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Abstract
Adult rats and mice born to dams exposed to alcohol (FAE) exhibit enhanced activity of their
hypothalamic-pituitary-adrenal (HPA) axis when exposed to stressors. However, the mechanisms
responsible for this phenomenon remain uncompletely understood. Here we review two possibilities:
one that pertains to nitric oxide (NO), an unstable gas that stimulates the HPA axis; and one that
focuses on catecholamines, which also stimulate this axis. We did not observe significant alterations
in levels of NO synthase, the enzyme responsible for NO formation, in the PVN of FAE rats.
However, the stimulatory influence of this gas on the HPA axis was enhanced in these animals,
thereby providing a mechanism likely to participate in the neuroendocrine hyperactivity that is the
hallmark of this model. We also recently showed that while the ability of catecholamines to release
ACTH was comparable in control rats and rats exposed to alcohol during embryonic development,
there was a significant upregulation of the C1 brain stem region when these latter animals were
exposed to mild footshocks. As this region sends prominent projections to the PVN, its increased
activity may participate in the HPA axis hyperactivity observed in FAE offspring. Finally, we used
microarray technology to search for potential differences in genes present in the brains of control
and FAE mice. When these brains were collected on day 17.5 of embryonic development, several
genes were upregulated while others were downregulated, which may provide potential new
candidates that mediate the influence of prenatal alcohol on the HPA axis of adult offspring.
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The ability of homeostatic challenges present during embryonic development to cause long-
term changes in adult offspring is now well recognized. For example, reprogramming of
behavioral, metabolic and endocrine functions has been described in rodents born to dams
exposed to various stressors, drugs, immune stimuli or food restriction. As elegantly discussed
by Simerly,1 “the brain retains the effect of early experience well into adulthood through
permanently altered wiring”. This article will address some of the findings obtained in our
laboratory in rodents exposed to alcohol during embryonic development, focusing specifically
on the ability of this drug to induce a permanent hyperactivity of the hypothalamic-pituitary-
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adrenal (HPA) axis. (Please note that the quoted literature is only meant as illustrative, and not
as fully representative of the topics discussed.)

The HPA axis, sometimes called “stress axis”, consists of neurons present in the paraventricular
nucleus (PVN) of the hypothalamus, the anterior pituitary and the adrenal glands. As
abundantly described elsewhere,2–7 the PVN harbors cell bodies that synthesize the peptides
corticotropin-releasing factor (CRF) and vasopressin (VP) that, upon release from terminals
in the median eminence, act on cells in the pituitary corticotrophs that release ACTH (Fig. 1).
This is followed by secretion of glucocorticosteroids (GC; corticosterone in rats and mice)
from the adrenal cortex. Many stimuli, whether they are consciously aversive or represent
internal homeostatic threats, activate the HPA axis and if this response is sustained, upregulate
the synthesis of CRF and/or VP. The magnitude and duration of HPA axis activation is very
tightly controlled by a series of feedback and feedforward mechanisms, and any prolonged
dysregulation of these mechanisms results in pathologies.8–10 In the case of CRF, the
importance of this peptide in appropriate behavioral responses to stressors,11 in the regulation
of sympathetic activity,12, 13 reproductive functions14, 15 and gastrointestinal (GI) functions,
16, 17 among others, means that its persistent elevations can lead to mood disorders,
disturbances of sympathetic activity, disrupted fertility and diseases of the GI tract. In addition
to the consequences of elevated hypothalamic CRF levels, abnormal ACTH/GC secretion due
to increased CRF production18 can in themselves disrupt immune cells activity, metabolism,
protein synthesis and reproductive functions.

Work carried out in a number of laboratories, including ours, has shown that rats19–24 or
mice25 born to dams exposed to alcohol during gestation exhibit abnormally elevated ACTH
and corticosterone responses to various stimuli while displaying no or little changes under basal
conditions. In the rat, we reported that the drug was most effective when delivered during the
second week of embryonic development,26 which corresponds to peak neurogenesis of
hypothalamic CRF neurons,27, 28 and that this treatment resulted in increased ACTH release
when the adult male or female offspring was exposed to mild footshocks, a pro-inflammatory
cytokine or an endotoxin challenge (Fig. 2). This phenomenon is not restricted to offspring
born to dams exposed to alcohol vapors, but is also found when the dams were fed alcohol29

(Fig. 3). Finally, in order to show that the ability of prenatal alcohol to alter the offspring’ HPA
axis activity was a general phenomenon, i.e., not one restricted to a particular experimental
model, we demonstrated that it was also found in mice25 (Fig. 4).

What are the mechanisms that mediate the influence of this drug? Alcohol is a unique drug
because it appears to have multiple primary targets that include ligand-gated ion channels such
as those associated with GABA, NMDA and serotonin, transporters, neurotransmitters,
peptides and steroids. As alcohol readily crosses the placenta, a better understanding of how
it activates the HPA axis in naïve animals (i.e., not exposed to the drug during fetal
development) may be useful because it may provide a basis for understanding how the drug
modifies the HPA axis of the developing fetuses. We have found that acute injection of alcohol
elevated plasma ACTH levels and upregulated PVN CRF and VP heteronuclear (hn) RNA
gene expression30, 31 (Fig. 5). As removal of endogenous CRF or blockade of its receptors
virtually abrogated alcohol-induced ACTH release32 (Fig. 6) as well as alcohol-induced POMC
synthesis,33 we concluded that this peptide was required for these responses. While several
neurotransmitters likely mediate the sitmulatory influence of alcohol on the HPA axis {see for
example 34}, it is also possible that the drug acts directly on the CRF gene. Indeed, we recently
reported that a moderate dose of alcohol increased CRF release by cultured hypothalamic cells
(Fig. 7A) as well as CRF mRNA levels in these cells, as demonstrated by RT-PCR35 (Fig. 7B).

At present, we do not know whether alcohol induces permanent changes in the fetuses’ HPA
axis through a direct or indirect effect on PVN CRF, and our studies have therefore focused
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on the mechanisms through which the adult offspring’ HPA axis was activated. We had found
that in adrenal-intact fetal alcohol exposed (FAE) adult offspring, pituitary responsiveness to
CRF or VP was unaltered.36 On the other hand, PVN CRF hnRNA gene expression was
significantly increased in response to stressors, compared to controls (Fig. 8). Studies of the
influence of maternal alcohol on the rat fetus’s developping brain have uncovered a vast array
of possible mechanisms, including changes in overall CNS development,37, 38 cell
proliferation39, 40 or survival,41 synaptic plasticity,42 levels of retinoids43, 44 and
neurotransmitters,45–49 electrophysiological,50 behavioral51 or memory-linked events,52 and
poor nutrition,53, 54 to quote only a few. We based our own studies on what we knew about
some of the critical signals that influence PVN CRF neuronal activity, and will illustrate two
such mechanisms here. The first pertains to nitric oxide (NO), an unstable gas that acts as a
transmitter in many parts of the brain, including the hypothalamus.55, 56 We had shown that
the injection of NO donors into the brain lateral ventricles rapidly increased plasma ACTH
levels, and that this response depended on endogenous CRF.57–59 As there was some evidence
that prenatal alcohol might alter brain NO levels in the offspring,46, 60–62 we tested the
hypothesis that our FAE model was accompanied by upregulated hypothalamic levels of this
gas or by an altered the HPA axis response to NO. We did not measure significant changes in
gene expression levels of NO synthase, the enzyme responsible for NO formation, in the PVN
of FAE rats.63 On the other hand, we observed that these animals displayed an altered HPA
axis response to NO.63 Indeed, as illustrated in Fig. 9, not only did the NO donor SIN-1 cause
larger increases in plasma ACTH levels in FAE rats, compared to controls, it also caused a
more robust PVN response in terms of CRF neurons.

The second hypothesis we tested was that the HPA axis of FAE rats might be more responsive
to catecholamines, and/or that adrenergic inputs to the PVN might be upregulated. In agreement
with other investigators, we had previously shown that both alpha and beta-adrenergic agonists
stimulated the HPA axis in naïve rats {for ref. see 64}. However, when we investigated the
potential role of these amines in our prenatal alcohol model, we found that the ACTH response
of FAE rats to phenylephrine or propranolol was comparable to that of controls.65 Similarly,
the ability of footshocks to stimulate adrenergic neurons in the locus coeruleus, a region with
critical adrenergic innervation of the PVN,66 or to elevate the number of PVN cells positive
for tyroxine-hydroxylase (TH), a rate-limiting enzyme in catecholamine synthesis, was also
comparable in FAE and control rats. In contrast, we made the unexpected observation that the
C1 adrenergic region of the brain stem was significantly more activated by shocks in rats
exposed to alcohol during embryonic development.65 The C1 brain stem region, which is
illustrated in Fig. 10, contributes to the adrenergic innervation of the PVN, in particular those
of CRF cells.67 Its influence on PVN neuronal activity is further supported by the fact that
lesions transecting the adrenergic projections between the brain stem medulla oblongata and
the hypothalamus prevent increased catecholaminergic activity in the brain stem.68 These
observations suggest a functional role of C1 neurons on the areas of the PVN that drive the
HPA axis. Thus while at present the precise mechanisms through which increased activity of
the C1 region participates in the HPA axis hyperactivity observed in our prenatal alcohol model,
it is possible that it augments adrenaline release onto CRF-expressing neurons in the
parvocellular region of the PVN, thus potentiating footshock-induced increases in the ACTH
response observed in FAE rats. This being said, it should be noted that C1 adrenergic neurons
have also been shown to influence ACTH via changes in arterial pressure.69, 70 Therefore,
increased activity of these neurons could potentially contribute to the enhanced ACTH response
to footshocks via changes in afferents to the PVN as well as via altered cardiovascular activity.
Regardless of the mechanisms that will be shown important in the FAE model, our results
indicate that brainstem adrenergic neurons may exert more influence on the HPA axis than
previously understood.
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As it is likely that prenatal alcohol exposure alters many neurotransmitter systems (see above),
we recently decided to use microarray analysis to search for candidate genes that might provide
us with new hypotheses. A previous study conducted in mice had identified 75 genes that were
down-regulated by exposure to alcohol on days 7 and 9 of fetal development, but none that
were up-regulated.71 The genes whose levels were altered are linked to cell proliferation,
differentiation and apoptosis, and are in general considered to contribute to tissue growth and
survival. In our own studies, we used the brain area containing the hypothalamus and the
thalamus of 17.5 day-old mice embryos, and compared tissues obtained from controls as well
as from animals exposed to alcohol vapors from day 8 of gestation25 (Table 1). Possibly
relevant for our model was the finding of slightly upregulated POMC gene expression, which
may be linked to stimulation of the fetal HPA axis. Messenger RNA levels for the CRF-related
peptide Urocortin 2 (Ucn 2) were significantly decreased by prenatal alcohol while those for
the corresponding receptor, CRFR2, were upregulated. However, these results are difficult to
interpret because our preliminary findings do not support a role for these receptors in our
prenatal alcohol model (S. Lee and C. Rivier, in preparation). Prenatal alcohol also altered
levels of the three known vasopressin receptors.72 Among these receptors, the R1b type73 is
most relevant for ACTH because it mediates the pituitary effect of its cognate peptide.74 On
the other hand, in the periphery, VPR1a75 mediates the vascular influence of vasopressin76

while VPR277 mediates its antidiuretic effects in the kidney.77 While all three receptors have
been found in the rat brain, including the hypothalamus,78–86 their role in the central nervous
system remains ill defined. Thus, the significance of prenatal alcohol-induced changes in gene
expression of these receptors will need to be investigated, and may well extend beyond their
possible involvement within the HPA axis. Finally, it was of interest to note that mRNA levels
for phenylethanolamine N-methyltransferase (PNMT), an enzyme that converts
norepinephrine to epinephrine,67 and mRNA levels for dopamine-β-hydroxylase (DBH),
which is required for norepinephrine formation after dopamine side chain hydroxylation and
is a marker of epinephrine/norepinephrine neurons, were significantly lowered in the brain of
mouse embryos exposed to alcohol. Whether this phenomenon is linked to altered adrenergic
influence on the HPA axis, is presently unknown.

In conclusion, we have uncovered two possible mechanisms that may mediate the hyperactivity
of the HPA axis of adult FAE rats. The first one pertains to the NO system, a gas whose
stimulatory influence is stronger on the HPA axis of FAE, compared to control rats. The second
mechanism is represented by a more robust C1 neuronal response to stressors, which may, in
turn, induce a stronger activation of PVN cell bodies. As briefly described in the Introduction,
brain CRF on one hand, and circulating GC on the other, exert important influences on key
responses of the body to homeostatic challenges. Consequently, deregulation of their release
is likely to induce significant pathogeneses. Children born to mothers who abused alcohol
during pregnancy can display, for example, increased occurrence of infections, disorders in
which abnormally elevated GC levels often play a role. These children also often show
increased activity levels, attention deficits, higher incidence of drug abuse and/or depression.
51, 87 While none of these disorders have been unambiguously demonstrated to result from
elevated CRF levels in humans, the influence of this peptide on behavior, drug consumption
and mood disorders is well documented in pre-clinical studies (see above). In view of the effects
of GC on the mobilization of sugars and fat reserves, as well as the peptides that regulate food
intake,8, 88 it is also likely that individuals who consistently release too much cortisol in
response to various stimuli may develop metabolic disorders. Experiments carried out in mice
lacking CRF or its receptors, or the use of CRF antagonists in human medicine, may allow us
to determine the role played by CRF in disorders caused by prenatal alcohol exposure, and to
develop therapies that are palliative or restorative.
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Figure 1.
Cartoon illustrating the HPA axis.
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Figure 2.
Upregulated ACTH release in adult male FAE rats exposed to (A) shocks or (B) endotoxin
(LPS). In these experiments, the dams were exposed to alcohol vapors during the second week
of gestation. A. Effect of the exposure to a 60-min session of mild electrofootshocks (0.5 mA,
1-s duration, 2 shocks/min) on plasma ACTH levels in control (C) and alcohol (E) male or
female rats. B. Effect of the iv injection of the vehicle or LPS (0.4 μg/kg) on plasma ACTH
levels in C and E male or female rats. Each point represents mean ± SEM of 5–7 animals. *,
P<0.05; **, P<0.01 vs C/shocks or C/LPS rats. {Modified by permission from Lee et al.36}
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Figure 3.
Upregulated ACTH response to immune stimuli in adult FAE male rats. In these experiments,
the dams were fed a liquid alcohol diet during gestation. ACTH released by IL-1β, LPS or
turpentine in intact control, pair-fed and alcohol male (A) and female (B) rats tested at 9 weeks
of age. Each bar represents the mean ± SEM of 6 animals. Blood samples were obtained 30
min after IL-1β administration, 60 min after LPS injection and 8 h after induction of tissue
damage by turpentine. *, P<0.05; **, P<0.01 vs corresponding controls. {Modified by
permission from Lee et al.22}
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Figure 4.
Upregulated ACTH response to footshocks in adult male mice born to dams exposed to alcohol
vapors during the second week of gestation. Male and female mice (8–9 week old) of the BALB/
c strain that were born to control dams or dams that were exposed to alcohol during gestation
were exposed to a 20 min session of footshocks (0.3 mA, 1-sec duration, 2 shocks/min). The
mice were decapitated at the end of the shock session. Each bar represents the mean ± SEM
of six (controls) or eight (shocked) animals. *, P<0.05 vs corresponding controls. {Adapted
by permission from Kang et al.25}
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Figure 5.
Acute alcohol releases ACTH (A) and upregulates PVN CRF and VP hnRNA gene expression
(B). Results were obtained in adult male rats as the results of their first exposure to the drug.
A. The vehicle or alcohol was injected ip and blood samples were removed serially for ACTH
measurement. Each point represents the mean ± SEM of 5 rats. **, P<0.01. B. Effect of alcohol
on PVN CRF and VP heteronuclear transcript (hnRNA). Left panel: rostrocaudal coronal
sections of the PVN of rats injected with the vehicle or alcohol (3 g/kg) that display signals on
X-ray film for CRF hnRNA measured 20 min post-injection. Right panel: rostrocaudal sections
showing VP hnRNA measured in the PVN 5 min after vehicle or alcohol treatment. Sections
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were exposed directly to X-ray film for 3 days. {Modified by permission from Rivier et al.
30}
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Figure 6.
Blockade of CRF or VP significantly decreases the ACTH response to acute alcohol. Results
were obtained in adult male rats as the results of their first exposure to the drug. The CRF
antagonist astressin (3 mg/kg) or the VP antagonist dPTyr(Me)VP (0.25 mg/kg) were injected
iv and blood samples were obtained 30 min after alcohol administration (3 g/kg, ip). Each bar
represents the mean ± SEM of 5–6 animals. **, P<0.01. {Modified by permission from Rivier
et al.30 and Ogilvie et al.89}
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Figure 7.
Alcohol (25 mM) increases CRF release (A) or mRNA levels (B) in primary hypothalamic cell
cultures. (A) CRF peptide secretion was detected by RIA after treatment of cells with alcohol.
Each point represents the mean ± SEM. (B) RT-PCR analysis of CRF mRNA expression after
treatment with 25 mM alcohol. **, P<0.01 vs control. {Modified by permission from Li et
al.35}
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Figure 8.
The PVN CRF neuronal response in response to footshocks is larger in adult adult male FAE
offspring, compared to controls. Dark-field photographs of a representative coronal section
through the midportion of the PVN of C or E male rats exposed to a 30-min session of mild
electrofootshocks and showing increases in CRF hnRNA (A) levels in the pPVN at 15 min and
no overall changes in VP hnRNA (B) levels of the pPVN and the mPVN at 15 and 30 min after
shocks. Statistical analysis of the data expressed as arbitrary units for optical density (OD) for
mRNA levels. Each point represents the mean ± SEM of 4–5 rats. *, P <0.05 and **, P<0.01
vs t=0; a, P<0.01 vs C at the corresponding time. pPVN, parvocellular division of the
paraventricular nucleus, mPVN, magnocellular division of the paraventricular nucleus.
Magnification, 220×, III, third ventricle. {Adapted by permission from Lee et al.36}
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Figure 9.
Compared to controls, male FAE rats release more ACTH when injected with SIN-1 icv (A)
and display enhanced PVN CRF neuronal activity (B). A. Effect of the icv injection of SIN-1
(20 μg) or vehicle on the ACTH response of male and female C and E rats. **, P<0.01. B.
Representative dark-field photomicrographs illustrate the immediate early gene NGFI-B
transcripts measured before SIN-1 icv injection as well as 45 and 90 min later. III, 3rd ventricle.
Magnification: 340×. {Adapted by permission from Lee et al.63}
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Figure 10.
Cartoon illustrating portions of the ascending catecholaminergic innervation of the PVN. Left
panel, sagittal view of the rat brain illustrating the adrenergic (closed squares) and
noradrenergic (closed circles) cell groups of the locus coeruleus (LC), ventrolateral medulla
(VLM) and nucleus of the solitary tract (NTS). Right panel, coronal section through the rat
brain stem illustrating the C1-C3 adrenergic cell populations. (Based on templates published
in 3, 90–92.)
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Table 1

Microarray of fetal hypothalami and thalami area (E 17.5) in control or alcohol-exposed mice.

Gene Ratio (EtOH/CTL)

CRF ND

CRFR1 1.007

CRFR2 3.725

UCN ND

UCN2 0.329

VP 0.788

VPR1a 0.171

VPR1b 0.57

VPR2 7.753

VPi1 1.08

POMC1 1.633

TH 1.032

DBH 0.581

PNMT 0.369

NPY 1.051

NPYR1 0.534

NPYR2 0.911

NPYR5 0.507

NPYR6 2.185
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