be bound by the radiotracer, at 1 day of abstinence subjects with lower receptor availability
have more nicotine present in the brain occupying receptors and blocking the radiotracer from
binding to the receptor. Thus, we believe that subjects who reported high baseline craving,
likely smoked more cigarettes immediately prior to their quit day and had lower receptor
availability at 1 day of abstinence. However, the experience of craving in the presence of
nicotine occupancy of the β2*-nAChR is not unusual. Smokers experience craving within 2 h
of their last cigarette despite continued occupancy of the receptor by nicotine13. Dopamine
release has been associated with the feeling of craving58, and both nicotine59 and cotinine60

have been shown to facilitate dopamine release, thus the prolonged partial occupancy of the
receptor by nicotine or cotinine, may contribute to the feelings of craving that are reported 2
h after the last cigarette and throughout the first week of abstinence.

We also report a positive correlation between craving on the day of scan at 4 weeks of
abstinence and cerebellar β2*-nAChR availability at 4 weeks of abstinence. Thus, those
individuals with higher cerebellar β2*-nAChR availability at 4 weeks of abstinence report a
greater urge to smoke on that day. Associations between nicotine and craving have previously
been identified in the thalamus61, 62 and generally in areas associated with emotion and reward,
and those with high densities of nAChRs (see63 for review). Interestingly, a previous study
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found associations between craving and regions subserving motor functions including the
primary motor cortex, premotor cortex and supplementary motor area64 which require input
from the cerebellum. Additionally, when smokers are told to actively resist craving during
cigarette cue exposure, the motor cortex is deactivated65. Our finding of a link between the
cerebellum and craving further suggests that craving has a motor component, so that craving
for cigarettes may elicit preparation for action or voluntary movement, goal directed actions
(e.g., lighting a cigarette, bringing a cigarette up to the mouth) and/or motor imagery which
are linked to the motor system66, 67. It can be estimated that over the course of 20 years, a one
pack per day smoker (assuming 11 puffs on average per cigarette68) may perform the action
of bringing a lit cigarette to the mouth over 1.5 million times. Thus, the physical action of
smoking a cigarette is likely to be critically tied to craving during abstinence.

In addition to the role of the cerebellum in motor functions, there is increasing interest in the
involvement of the cerebellum in cognition. Specifically, activation of the cerebellum has been
associated with tasks requiring explicit, episodic memory, e.g., recall of autobiographical
events69, 70. With regard to drug abuse, imaging studies have determined that the cerebellum
is activated in response to smoking-related cues71, and is associated with cue-induced craving
in cocaine abusers72, 73 and recently abstinent alcoholics74. Activity in the cerebellum has also
been linked to executive dysfunction in cocaine users75. Taken together, these studies and the
present findings highlight the cerebellum as a brain region that is critically linked to craving
by both motor and cognitive functions.

We report no significant correlations between nicotine withdrawal and β2*-nAChR
availability. This is consistent with the preclinical literature suggesting that the β2*-subtype
does not play a critical role in the physical symptoms of nicotine withdrawal33, 76. In this study,
subjects reported a mild-moderate level of nicotine withdrawal symptoms at baseline and over
the course of the study, thus these results require replication in a larger sample with a greater
range of nicotine withdrawal symptoms. Additionally, we did not obtain significant
correlations between β2*-nAChR availability at 1 week of abstinence and clinical features. We
previously found a negative correlation between the urge to smoke to relieve withdrawal
symptoms and β2*-nAChR availability in the sensorimotor cortex at approximately 1 week of
abstinence8. This discrepancy may be due to differences in correlational analysis methods, e.g.,
voxel-based analyses in the previous study versus spearman's rho correlations with regions-
of-interest in the current study. Voxel-based analyses may be more sensitive to detecting
significance in smaller brain regions, but that was beyond the scope of the current study. The
lack of additional correlations at 1 week of abstinence was previously discussed8.

Consistent with our previous study8 we report significantly higher β2*-nAChR availability in
smokers at one week of abstinence in the cortex, striatum and cerebellum, but not thalamus
compared to nonsmokers. The difference between recently abstinent smokers and never
smokers in the previous study8 was of a greater magnitude, e.g., 26-36% in the cerebral cortex
and 27% in the striatum, than in the current study, e.g., 21-29% in the cerebral cortex and 22%
in the striatum. This may be due to the older average age (approximately 5 years) of subjects
in the current study, since β2*-nAChR availability has been shown to decrease with age in
nonsmokers77. This study and previous in vivo PET78 and SPECT8, 18 studies report no
upregulation of thalamic β2*-nAChR availability during acute abstinence, which conflicts with
postmortem2 and animal8, 79 studies. In general, this may be due to differences in methodology
or the higher relative dose of nicotine in the postmortem and animal studies. However, two
smokers in the current study exhibited increased β2*-nAChR availability in the thalamus
compared to nonsmokers, highlighting the role of individual differences in receptor regulation.

This study is also consistent with a previous study18 demonstrating that higher β2*-nAChR
availability in recently abstinent tobacco smokers compared to nonsmokers is temporary. In
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the previous study in men, β2*-nAChR availability decreased to nonsmoker levels in some
subjects by 21 days of abstinence. Specifically, compared to nonsmokers, smokers had
significantly lower β2*-nAChR availability at 4 hr of abstinence, significantly higher β2*-
nAChR availability at 10 days of abstinence, and similar β2*-nAChR availability at 21 days
of abstinence. Additionally, they reported significantly lower β2*-nAChR availability at 21
days of abstinence compared to 10 days of abstinence. One difference is that the previous
study18 had significantly lower β2*-nAChR availability in all regions at 4 hr of abstinence
compared to the nonsmokers, while the current study reports lower thalamic but similar β2*-
nAChR availability in the striatum, cerebellum and throughout the cortex compared to the
nonsmoker group at 1 day of abstinence. This is interesting and likely due to high levels of
residual nicotine or metabolites present in the brain at 4 hr of abstinence (versus ∼24 hours in
the current study) resulting in lower β2*-nAChR availability. Also, while the current study did
not find a significant decrease, on average, in β2*-nAChR availability by 4 weeks of abstinence
compared to 1 week of abstinence, in some subjects normalization did occur by this point. The
high heterogeneity of the subject population in the current study compared to the previous
study in men only18 likely accounts for the high individual variability with regard to receptor
changes during prolonged abstinence. Thus, the present study contributes to the literature with
a larger, more heterogeneous subject group, a more prolonged period of abstinence, and
additional assessments of behavioral features of tobacco smoking.

Previous preclinical studies demonstrated that in chronically nicotine treated animals, nAChR
levels returned to levels observed in control animals after termination of nicotine, but with
variable timing ranging between 1 and 3 weeks15, 80, 81. The previous human study18 indicated
a return to control levels within 21 days of abstinence; and, the current study indicates that on
average, β2*-nAChR availability in recently abstinent tobacco smokers does not normalize
until between 4-12 weeks, although, this is highly variable between individuals. The
differences in the time course changes may be due to differences in dosing regimen, chronicity
of nicotine, route of administration, metabolism between species, specificity of the radioligand,
or sex and/or genetic differences in nAChR subunit expression and composition of nicotinic
agonist binding sites, but taken together the results consistently highlight a return to control
levels or “normalization” of the β2*-nAChR after termination of chronic nicotine. The
preclinical studies support a process of prolonged normalization when we consider that 1-3
weeks is substantial in the life span of a rodent. Additionally, this prolonged normalization of
the receptor is in line with the protracted withdrawal symptoms reported by tobacco smokers.
For example, while withdrawal symptoms such as anger, anxiety, depression and difficulty
concentrating tend to peak within the first week of quitting smoking they continue up to 4
weeks after the quit attempt82. We are currently examining variables that may be associated
with the rate of normalization.

One limitation of this study is that [123I]5-IA measures the availability of the β2-subunit of the
nAChR, primarily the α4β2-subunit, but other subunits also contribute to the regulation of the
nAChR by tobacco smoking. Notably, the β2-subunit has been linked primarily to the
reinforcing effects of nicotine22, 83, 84 and combines with the α3-6 subunits. Importantly,
different β2*-subunit combinations appear to be differentially regulated by nicotine, with α3/
α6 and α6α4β2* and α5α4β2* not upregulating or decreasing in response to nicotine38, 85-88

while α6β2 (nonα4) nAChR increase in response to nicotine88. Notably, nAChR subunit
expression varies regionally, and differential regulation of these distinct subunit combinations
that are measured by a single nicotinic agonist ligand such as [123I]5-IA will result in regional
differences in the degree of upregulation in smokers and the degree of receptor normalization
during abstinence. Thus, we are likely measuring the β2-subunit in combination with α3-6
subunits leaving the in vivo measurement of the β3-subunit and α7-subunit for the future, with
further radiotracer development. Both the α7- and β3-subunit have been implicated in
modulating dopamine release14, 89 and thus, may also play a role in the rewarding properties
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of tobacco smoke. While the α7-subunit does not upregulate in response to chronic
nicotine31, it is critically involved along with the β2-subunit in mediating desensitization/
inactivation of the neuronal nAChRs in response to chronic nicotine90.

In summary, our data extend the findings of previous studies8, 18 which showed that the
upregulation of the β2*-nAChR in recently abstinent tobacco smokers was temporary and could
be measured with [123I]5-IA SPECT imaging. Specifically, we demonstrate that the
normalization of upregulated β2*-nAChRs in tobacco smokers during smoking cessation is
prolonged. This is consistent with the clinical course of tobacco smoking in which craving,
withdrawal symptoms, and risk for relapse are prolonged. The variation between individuals
in the magnitude of upregulation and rates of normalization may ultimately be used to delineate
subgroups based on genetics, sex, and comorbid mental illness and thus to target treatment
medications.
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Figure 1.
β2*-nAChR availability (VT/fP) is shown in individual nonsmokers (open diamonds) and
tobacco smokers (filled circles) at 1 day, 1 week, 2 weeks, 4 weeks, and 6-12 weeks of
abstinence in the thalamus, striatum (average of caudate and putamen), cortex (average of
cortical regions including parietal, frontal, anterior cingulate, temporoinsular, and occipital
cortex), and cerebellum. The line in each scatter plot represents the mean value of those
subjects. * indicates significant difference from control nonsmokers after Bonferroni's
correction using two-sample t-tests. † indicates significant difference from 1 week abstinent
smokers after Bonferroni's correction using planned post-hoc between-group comparisons
subsequent to the analysis of repeated measures mixed-effects regression models including the
overall effect of abstinent smoker group.
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Figure 2.
Mean parametric images illustrating β2*-nAChR availability in nonsmokers and tobacco
smokers at 1 day, 1 week, 2 weeks, 4 weeks, and 6-12 weeks of abstinence at similar transaxial
levels of brain. The color scale is shown with red, yellow, green and blue corresponding to
VT/fP values.
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