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Abstract

Intrinsic noise is a common phenomenon in biochemical reaction networks and may
affect the occurence and amplitude of sustained oscillations in the states of the network.
To evaluate properties of such oscillations in the time domain, it is usually required to
conduct long-term stochastic simulations, using for example the Gillespie algorithm. In
this paper, we present a new method to compute the amplitude distribution of the
oscillations without the need for long-term stochastic simulations. By the derivation of
the method, we also gain insight into the structural features underlying the stochastic
oscillations. The method is applicable to a wide class of non-linear stochastic differential
equations that exhibit stochastic oscillations. The application is exemplified for the MAPK
cascade, a fundamental element of several biochemical signalling pathways. This example
shows that the proposed method can accurately predict the amplitude distribution for
the stochastic oscillations even when using further computational approximations.
PACS Codes: 87.10.Mn, 87.18.Tt, 87.18.Vf
MSC Codes: 92B05, 60G10, 65C30

1. Introduction
Oscillations are a widely occurring phenomenon in the dynamics of biological systems. On the

intracellular level, oscillations occur for example in the activity of various genes or signalling

proteins. To gain more insight into the processes related to these oscillations, mathematical

models for the underlying biochemical and genetic networks are commonly constructed. Such

models have proven helpful in connecting the underlying biochemistry with the temporal

characteristics of emerging oscillations and the associated biological function. Examples for

this type of results include the intracellular circadian clock [1] or the developmental process of

somitogenesis [2].
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In dynamical models for biological systems, oscillations are due to limit cycles or more

complex attractors in deterministic frameworks, or may emerge from various stochastic effects

in stochastic frameworks. Concerning the biological function, one would not expect that it

makes a significant difference whether oscillations are due to a deterministic limit cycle or arise

from stochastic effects. For the biological function, rather the temporal characteristics of

oscillations are relevant, such as their frequency or amplitude. For deterministic limit cycle

oscillations, these characteristics are easily computed by a numerical simulation of the model.

For stochastic models, computing the temporal characteristics of oscillations is much more

involved. Two approaches are common for solving stochastic systems. In the first approach, the

so called chemical master equation (CME) is used [3]. The solution to the CME (or

approximations thereof) yields the probabilities for each of the possible configurations of the

system to be attained at a given point in time. However, since the temporal correlations of

these probabilities are usually not obtained from the CME, the temporal characteristics of

oscillations are not directly accessible from such a solution. In the second approach, a large

number of realisations of the stochastic process are computed. These realisations can then be

used to compute various temporal characteristics of the system, in particular oscillation

amplitude and frequency distributions. Yet, the computation of a sufficiently large number of

realisations typically entails a large computational effort.

In this paper, we develop a new method to compute the amplitude distribution for systems

exhibiting stochastic oscillations. We thereby focus on systems where the deterministic part has a

weakly stable equilibrium point (EP), typically with damped oscillations, and the stochastic

effects induce sustained oscillations around this EP. In such systems, we can distinguish two

mechanisms by which stochastic oscillations occur. For the first mechanism, the system needs to

have the property that a certain small perturbation away from the equilibrium point leads to a

large excursion in the state space before the system returns to the proximity of the EP [4]. If the

noise is strong enough to reliably generate such a perturbation, but does not disturb the system

during the round trip too much, we recognize regular oscillations with a well defined amplitude

and frequency. This effect is called Coherence Resonance [5] or Stochastic Resonance [6, p. 149

ff.]. For the second mechanism, the deterministic part of the system already gives rise to damped

oscillations, and the noise just serves to sustain the oscillations [7,8]. In this case, the density

distribution of realizations in the state space will typically be similar to a Gaussian-like

distribution with a maximum at the EP, while individual trajectories show pronounced

oscillations with a frequency close to the frequency of the deterministic part. The amplitudes of

this type of oscillations increase with the noise power, in contrast to the other type of systems,

which mainly exhibit oscillations of a fixed amplitude independent of the noise power.

For the second mechanism, it is of interest to compute the amplitude distribution of the

stochastic oscillations. Several methods to solve this problems were developed previously. In

[9] the average change of a stochastic Lyapunov function was determined. By setting this

average change to zero one may identify an orbit around which a stochastic realization
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fluctuates, and thereby estimate a typical amplitude. In the context of this article the results of

Kuske et al. [7,8] are very interesting. They apply a multi-scale ansatz to separate the properties

of the oscillations mainly determined by the deterministic part of the analyzed system (the

frequency) from those determined to a high percentage by the stochastic part (the amplitude).

Therewith it is possible to calculate both the amplitude distribution and the mean frequency of

the oscillations. Nevertheless this method has the disadvantage of requiring the discussed

systems to be almost linear and the frequency of the oscillations not to be noteworthy

disturbed by the stochastic effects.

In this article we focus on biochemical systems that can be modeled as a set of

interconnected, possibly nonlinear, stochastic differential equations (SDEs). With the help of

the Fokker-Planck equation (see e.g. [3, p. 193 ff.] or [10, p. 120 ff.]), we calculate the

stationary density distribution in the state space. We provide a theorem allowing to calculate

the amplitude distribution with only the knowledge of the density distribution and the

corresponding SDE. The theorem allows not only to consider linear, but also a wide class of

non-linear systems and therefore makes it possible to analyze not only systems with

oscillations being of low amplitude compared to average concentrations but also of

intermediate and high amplitudes. Although stochastic oscillations are a mainly two

dimensional effect, we show that they also occur in higher order systems and give an example

on how to analyze them then. As far as we are aware of, this paper introduces for the first time a

method to analytically analyse higher order possibly non-linear systems being affected with

intermediate to high amounts of noise, and thereby showing stochastic oscillations.

The paper is structured as follows. To give an easily accessible introduction to the material,

we first present our results on the calculation of the amplitude distribution of stochastic

oscillations and afterwards state the underlying assumptions and theorems. Then we explain

the application of our theory by calculating the amplitude distribution of a simple example,

the damped harmonic oscillator in the presence of additive noise, to get a first insight into the

reasons for stochastic oscillations. We want to remark that this example simplifies, due to its

structure, the necessary calculations significantly. As a more realistic example, we discuss

oscillations in the MAP kinase cascade with an incorporated negative feedback with limited

amounts of entities of each molecular species. For this system, the stationary probability

distribution can be estimated by a linear approximation, or it can be computed numerically.

We compare the amplitude distributions predicted by our method, based on these two

approaches, to an "experimental" amplitude distribution obtained from a long-term stochastic

simulation.

2. Results and Discussion
2.1 Amplitude Distribution of the Stochastic Oscillations

In this article we develop a method to derive the amplitude distribution of stochastic

oscillations from the knowledge of the stationary density distribution of a stochastic
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differential equation (SDE). Here we first give a short outline of our results for which we

present the corresponding theorems and proofs in the next sections.

Biochemical networks with stochastic dynamics can be modelled by the Langevin equation

[11]. For the derivation of the theoretical results, we consider a two-dimensional Langevin

equation having an equilibrium point at zero:

x f x x= +( ) ( )ΣΣ ΓΓ (1)

with the state vector x Œ ℛ2, the system's dynamics f = (f1, f2)
T, where f1 and f2 are smooth

functions (Œ C∞), Σ a 2-by-2 matrix of smooth functions and Γ = (Γ1, Γ2)
T, where Γ1 and Γ2 are

uncorrelated, statistical independent Gaussian white noise with zero mean and variance of one.

Let us denote the stationary density distribution of the system (1) by P (x), and the

amplitude distribution for the oscillations by PA(c), where c denotes the oscillation amplitude.

Under certain assumptions (see following sections) the amplitude distribution PA(c) then

satisfies

P PA( ) ( ( )) ( ( ))χ ν χ χ∝ ⋅x x (2)

with ν(x) = ||f(x)|| the average speed at state x and x̂ (c) given by

ˆ( ) arg max ( ).x x
x

χ =
∈A

P (3)

Hereby A is defined as A = {x Œ ℛ2|〈 x| e 〉 = c } and e is the unit vector in the direction

where the amplitude is measured.

The product on the right hand side of (2) represents the steady state flux of reactions

through a certain state x̂ . Intuitively speaking, x̂ is chosen so that most of the realizations

going through x̂ will also reach their maximal value in a small neighborhood of x̂ , so that

under certain assumptions (see following sections) it is justifiable to approximate the

amplitude of such a realization by the value reached at x̂ .

The apparent complicated definition of x̂ is a result of the freedom of choice in which

direction e the amplitude is measured. In a biological system it is obviously important to

distinguish whether one measures the oscillations of the concentration of species A or of

species B. Sometimes it is experimentally not possible to distinguish between two species, e.g. if

B represents the phosphorylated version of a protein A, so that one can only measure the

amplitude of [A] + [B]. Additionally, for nonlinear networks, the amplitude distribution may

be different depending on whether one measures the amplitude of the oscillations in the

positive direction from the steady state or in the negative direction. If one e.g. measures the
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amplitude distribution of the concentration of the first species x1 in the positive direction, (3),

i.e. e = (1, 0)T, can be simplified to ˆ( ) ( ,arg max ( , ))x χ χ χ= =∈x P x x
2 1 2R

T .

To normalize the probability distribution PA of the amplitude, we have to divide equation

(2) through the integral of the probability of all amplitudes:

P P d PA A A( ) ( ) ( ).χ ξ ξ χ
ξ

= ⎛
⎝⎜

⎞
⎠⎟=

∞ −

∫ 0

1

(4)

Simple models may have additional properties allowing us to simplify (2). For linear

systems the speed ν( x̂ (c)) is directly proportional to || x̂ (c)|| simplifying (2) to

P PA( ) ( ) ( ( )),χ χ χ∝ ⋅x x (5)

with x̂ given as above.

We want to emphasize here that (2) allows to analytically or numerically calculate the

amplitude distribution only from the knowledge of certain properties of the SDE describing the

biological system without the necessity to run numerical simulations. The formula yields a

good approximation for a wide class of nonlinear problems and can be used to calculate the

amplitude distribution even for certain systems having more than two dimensions as we

demonstrate in the second example of this paper.

2.2 Derivation of the Results

To derive the results presented in the proceeding section we analyze nonlinear SDE systems of

order two as given by (1), with an asymptotically stable equilibrium point and damped

oscillations in the deterministic part. We restrict our analyis to two dimensional systems, because

many higher dimensional systems can be reduced to two dimensions for the purpose of analysing

stochastic oscillations. In the derivation we assumew.l.o.g. that wewant to compute the amplitude

of the oscillations in the positive direction of x1, i.e. e = (1, 0)T, and that the equilibrium point of

the deterministic formulation ( x = f(x)) of (1) is at the origin. Both assumptions can easily be

satisfied for an arbitrary system by an appropriate coordinate transformation.

We establish an angular phase relationship of the state vector x(t) with respect to a fixed

reference vector in the state space [12]. An oscillation period of the system (1) is defined as the

time during which the angle between the state vector and the fixed reference vector changes by

2π. Further, the amplitude of an oscillation is defined as the maximal value of x1 during the

corresponding oscillation period.

We make the following assumptions on the system (1):

1. There exists a stationary density distribution P: ℛ2 Æ ℛ+: x ↦ P (x) for (1) which is

sufficiently smooth in x. We demand the curvature of the level curves of this distribution to
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exist and not to change its sign. For the computation of the amplitude distribution PA(c),
P (x) may be computed analytically, numerically, or may be obtained by the long term limit

of a measurement.

2. The deterministic formulation ( x = f(x)) of (1), which is at the state x := x(t0) at time

t = t0 with the probability of the state x being P ( x ) =: P , will approximatively evolve

tangential to the level curve of the probability distribution, thus for small Δt the probability

of the state at time t + Δt won't have changed significantly (P (x(t0 + Δt)) ≈ P ) This

assumption can be easily checked by calculating the Lie derivative of P with respect to f:

L P
P

f x
f x= ∂

∂
( ), (6)

which has to be small for almost all x Œ R2 having a non-negligible probability P (x).

3. In addition we require that the average speed ν = ||f(x)|| of (1) does not vanish for almost

all x Œ ℛ2 having a non-negligible probability P (x).

Assumption 3 is obviously not satisfied in a small area around the EP where for most

systems ν becomes very small. However when the system is very close to the EP, the motion of

most realizations can be approximated by a random walk. Thus during the time when the

system is in the small neighborhood of the EP it is not justifiable to speak about oscillations

anymore until the system leaves the neighborhood again. Away from the EP, ||f(x)|| is

significantly bigger than zero for most biological relevant systems so that Assumption 3 is

fulfilled.

With the help of these assumptions we are able to formulate a theorem for the calculation of the

amplitude distribution of stochastic oscillations. For the formulation of the theorem let us define

ˆ ˆ :
( )

, ˆ ,
ˆ

X
P
x

x= ∈ ∂
∂

= >
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪=

x
x

x x

R2
1

2
0 0 (7)

i.e. the unit vector e x1
in the direction of x1 is orthogonal to the tangent on the level curve of

the probability distribution in x̂ (see Figure 1). Because of Assumption 1 there exists exactly

one state x̂ Œ X̂ for every amplitude c satisfying x̂1 = c. Furthermore we define the following

variables, which can be calculated with the knowledge of the system (1) and the stationary

probability distribution P:

a
P
x

( )x
x x

= ∂
∂ =1

(8a)

κ( )x

x x

= ∂

∂
=

2

2
2
P

x
(8b)
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L L P( ) var( ( ))x xf x x
= − + =ΣΣΓΓ (8c)

≈ − ∂
∂

+
=

P
x1

11
2

12
2Σ Σ( ) ( )x x

x x

(8d)

ν( ) ( )

( ) .

x f x

x
x x

x x

=

≈
=

=
f2

(8e)

The variable ν can be thought of as the deterministic speed, L is the standard deviation of the

Lie-derivative of P with respect to the right hand side of (1), a the derivative of P in the

direction of x1, and � the curvature of P with respect to x2, each evaluated at the states x̂ Œ X̂ .

The variables are illustrated in Figure 2.

With the help of these definitions we can formulate the following two lemmas and a

theorem, which characterizes the amplitude of the stochastic oscillations.

Figure 1
Definition of X̂ . The solid black lines are the level curves of P (x). In x̂ Œ X̂ the unit vector e x1

in the
direction of x1 is orthogonal to the tangent on the level curve trough x̂ .

Figure 2
Visualization of the variables. Visualization of the variables needed to calculate the amplitude distribution of
stochastic oscillations.
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Lemma 1 Assume the Assumptions 1-3 are satisfied. Let Ψf be a realization of (1) being at the state

x̂ Œ X̂ at time t0. Then the amplitude of Ψf during the current oscillation will lie with a probability of

70.8% in the set [ x̂1 , x̂1 + δx1] and with a probability of 95.5% in the set [ x̂1 , x̂1 + 2 23
1δ x ], with

δx1 defined by δ
ν κ

x L
a

L
1

3
4 2 23= .

Lemma 2 Assume the Assumptions 1-3 are satisfied. Then the net flux density ϕ (x) of realizations

at the state x Œ ℛ2 has an absolute value proportional to the product of the probability P (x) and the

average speed v(x) of (1) and is tangential to the level curve of the density distribution P at this point.

Lemma 2 is derived by considering the flux of realizations through an infinitesimaly small

region around the state x, as illustrated in Figure 3.

Theorem 1 (Distribution of amplitudes) Under the Assumptions 1-3 and if δx1 as defined

in Lemma 1 is small, the probability PA(c) of an amplitude c of the stochastic oscillations of (1) in

the direction x1 is proportional to the absolute value of the net flux density ||ϕ( )x || at the state

x̂1 Œ X̂ satisfying x̂1 = c.

Our results for the calculation of the amplitude distribution PA(c) presented in the previous

section (2) directly follow from the application of Theorem 1. The proofs of the respective

lemmas and theorem can be found in the appendix.

2.3 Remarks

• To check if the assumptions necessary for the application of Theorem 1 are fulfilled, one

can calculate δx1 according to the formula in Lemma 1. If δx1 is significantly smaller than x̂1

for almost all x̂ Œ X̂ having a non-negligible probability P ( x̂ ), Theorem 1 may be applied.

For a general stochastic differential equation, it is hard to exactly indicate how much smaller

δx1 must be compared to x̂1 . This highly depends on the structure of the system and also on

the accuracy being required for the solution. Nevertheless, as a rule of thumb, the theorem

Figure 3
Flux through unit cell. The fluxes through the edges of an infinitesimal small unit cell around a state x Œ R 2.
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gives good approximations if δ x
x

1
1ˆ

< 0.2. It is not necessary that this is true for every x̂ Œ X̂ ,

but the calculated density of the amplitude may differ from the real one for the amplitudes

c Œ R for which the corresponding δx1 is not small enough. Nevertheless the accuracy of

the amplitude distribution for other amplitudes is not affected (see proof).

• It may be possible to relax the assumption that the curvature of the level curves does not

change its sign globally. Intuitively it seems to be sufficient for most systems that the

curvature does not change its sign only locally around the states x̂ Œ X̂ , and that the

amplitude in one oscillation period reaches its maximum in the area around x̂ . However

this has to be shown for the system of interest explicitly.

• If the Lie derivative LfP of the density distribution P is not small enough, the net flux

density ϕ cannot be approximated to be tangential to the level curves of P anymore.

Depending on the size of LfP this may lead to a significant bias in the calculation of the

amplitude distribution for certain systems. In this case, the derivation of the amplitude

distribution would be more involved, and also depend on the term ∂
∂
x̂2
χ , starting from an

appropriate modification of (66) in the appendix.

2.4 The Damped Harmonic Oscillator in the Presence of Additive Gaussian White Noise

2.4.1 Equations and Properties of the System

In this section we give a motivational example for the application of Theorem 1 by discussing

the behavior of the damped harmonic oscillator in the presence of additive Gaussian white

noise. The oscillator satisfies the following Langevin equation:

x x kx t1 2 1 1= − + σΓ ( ) (9a)

x x kx t2 1 2 2= − − + σΓ ( ), (9b)

with Γi, i Œ {1, 2} uncorrelated, statistical independent Gaussian white noise with zero

mean and variance of one, s Œ R + and k Œ R .

It is easy to show that the deterministic system (s = 0) is asymptotically stable for k > 0. The

eigenvalues of the system matrix

A
k

k
=

−
− −
⎡

⎣
⎢

⎤

⎦
⎥

1

1
(10)

are at l1,2 = -k ± i, therefore the deterministic system will show damped oscillations upon

perturbation from its steady state.

2.4.2 Calculation of the Density Distribution

For s > 0 we can calculate with the help of the multivariate Fokker-Planck equation the density

distribution of xi, i Œ {1, 2}, in the state space. The general multivariate Fokker-Planck equation

(see, for example, [3, p. 193 ff.] or [13, p. 96 ff.]) is given by

PMC Biophysics 2009, 2:10 http://www.physmathcentral.com/1757-5036/2/10

Page 9 of 28
(page number not for citation purposes)



∂
∂

= − ∂
∂ ( ) + ∂

∂ ∂= =
∑ ∑P t

t xi
A P

xi x j
B Pi

i

n

i j
i j

n( , )
( ) ( ( ) ),

,

x
x x

1 1

1
2

2
(11)

with Âi (x) and Bi, j (x) > 0 real functions describing the influence of the system dynamics

and the noise on the distribution. The diffusion term B may be calculated to

B x x x( ) ( ) ( ),= ⋅ΣΣ ΣΣT (12)

with Σ the matrix of the noise terms of (1). We call (11) linear if ∀i Âi (x) is a linear function

in x and ∀i, j Bi, j(x) is constant. Then (11) can be simplified to

∂
∂

= − ∂
∂

+ ∂
∂ ∂==

∑∑P t
t

A
xi

x P B
xi x j

Pi j j ij
i j

n

i j

n( , )
( ) .,

,,

x 1
2

2

11

(13)

For the system (9), Ai, j are given by the system matrix A from (10), and Bi, j are the elements

of the matrix B = s2I2, where I2 is the second order identity matrix. To get the stationary density

distribution, we set ∂
∂ =

P
t
( )x

0 . Following [3], the stationary density distribution for the linear

Fokker-Planck equation (13) is given by

P T( ) exp ( ) ( ) ,x x x x x∝ − − −⎛
⎝⎜

⎞
⎠⎟

−1
2

1ΞΞ (14)

with 〈 x 〉 the mean value of x and Ξ the matrix of the second moments of P, which is the

solution of the equation AΞ + ΞAT + B = 0. In system (9), 〈 x 〉 = 0 and Ξ may be calculated to

ΞΞ = σ 2

2 2k I . The state of the system is therefore Gaussian distributed with the maximum of the

density being at the EP.

2.4.3 Determination of the Amplitude Distribution

To get the amplitude distribution PA(c) of the oscillations of the harmonic oscillator (9), we

apply Theorem 1 after checking the assumptions made in the theorem. Notice that due to the

easy structure of this first example and its symmetry, we are always measuring the oscillations

in a direction tangential to a principal axis of the distribution. Therefore x̂ (c) = (c, 0)T for all

c. Because of this it is easy to calculate the necessary variables with the help of the definitions

(8a)-(8e) to

a
kx

P= − 2 1
2
ˆ

( ˆ )
σ

x (15a)

κ
σ

= − 2
2
k

P( )x (15b)

L
kx

P≈ − 2 1ˆ ( ˆ )
σ

x (15c)
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ν ≈ ˆ .x1 (15d)

After some calculations we obtain

δ σ σ
x

x1 3
3
4 2 1

≤
ˆ

. (16)

For s = 10 and k = 0.01, δx1 is getting small compared to x̂1 for x̂1 ≥ 20, so our

approximation should at least hold for every amplitude greater or equal to 20. The results will

nevertheless show that we even get good estimations for amplitudes much smaller than 20.

Due to the linearity of the oscillator (9) and the symmetry of the harmonic oscillator, we can

determine the amplitude distribution by utilizing formula (5) as

P
k

A( ) exp .χ χ χ

σ
∝ −

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2

2
(17)

For s = 10 and k = 0.01 the predicted amplitude distribution PA is plotted over the amplitude

c in Figure 4. For comparison we also displayed the amplitude distribution of the stochastic

oscillations as measured in a long term simulation run.

This easy example was discussed to give an insight into the reasons for stochastic

oscillations. In the next section, we show the practical applicability of our algorithm by

Figure 4
Amplitude distribution of the oscillations of the damped harmonic oscillator. Amplitude distribution of
the oscillations of x2 of the damped harmonic oscillator (9) in the presence of white noise with autocorrelation
s = 10 and k = 0.01. The solid curve corresponds to the data from simulation, the dashed curve is the prediction
according to Theorem 1. The simulation was run over a time scale of 100000 s which corresponds to around
16000 oscillation periods.
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predicting the amplitude distribution of a complex biochemical system and therewith give an

example of a more biologically relevant application for the results of the paper.

2.5 Oscillations in the MAP Kinase Signaling Cascade

In the following section we apply the algorithm developed in this paper to a realistic example

from biochemical signal transduction. A frequent module in many eucaryotic cells from yeast

to mammals is the mitogen activated protein (MAP) kinase signaling cascade. MAPK cascades

are typically activated by extracellular stimuli such as growth factors, and regulate the activity of

various genes, thereby provoking a cellular response to the applied stimulus. Many important

cellular functions such as differentiation, proliferation and death are controlled by MAPK

cascades [14]. MAPK cascades consist of three layers of kinases, where each kinase

phosphorylates and thereby activates the kinase on the next layer, as shown in Figure 5. The

kinases are named MAPKKK, MAPKK, and MAPK, in the order of activation, and the

phosphorylated, active forms are denoted with a star. The basic structure may be

complemented by additional feedback interconnections, giving rise to deterministic limit

cycle oscillations [15]. More recently, oscillations in the MAPK cascade have been determined

experimentally in yeast cells, where the oscillatory activity of the MAPK controls periodic

changes in cell shape during the mating process [16].

2.5.1 The Deterministic Model

For this example, we use a basic ODE model of the MAP kinase signaling cascade. The model

contains a negative feedback interconnection from the last kinase MAPK to the activation of the

first kinase MAPKKK [15]. We use a simpler model compared to the one in [15], and therefore

sustained oscillations do not occur in the deterministic version of the model considered here.

Denote x1, x2 and x3 the concentrations of MAPKKK*, MAPKK* and MAPK*, respectively.

Using three conservation relations

x MAPKKK T1 1 100+ = =[ ]  nM (18a)

x MAPKK T2 2 300+ = =[ ]  nM (18b)

Figure 5
Schematic view on the MAP kinase signaling cascade. Schematic view on the MAP kinase signaling cascade.
The species with the stars (*) are the phosphorylated versions of the species without stars. MAPKKK* catalyzes the
phosphorylation of MAPKK, MAPKK* in turn catalyzes the phosphorylation of MAPK. A negative feedback is given
by the repression of the activation of MAPKKK by MAPK*.
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x MAPK T3 3 300+ = =[ ]  nM, (18c)

we get the deterministic description of the system using mass balancing with Michaelis-

Menten reaction kinetics:

x v v vf b1 1 1 1= = −, , (19a)

x v v vf b2 2 2 2= = −, , (19b)

x v v vf b3 3 3 3= = −, , , (19c)

with the reaction rates given by

v
k T x

k T x k T x k x k xf1
11 1 1

1 12 1 1 12 1 1 13 3 13 3
,

( )
( ) ( )

= −
+ − + − +

(20a)

v
p x
p xb1
11 1

1 12 1
, =

+
(20b)

v
k T x x

k T xf2
21 2 2 1

1 22 2 2
,

( )
( )

= −
+ −

(20c)

v
p x
p xb2
21 2

1 22 2
, =

+
(20d)

v
k T x x

k T xf3
31 3 3 2

1 32 3 3
,

( )
( )

= −
+ −

(20e)

v
p x
p xb3
31 3

1 32 3
, .=

+
(20f)

The parameter sets for the phosphorylation (kij) and for the dephosphorylation (pkl) are

given in Table 1.

The biochemically relevant equilibrium point x0 of the system is computed as

Table 1: Parameter Set for the MAP Kinase Signaling Cascade

Parameter Value Unit

k11 0.256 1/s
k12 0.0872 1/nM
k13 0.1144 1/nM
k21 0.4229·10-2 1/s
k22 0.0347 1/nM
k31 0.2049·10-2 1/s
k32 0.0243 1/nM
p11 0.1003 1/s
p12 0.1428 1/nM
p21 0.1218 1/s
p22 0.0794 1/nM
p31 0.1343 1/s
p32 0.0167 1/nM
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x0 1 11 056, .=  nM (21a)

x0 2 46 968, .=  nM (21b)

x0 3 44 122, .=  nM. (21c)

We can determine the local stability of this EP by analyzing the Jacobian A = ∂
∂ =
v
x x x 0

of the

system's dynamics evaluated at the EP. The eigenvalues of A are obtained as

λ1 0 06699
1= − .
s

(22a)

λ2 3 0 0004747 0 03208
1

, ( . . ) ,= − ± i
s

(22b)

and thus the deterministic system is locally asymptotically stable.

2.5.2 The Stochastic Model

For validation purposes and to get a first insight into the system's dynamics, we did stochastic

simulations of the biochemical network model of the MAPK cascade as described by (19). We

used the stochastic simulation software Dizzy by the Institute for Systems Biology [17], which

is able to do stochastic simulations of models not only with mass action kinetics, but also with

arbitrary kinetics such as Michaelis-Menten kinetics, which are used in our model. For the

simulations we assumed a cell volume of V = 1 pl, which corresponds to the absolute number

of molecules of each enzyme of

N V TA ⋅ ⋅ =1 60000 molec (23a)

N V TA ⋅ ⋅ =2 180000 molec (23b)

N V TA ⋅ ⋅ =3 180000 molec, (23c)

where NA is the Avogadro constant. We provide a typical plot of the oscillations of x1, x2 and

x3 against the time in Figure 6. As can be seen from the plot, the oscillations don't vanish as the

deterministic calculations suggested, but are sustained oscillations with a determined

amplitude range. In the following we will show that these oscillations can be analyzed with

the help of Theorem 1.

As discussed in [11] it is possible, under certain assumptions, to describe a system of

biochemical reactions by a set of stochastic differential equations, giving rise to the so called

Langevin approximation. These assumptions are, roughly speaking, fulfilled if the amount of

entities of each species does not get too small, like in our system. The Langevin approximation

of the MAPK cascade model (Figure 5) is given by
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x v v
v f
N AV

v b
N AVf b f b1 1 1 1 1

1 1= − + +, , , ,
, ,Γ Γ (24a)

x v v
v f
N AV

v b
N AVf b f b2 2 2 2 2

2 2= − + +, , , ,
, ,Γ Γ (24b)

x v v
v f
N AV

v b
N AVf b f b3 3 3 3 3

3 3= − + +, , , ,
, , ,Γ Γ (24c)

with Γi, f and Γj, b, i, j Œ {1, 2, 3} uncorrelated, statistical independent Gaussian white noise

with zero mean and a variance of one, NA the Avogadro constant and V the cell volume. This

system corresponds to the deterministic one with an additional noise part for every reaction

added, with a standard deviation corresponding to the square root of the magnitude of the

reaction rate divided by the cell volume. The factors of the white noises, vi f
N AV

, and vi b
N AV

, with i,

jŒ {1, 2, 3}, are monotone in x and don't change significantly in an area around the EP, so that we

can approximate them with their steady state values. Afterwards we can combine each function's

noise terms by adding their variances σ i
vi f vi b

N AV
2

0

= ( )+

=

, ,

x x
, leading to the following equations:

x v vf b1 1 1 1 1= − +, , σ Γ (25a)

x v vf b2 2 2 2 2= − +, , σ Γ (25b)

x v vf b3 3 3 3 3= − +, , ,σ Γ (25c)

Figure 6
Oscillations of the MAP kinase signaling cascade. Plot of the oscillations of the MAP kinase signaling cascade.
The plot is the result of a stochastic simulation via the Direct Gillespie approach with Dizzy.
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with σ1
23 786 10= ⋅ −. nM

s , σ 2
26 350 10= ⋅ −. nM

s and σ 3
210 664 10= ⋅ −. nM

s for a cell

volume of V = 1 pl.

2.5.3 Transformation and Model Reduction

The theoretical results in this paper have been developped for two-dimensional systems only.

In higher order systems stochastic oscillations may appear on a two dimensional manifold in

the state space. Such a system can be reduced to an order two system by computing the slow

manifold, making use of a time scale separation [18]. Following this approach, we first

transform the system (25) to

z A z z

z

fast fast1 1 1

1

= +

+

ψ ( , )

( , )

z

z
slow

fast slowΣΣ ΓΓ
(26a)

z A z z

z
slow slow slow slow slow

slow slow

= +
+

ψ ( , )

( , )

z

z
1

1ΣΣ ΓΓ,,
(26b)

with z1 Œ R the coordinate of the fast and zslow = (z2, z3)
T the coordinates of the slow

manifold, ψfast and
ψ
slow = (ψslow, 1, ψslow, 2)

T vectors of polynomials of order two and higher, jfast

and jslow matrices of the noise strength and Γ = (Γ1, Γ2, Γ3)
T the noise vector of system (25).

The transformation needs to be done in such a way that the absolute values of the real parts

of the eigenvalues of Afast are much larger than these of Aslow. To this end, we compute the

eigenvectors corresponding to the eigenvalues (22a)-(22b) as

e1 = −( . , . , . )0 1506 0 2699 0 9510 T (27a)

e2,3 = − ± ±( . . , . . , . ) .0 07633 0 1615 0 4923 0 3441 0 7793i i T (27b)

The two eigenvectors with non-zero imaginary parts, e2 and e3, are both eigenvectors

corresponding to eigenvalues having real parts with small absolute values. Therefore it is

straightforward to define the desired transformation as

z T x x 0= −−1( ), (28)

with the transformation matrix T = (e1, e2 + e3, (e2 - e3)·i). We can get the reaction rates of

the transformed system by calculating

v z T v xz x Tz x 0

( ) ( ) .= −
= +

1
(29)

Because all of the eigenvalues (22a)-(22b) have non-zero real parts, the Hartman-Grobman

theorem states that there exists a local transformation z = H(ζ) such that the system in ζ-

coordinates obeys the differential equation
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ζ ζ=
⎡

⎣
⎢

⎤

⎦
⎥

A fast 0

0 A slow

. (30)

Because in the ζ-system there exists a slow manifold spanned by the eigenvectors

corresponding to the two eigenvalues with real parts having low absolute values, in the z-

system there exists a slow manifold, too (see [19]). We now search the function z1 = m(z2, z3)

which describes the dependence of the states on the manifold. We approximate this function

with a truncated Taylor series expansion:

z a z z O zj k
j k k N

k

j

j

N

1 2 3 2 3
1

00

= +− +

==
∑∑ , ,( ). (31)

We substitute (31) in z1 = vz,1 and can therewith calculate the coefficients aj, k (see Table 2).

The resulting manifold in the original x-coordinates is shown in Figure 7. The figure also

includes an example trajectory. As can be seen, this trajectory first converges exponentially fast

to an �-neighborhood of the slow manifold and afterwards moves on it towards the EP.

The slow manifold is attractive enough so that realizations of the stochastic system (25) will

stay close to it. Due to this, it is sufficient to just take the oscillations on the slow manifold into

account and therewith simplify the problem to two dimensions. We substitute the formula of

the slow manifold (31) in the differential equations for z2 and z3 (29) and get a two

dimensional reduced description of the system

z v f z z z zz2 2 2 2 3 2 2 3= = +, ( , ) ( , )Σ Γ (32a)

z v f z z z zz3 3 3 2 3 3 2 3= = +, ( , ) ( , ) ,Σ Γ (32b)

to which Theorem 1 can be applied.

2.5.4 Calculation of the Density Distribution

As a first approach to obtain the stationary density distribution P (x), we make use of a linear

approximation of the reduced system (32) around the EP. Taking this approach allows us to

evaluate how well our method works with such an approximation, where the stationary density

distribution can be obtained with minimal computational effort. For other systems, or if a high

Table 2: Parameter Set of the Slow Manifold of the MAP Kinase Signaling Cascade

Parameter Value Parameter Value Parameter Value

a0,0 0 a0,2 0.01800 a4,0 7.327·10-8

a1,0 0 a3,0 -8.476·10-6 a3,1 -8.191·10-7

a0,1 0 a2,1 3.625·10-5 a2,2 -8.162·10-7

a2,0 0.003604 a1,2 2.425·10-4 a1,3 3.951·10-6

a1,1 0.01102 a0,3 5.750·10-4 a0,4 1.785·10-5
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precision of the result is required, it could however also be necessary to solve the nonlinear

Fokker-Planck equations numerically.

The linear approximation of the reduced system (32) is given by

η η η= +A ΣΣ ΓΓ, (33)

with the system matrix

A =
− −⎡

⎣
⎢

⎤

⎦
⎥

0 00636602 0 0901813

0 0117962 0 0054166
1. .

. . s
(34)

and Γ the vector of the disturbances Γi, i Œ {1, 2, 3}, of the original system (25).

From the coordinate transformation T applied to the original system, Σh is determined by

Figure 7
Slow Manifold of the MAP kinase signaling cascade. Slow manifold of (20) calculated up to the order of four.
The black curve is a representative trajectory of the deterministic system.
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ΣΣ ΓΓ ΓΓη σ=
⎡

⎣
⎢

⎤

⎦
⎥

−0 1 0

0 0 1
1T diag( ) ,i (35)

where diag(si) is a diagonal matrix with the diagonal elements si being the standard

deviations of the stochastic terms in the system (25). For the system (33) with V = 1 pl, Σh is

obtained as

ΣΣη =
−
− −

0 0405545 0 063266 0 0482555

0 0499328 0 0234468 0 011101

. . .

. . .
⎡⎡

⎣
⎢

⎤

⎦
⎥

nM
s

. (36)

Following the same approach as in the previous example, the stationary density distribution

is obtained as

P T( ) expη η η∝ −⎛
⎝⎜

⎞
⎠⎟

−1
2

1ΞΞ (37)

with

ΞΞ =
−

−
⎡

⎣
⎢

⎤

⎦
⎥

18 0335 1 22879

1 22879 2 38375

2. .

. .
nM

s
(38)

for a cell with a volume of V = 1 pl (see Figure 8).

2.5.5 Determination of the Amplitude Distribution

With the preliminary work of the preceding sections we are now able to calculate the amplitude

distribution according to Theorem 1. We consider the states xc = (c, a, b)T with a, b Œ R not

yet specified. These states are transformed into the z-coordinates by

Figure 8
Linear distribution of the state of the MAP kinase signaling cascade. Linear density distribution of the
MAP kinase signaling cascade on the slow manifold as calculated in (37). Because we linearized the system, the
distribution is Gaussian.
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z T x x 0χ χ= −−1( ). (39)

The probability of the amplitude c can now be calculated with the formula

P P z zA( ) max || || ( , )
,

, ,χ
α β

η χ χ= ⋅v 2 3 (40)

under the constraint that zc has to lie on the slow manifold. This corresponds to that zc has

to satisfy (31), which gives us a dependency of b on a. This dependency can be obtained

numerically by solving a convex optimization problem.

The resulting amplitude distributions in each of the three original coordinate directions xi,

i Œ {1, 2, 3} are shown in Figure 9. For comparison, the figure also contains measured

amplitude distributions, which are the results of a long term simulation via the Direct Gillespie

approach with Dizzy with a simulation over 900000 steps.

As can be seen in Figure 9, the simulation results fit the calculated predictions very well.

However, it seems that we tend to underestimate the amplitude of the oscillations by a small

amount. This can be explained as a result of Lemma 1, which states that the amplitude of a

realization going through the state x̂ lies with a high probability in [ x̂1 , x̂1 + δx1], whereas we

estimate its value by the lower end x̂1 of this interval (see appendix). The tendency to

underestimate the amplitude seen in Figure 9 seems to be a direct result of neglecting the value

of δx1. Further discussion of this point can be found in the conclusions.

We also want to mention that we compare the results obtained from our method to

stochastic Gillespie simulations, and not to realizations of the Langevin equation (24). The

Figure 9
Linear amplitude distribution of the oscillations of the MAP kinase signaling cascade. Linear amplitude
distribution of the oscillations of the MAP kinase signaling cascade. The solid curve corresponds to data determined
by stochastic simulation of the nonlinear system (24), the dashed curve is the prediction according to the
calculations in this section.
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reason herefor is that Gillespie simulations better predict the behavior of biochemical networks

and are thus the method of choice. However in the derivation of the amplitude distribution we

approximated the stochasticity of the system using white noise terms. The results of both

methods to describe the intrinsic noise of the system may under certain circumstances lead to

different results, which may be a further explanation of the small bias between the measured

and the theoretical predicted amplitude distribution in Figure 9. Furthermore some bias may

be explained due to the linearization of the system around its steady state.

2.5.6 Numerical Approach

Sometimes it is not adequate anymore to analyze the linearized system and one has to analyze

the original nonlinear one. Although there might be several special cases where the probability

distribution P of a system of nonlinear stochastic differential equations is analytically

computable, this is not possible in the general case. As a consequence there is only the

possibility to obtain the solutions numerically. To give an example how to solve a problem

with the numerical approach, we decided to analyze the same system as in the preceding

section, as defined in (24), except of changing the cell volume to V = 0.017 pl, which

corresponds to 1
60 of the original cell volume. Because the variance of the disturbances is

highly dependent on the amount of entities of the different protein species, the shape of the

solution changes dramatically in a way that we cannot get good results anymore by analyzing

the linearized system.

To calculate the density distribution of the nonlinear system we have to solve the nonlinear

Fokker-Planck equation (11). We therefore applied the algorithm developed in [20]. The shape

of the density distribution, which is non-Gaussian, is shown in Figure 10.

Figure 10
Nonlinear Distribution of the state of the MAP kinase signaling cascade. Density distribution of the MAP
kinase cascade on the slow manifold (31).
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From the density distribution P (x), we can compute the amplitude distribution PA(c) with

the method proposed in this paper. In this example, we analyze the amplitude distribution

PA(c) of x2 for peak amplitudes below the equilibrium point values, i.e. e = (0, -1, 0)T, because

then the effect of the nonlinearities is even higher than in the other direction. The reason for

this is quite simple: The amount of entities of each species is not allowed to become negative.

As can be seen in Figure 11 the amplitude distribution, as obtained by applying Theorem 1,

quite well fits the predicted results gained from a long time simulation while the predicted

values of the linearized system are far away from these values.

3. Conclusion
We introduce a method to determine the amplitude distribution of a wide class of linear and

nonlinear stochastic systems given by (1), which display sustained stochastic oscillations. The

method is applicable to systems where a stationary density distributions exists and can be

computed either analytically or numerically.

The method is based on computing the flux density of realizations for the states where the

tangent on the level curve of the density distribution is normal to the direction in which the

oscillations are measured. We showed that under certain conditions this flux density is directly

proportional to the probability of an oscillation with an adequate amplitude to occur. Our

results can be used in the analysis of systems being influenced by strong internal or external

noise, as we often find them in biophysical problems.

As already discussed at the end of the second example, for certain systems the calculated

amplitude distribution may contain a small bias depending on the exact structure of the system

Figure 11
Nonlinear amplitude distribution of the oscillations of the MAP kinase signaling cascade. Nonlinear
amplitude distribution of the oscillations of the MAP kinase signaling cascade in the negative x2-direction. The solid
curve corresponds to data experimentally measured, the dashed red curve is the prediction according to the
calculations in this section and the dash-dotted green curve is the outcome we get by calculating the amplitude
distribution of the linearized system.
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and on how well the the assumption necessary for the application of our method are satisfied.

For the wide class of nonlinear systems analyzed we could obtain as a result that realizations

being at state x̂ will most likely have an amplitude lying in [ x̂1 , x̂1 + δx1] as stated in Lemma

1. By requiring δx1 to be small we justified to approximate the amplitude by x̂1 . However, if for

specific systems the distribution in [ x̂1 , x̂1 + δx1] can be calculated or estimated, it would be

possible to reduce the bias for systems where δx1 is small but not negligible. Such an extension

would lead to a more refined approximation of the amplitude distribution.

Stochastic oscillations may occur in biological systems not only as a disturbing side effect, but

also in a constructive manner [21,22]. This is not because stochastic oscillations have great

benefits over more "traditional" types of oscillations like deterministic limit cycles, but due to the

fact that there seems to be no reason for a preference of deterministic limit cycles. In biophysical

systems, the type of oscillations we study in this paper often occurs at parameter values in the

vicinity of a Hopf bifurcation in the deterministic part of the model [23]. This is important in the

field of robustness analysis of biological networks [24], because stochastic oscillations can

possibly improve the robustness of oscillations in a network. In this respect, our method to

compute the oscillation amplitude may be helpful in order to characterize a parameter region in

which either deterministic or stochastic oscillations of a comparable amplitude occur robustly.

Appendix
Proof for Lemma 1

In this section we give a short proof for Lemma 1. We therefore consider the level curve defined

by ˆ( ) ˆP Px = 0 of the density distribution going through the state x̂ Œ X̂ .

In the following we argue that there exists a δx1 such that for a high probability an arbitrarily

chosen realization of (1) being at state x̂ at time t won't reach a state x with x1 > x̂1 + δx1 until

the next oscillation and therefore the measured amplitude will lie in [ x̂1 , x̂1 + δx1] with δx1
positive and small but yet not further determined (see Figure 2). We first calculate the Taylor

series expansion for P up to the order of two:

P x x x x P x x
P
x

x

P
x

x

( , ) ( , )1 1 2 2 1 2 1

2

1

2

2

+ + = + ∂
∂

+ ∂
∂

+ ∂

=

=

δ δ δ

δ

x x

x x

PP

x
x

P
x x

x x

P

x
x O

2 1
2

2

1 2

2

2 2
2

1
2

1 2

2
2

∂
+ ∂
∂ ∂

+ ∂

∂
+

= =

=

x x x x

x x

x

ˆ ˆ

ˆ

(||

δ δ

δ δ ||| ).3

(41)

After substituting the definitions made in the equations (8) and utilizing the knowledge that
∂
∂ =

P
x2 x x̂

vanishes because of the definition of x̂ , setting

δ δ δP P x x x x P x x= + + −( , ) ( , )1 1 2 2 1 2 , we get
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δ δ δ δ δ κ δ δP a x
P

x
x

P
x x

x x x O= + ∂

∂
+ ∂
∂ ∂

+ +

= =

1 1
2

1 2 2
2

2

2 1
2

2

1 2 2
x x x x

x

ˆ ˆ

(|| ||| ).3 (42)

If we stay on a level curve, it must hold that δP = 0 and δx1 has to be a function of δx2 locally

around x̂ . This function is approximated with another Taylor series expansion up to order

two as

δ δ δ δx k x k x O x1 1 2 2 2
2

2
3= + + ( ), (43)

with k1, k2 yet unknown constants. By substituting (43) in (42) we get

0
2

2 1
2

2

1 2 21 2 2 1
2

1= + + ∂

∂
+ ∂

∂ ∂
+

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

= =

k a x k a k
P

x
k

P
x x

δ κ δ

x x x xˆ ˆ

xx O2
2 3+ ( ).δ x (44)

Because the coefficients of δx2 and δ x2
2 must vanish independently for (44) to hold, it

follows that k1 = 0 and k2 = − κ
2a , giving

δ κ δ δx
a

x O x1 2
3

2 2
2= − + ( ) (45)

This means that we may approximate a level curve of the density distribution locally by a

parabola. For small deviations and small times t it is possible to make some approximations

for (1). First we may approximate Σ (x) in an area around x̂ by the constant

ˆ : ( ) .ˆΣΣ ΣΣ= =x x x
(46)

We can rewrite the norm of the first row elements of Σ̂Σ by

ˆ ˆ ,Σ Σ11
2

12
2+ ≈ L

a
(47)

which can be easily validated by the definitions of L and a given in the equations (8). We

furthermore approximate the second element of f(x) in an area around x̂ by

ν : ( ) .= =f2 x x x (48)

Putting everything together we get a one dimensional Wiener process for the movement of

(1) in the direction of x2 for small times Δt:

Δ Γx2 21
2

22
2≈ + +ν ˆ ˆ ,Σ Σ (49)

with Δx(t) = x(t) - x̂ . We approximate the average displacement in the direction of x1 by

combination of the average displacement of this Wiener process (〈 x2(t)〉 = νt) with equation

(45):
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Δx t
a

t1
2

2

2
( ) .≈ −ν κ (50)

Because the stochastic part of (49) may be neglected (see Assumption 4), we can get a linear

one dimensional stochastic equation for the movement of (1) in the direction of x1 for small

times t:

Δ Γx
a

t
L
a1

2
≈ − +ν κ

. (51)

It can be shown [10, p. 129 ff.] that the variance of (51) evolves as

var( ( )) .Δx t
L

a
t1

2

2
≈ (52)

We may think of the solution of (51) as a growing Gaussian distribution moving along the

trajectory of the deterministic system (see Figure 2). We now determine the maximal value of

Δx1(t) that a realization of (1) starting at x̂ may have if it evolves in an area around the average

displacement determined by the standard deviation var( ( ))Δx t1 . The maximal value of

Δx1(t) is time dependent and grows in the beginning due to the stochastic part of (51), but

afterwards shrinks due to the deterministic part. It reaches its maximal value when the time

derivatives of the mean value and of the standard deviation have the same absolute value:

− ∂
∂

= ∂
∂t

x t
t

x tmax maxΔ Δ1 1( ) var( ( )) (53)

⇒ =
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟t

L
max

2 2
3

2

ν κ
. (54)

We can now calculate δx1 to

δ ν κ
x

a
t

L
a

tmax max1
2

2

2
= − + (55)

= 3
4 2 2

3
L
a

L

ν κ
. (56)

For a Gaussian distribution it is true that 68.3% of all realizations stay in an area around the

average displacement determined by the standard deviation. This means that only
100 68 3

2 15 9% . % . %− = of the realizations reach an amplitude greater than x̂1 + δx1 after passing

x̂ . Because it is also possible for a realization to have its maximal value in the direction of x1 before

passing x̂ , the overall probability for a realization to have an amplitude lower than x̂1 + δx1 is
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Π( ) ( % . %) . %.amplitude ≤ + = − =x x1 1
2100 15 9 70 8δ (57)

In the same way it can be shown that 95.5% of all realizations have an amplitude lower than

x̂1 + 2 23
1δ x .

Proof for Lemma 2

Assume a small unit cell with the edge lengths dr and d� with its center being x and the level

curve of P through x given and going through the center of the edges with the lengths dr (see

Figure 3). If dr and d� are small, we may assume the density distribution P and the values f(x)

and Σ(x) of (1) as constant inside the unit cell. Due to the small size of the Lie-derivative of P

along f, the movement normal to the level curve is dominated by the stochastic part of (1). The

net fluxes j1 and j3 trough the edges 1 and 3 are vanishing and therefore the overall flux is

tangential to the level curve. The net flux j2 (j4), trough the edges 2 (the edge 4) can be

determined by integration (see, for example, [[25], p. 622]):

d P dnφ4
4

= + ⋅∫ ( )( ( ) ( ) )x f x x xΣΣ ΓΓ
edge 

(58)

≈ P drν , (59)

d dφ φ2 4= − (60)

By letting dr and d� go to zero the absolute value of the net flux density ||ϕ (x)|| follows:

ϕ
φ

ν( ) lim , ( )
( ) ( ).x

x
x x= =

→dr

d

dr
P

0

2 4 (61)

Proof for Theorem 1

Because the density distribution P is smooth and the curvature of its level curves does not

change its sign, there exists exactly one state x̂ Œ X̂ with x̂1 = c for every c Œ (0, ∞). X̂ is a

smooth simple curve in the state space which can be parameterized by

ˆ : ( , ) ˆ( )
ˆ ( )

,X
x

0
2

∞ ∋ → =
⎡

⎣
⎢

⎤

⎦
⎥χ χ

χ
χ

x (62)

with ˆ ( )x2 χ an unknown but smooth function in c. We can get a term proportional to the

average number of oscillations of all realizations per time unit Δ
Δ
N
t if we determine the total net

flux of realizations jt through this curve:

Δ
Δ
N
t t n

X
∝ =

∈∫φ ϕ( ) | ( ) ,x x
x

0 (63)

with n0( )x the normalized normal vector on X̂ in x̂ . We may determine the probability

PA(c) of the amplitude c Œ (0, ∞) by multiplying the flux density of realizations ϕ( )x with Ω
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( x̂ , c), the probability that a oscillation of a realization contributing to the flux density at x̂
has the amplitude, and integrating over all x̂ Œ X̂ :

P nA
X

( ) ( , ) ( ) | ( ) .χ χ ϕ∝
∈∫ Ω x x x

x
0 (64)

From the condition ∂
∂ =ˆ ( ) |x χ
χ n0 0 we get

n
x

x

0
1

1 2
2

2

1
=

+ ∂
∂

⎛
⎝
⎜

⎞
⎠
⎟

− ∂
∂

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥ˆ ( )

ˆ ( )
.

χ
χ

χ
χ

(65)

Because of Lemma 2 we know that the flux density ϕ( )x is directed along the x2-axis and has

the absolute value P ( x̂ ) ν( x̂ ). Therefore we can calculate (64) to

P
P

x

A( ) ( ( ), )
( ( )) ( ( ))

( )
χ χ χ

χ ν χ
χ

χ
∝

⎡

⎣
⎢

⎤

⎦
⎥ ⋅

− ∂
∂

⎡

⎣

⎢Ω x
x x

0 2

1
⎢⎢
⎢

⎤

⎦

⎥
⎥
⎥

∞

∫0 dχ (66)

=
∞

∫ Ω( ( ), ) ( ( )) ( ( )) .x x xχ χ χ ν χ χP d
0

(67)

Although we do not know the exact shape of Ω ( x̂ , c), which may be complicated to

calculate, we know a lower and an upper bound for Ω. The lower bound is given due to the fact

that Ω must be zero for c < x̂1 , because if (1) goes through the state x̂ , it has at least the

amplitude of this state. An upper bound for almost all realizations is given by Lemma 1 with

x̂1 + 2 23
1δ x . We may therefore conclude that Ω is approximately zero for c being outside of

the interval [ x̂1 , x̂1 + 2 23
1δ x ], which simplifies (67) to

P
x

P
xA( )

( ) ( )
χ ν

χ ξ
χ ξ

χ ξ
χ ξ

∝
+
+

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

+
+

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2 2
ΩΩ

χ ξ
χ ξ

χ ξ
δ

+
+

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟−∫ ˆ ( )

, .
x

d
x 22 2

0

3
1

(68)

If δx1 is small, we can assume P and ν being approximately constant in the integration

interval, which simplifies (68) to

P
x

P
x xA( )

( ) ( ) (
χ ν

χ
χ

χ
χ

χ ξ
∝

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

+

2 2 2
Ω

χχ ξ
χ ξ

χ ν χ
χ ξ
χ

δ +
⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

=
+

−∫ )
,

( ( )) ( ( ))
(

2 2

0

2

3
1x

d

P
x

x x Ω
++

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟−∫ ξ

χ ξ
δ )

, d
x2 2

0

3
1

(69)

For small δx1 the integral of Ω over ( , )−2 2 03
1δ x is approximately 1. The result of this last

approximation is given by Theorem 1.
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