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ABSTRACT We describe and test a Markov chain model
of microsatellite evolution that can explain the different
distributions of microsatellite lengths across different organ-
isms and repeat motifs. Two key features of this model are the
dependence of mutation rates on microsatellite length and a
mutation process that includes both strand slippage and point
mutation events. We compute the stationary distribution of
allele lengths under this model and use it to fit DNA data for
di-, tri-, and tetranucleotide repeats in humans, mice, fruit
flies, and yeast. The best fit results lead to slippage rate
estimates that are highest in mice, followed by humans, then
yeast, and then fruit flies. Within each organism, the estimates
are highest in di-, then tri-, and then tetranucleotide repeats.
Our estimates are consistent with experimentally determined
mutation rates from other studies. The results suggest that the
different length distributions among organisms and repeat
motifs can be explained by a simple difference in slippage
rates and that selective constraints on length need not be
imposed.

Microsatellites are tandem repeats of short units of DNA that
occur with high frequency throughout the genomes of many
organisms (1). Microsatellite loci have a high degree of
variability that is caused by a high rate of mutations that alter
microsatellite length. There are several major reasons for
interest in microsatellite loci. First, the abundance and high
level of allelic variation at microsatellite loci in the genomes of
many organisms has made them popular genetic markers (2).
Also, genetic distance measures based on microsatellites can
be used to answer questions concerning population structure
and divergence (3-5). Finally, expansion of one type of mic-
rosatellite (triplet repeats) leads to several human genetic
disorders such as fragile X syndrome (6) and myotonic dys-
trophy (7).

The primary mutational mechanism leading to changes in
microsatellite length is polymerase template slippage (8, 9).
During replication of a repetitive region, DNA strands may
dissociate and then reassociate incorrectly. Renewed replica-
tion in this misaligned state leads to insertion or deletion of
repeat units, thus altering allele length. At the triplet repeat
loci associated with various genetic disorders, there is also
some possibility of very rapid growth in allele size. Biological
explanations for this phenomenon are provided in ref. 10, and
a mathematical model for rapid growth is discussed in ref. 11.
We restrict our attention to loci that do not undergo such rapid
growth. In microsatellite loci where rapid growth does not
occur, most of the observed changes in length are by =1 repeat
unit. For this reason, the stepwise mutation model (SMM) (12)
has often been used to model microsatellite evolution (3,
13-15).
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Following the SMM, the length of a microsatellite varies at
a fixed rate independent of length, according to a symmetric
random walk on the positive integers. The problem with this
model for the study of microsatellite length evolution is that a
symmetric random walk does not converge to a stationary
distribution, and it is expected to attain arbitrarily high values.
Moran (16) noted that the SMM would not predict a stationary
distribution of lengths but that the variance in allele length
within a population of fixed size would stabilize. This obser-
vation has led most works to analyze the difference in micro-
satellite length between individuals (5, 13, 15). This approach
is useful for estimating the time of divergence of populations
(4), but it fails to explain why individual alleles do not grow to
arbitrarily large lengths.

Some variants of the SMM address this problem by consid-
ering length constraint on microsatellites (17-19). An upper
bound on the number of repeat units in microsatellites greatly
simplifies computations and is based on the observation that
very long alleles are rare (20). Although the presence of an
upper bound leads to a stationary distribution of lengths, it is
not clear why a strict upper bound should exist, and what its
value should be.

An alternate explanation for the absence of very long alleles
is that point mutations within a repeat unit interrupt the
microsatellite repeat region, creating two shorter repeat re-
gions (21). Bell and Jurka (17) were the first to incorporate this
idea into a model of microsatellite evolution. However, their
study differs from ours in two important respects. First,
because they kept track of both parts of a repeat split by a point
mutation, their model was analytically intractable and could be
studied only by simulation. Second, they imposed an artificial
upper bound of 30 repeat units to ensure the existence of a
stationary distribution. The fact that our stationary distribu-
tion can be computed explicitly allows us to estimate slippage
rates by fitting the model to data. More importantly, the
absence of a selective constraint in our model allows us to
conclude that the equilibrium distribution of microsatellite
repeat lengths can result from a balance between slippage
events and point mutations.

The Model. Our model is a continuous time Markov chain
that incorporates length dependent slippage events that may
lead to small changes in microsatellite length and incorporates
point mutations within a microsatellite that may greatly reduce
length (i.e., the number of consecutive repeat units). The states
of the chain are the positive integers, 1,2, 3 .. ., each of which
corresponds to the number of tandem repeat units at a
microsatellite locus. In formulating our chain, we are thinking
of the experiment in which we randomly select adjacent
nucleotides as a possible starting point for a microsatellite and
count the number of tandem repeats, starting with the chosen
pair and scanning to the right in the sequence.

For each generation, three types of transitions may occur.

Abbreviation: SMM, stepwise mutation model.
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1. The number of repeat units may change by = 1 unit due
to polymerase slippage. Slippage events at a microsatellite
consisting of k repeat units occur at rate (k—1)*b, where b is
the per repeat unit slippage rate. This choice is motivated by
the idea that a longer allele will present more opportunities for
a slippage event during replication.

2. A point mutation may occur within a repeat, thus cutting
the perfect microsatellite repeat into two smaller repeats.
Because we are tracking the evolution of one perfect repeat,
only the portion of the microsatellite to the left of the point
mutation is retained in the counting scheme of the model. This
allows us to monitor the evolution of one microsatellite and
study its stationary length distribution, without introducing
complications associated with keeping track of both portions
(17), that would make analytic computations impossible. A
microsatellite consisting of k repeat units will move to any of
the states, 1, 2, ... k —1 at point mutation rate a.

3. A transition from one to two repeat units due to specific
base substitutions occurs at some small rate c¢. This transition
provides a way for microsatellite lengths to leave state one,
thus preventing length one from being an absorbing state.

Although this model imposes no artificial upper bounds on
microsatellite length, we have shown that a stationary distri-
bution exists. For details see ref. 22. A formal proof involves
some knowledge of Markov chain theory, but the intuition
behind it is clear. Suppose that slippage events can only
increase microsatellite length. The microsatellite will increase
in length due to slippage at a rate proportional to the number
of repeat units. Point mutations, which also occur at a rate
proportional to the length, decrease the length of the perfect
repeat by a factor of two on average. Because dividing by two
reduces the number of repeat units much faster than addition
can increase them, microsatellite length will not grow without
bound, and an equilibrium distribution will become estab-
lished. The existence of a stationary distribution in this worst
case implies that a stationary distribution will also exist if
slippage events can either increase or decrease length.

DNA Sequence Analyses. DNA sequences from humans,
mice, fruit flies, and yeast were used to test the model. The
data collected for each organism is a concatenation of 15-20
BAC, PAC, and P1 clones down-loaded from the web home
pages of Lawrence Berkeley Labs (http://www.lbl.gov; August
1997), the Genome Sequencing Center (http://genome.wustl.
edu/gsc/yeast/yeast.html; August 1997), and the Whitehead
Institute (http://www-seq.wi.mit.edu; August 1997). A serious
problem with this type of data collection is the possibility of
overlap among the contigs, which would lead to double count-
ing of certain regions. To avoid this problem, the BLAST
software package was used to align all of the sequences (23),
and overlapping regions were removed. After this step, the
remaining data consisted of ~1 million bp of nonoverlapping
DNA from each organism.

Each sequence was scanned for di-, tri-, and tetranucleotide
repeats. Different repeat types were considered separately
because there is evidence that mutation rates at microsatellite
loci vary depending on the length of a repeat unit (24-26).
Repeats such as (4)" were classified as mononucleotide re-
peats and were not counted. Dinucleotide repeats were not
counted when examining tetranucleotide repeats. A microsat-
ellite was defined as a sequence consisting of five or more
tandemly repeated units. Shorter sequences were not consid-
ered because we aim to compare our findings with experimen-
tal results in which shorter sequences are usually ignored.

A counting scheme consistent with the stochastic model was
chosen to tabulate the data. We described the method used for
counting dinucleotide repeats. The case of tri- and tetranucle-
otides was completely analogous. We processed the data by
examining each successive pair of nucleotides and then count-
ing the number of times that the pair occurs to the right in the
sequence. This scheme has the property that a repeat of n units
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also will generate repeats of length n—1, . .., 5. The counting
scheme was consistent with our viewpoint of picking a random
starting point for a microsatellite and scanning the sequence to
the right. The counts collected by this scheme were the
appropriate data for fitting our model. In the next section, we
related our results to the more typical scheme of counting each
microsatellite once.

As explained in ref. 22, the stationary distribution of the
Markov chain, (i), i = 1 can be computed by solving the
following equations:

cm(l) =bmw(2) + ai'n'(/') [1]

j=2

b(i — V(i) = bim(i + 1) +ia 2, w(j), i=2. [2]

j=i+1

This distribution is a function of the parameters a, b, and c,
described in the previous section. Because we define micro-
satellites to be a sequence of five or more repeat units, we need
to consider the stationary distribution conditioned on length
=5 to compare our results with data. The parameter ¢ controls
the relative frequency of length one repeats to the frequency
of other repeats. For this reason, the actual value of ¢ is not
relevant given that we consider the conditional distribution.
Furthermore, one can see from Eq. 2 that the stationary
distribution only depends on a and b through their ratio. It
follows that the only true parameter needed to compute the
stationary distribution is b/a, the ratio of slippage rate to point
mutation rate. For the purpose of obtaining numerical values
of b that could be compared across organisms and with
experimental results, we fixed the point mutation rate at a =
1 X 1078 per nucleotide per generation (27). We then fit the

Table 1. Dinucleotide repeat counts in 1 Mb of sequence data

Length Human Mouse Fruit fly Yeast
5 88 111 95 30
6 31 75 38 10
7 23 34 16 12
8 9 23 13 6
9 3 19 11 2

10 5 10 4 5
11 5 8 5 3
12 4 15 1 1
13 3 5 1 2
14 5 15 0 1
15 0 21 0 1
16 5 7 0 1
17 3 9 0 0
18 4 13 0 1
19 3 7 1 0
20 5 10 0 0
21 2 11 0 0
22 2 2 0 0
23 1 8 0 0
24 2 7 0 0
25 1 2 1 0
26 0 4 0 0
27 0 3 0 0
28 0 5 0 0
29 0 1 0 0
30 1 0 0 0
31 0 2 0 0
32 0 1 0 1
33 0 1 0 0
34 0 1 0 0
Total 205 430 186 76
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empirical distribution of microsatellite repeats with values of
the stationary distribution computed for various values of the
slippage rate.

RESULTS AND DISCUSSION

The number of microsatellites of different lengths are shown
in Tables 1, 2, 3. In this presentation of the data, each
microsatellite is counted once, and allele length is given in
number of repeat units. The mouse has a higher density of
microsatellites per megabase of sequence than the other
organisms. Humans and fruit flies have a comparable density
of dinucleotide repeats, but the distributions of repeat lengths
vary in that humans have far more long repeats than fruit flies.
Finally, there are almost no tetranucleotide repeats of length
=5 in the yeast and fruit fly data.

Fig. 1 shows the best fit results for the four organisms. The
histogram provides the observed counts, whereas the line
graph is the stationary distribution multiplied by a scaling
factor, K. The scaling factor corresponds to looking at the
distribution conditional on length =5 and converting condi-
tional probabilities to expected counts. For each lengthi = 5,
the line graph gives a value K (7). Because each microsatellite
of length n generates exactly 1 microsatellite of length n— 1,
..., 5, (i) can be interpreted as the frequency of microsat-
ellites of length i or greater. Note that p(i), the frequency of
a microsatellite of length i, is simply given by p(i) = w(i) — w(i
+ 1). Hence m(n), n = 5, is the scaled tail of the stationary
distribution of lengths.

Our fits are based on the one-step, symmetric slippage
model. The final fit was chosen based on the slippage rate that
minimized the sum of absolute differences between the ob-
served and expected length distributions. This criterion
worked better than minimizing squared error because using
squared error led to fits that were insensitive to the tail of the
empirical distribution. We considered variants that allowed
slippage by two repeat units and asymmetry in the slippage
rates (i.e., slippage rate up # slippage rate down). Slippage by
two repeat units led to slight improvements in the fit but
greatly increased computational complexity. The best fit re-
sults suggested that slippage by two repeat units occurred at a
rate that was two orders of magnitude lower than the one-step
slippage rate. The asymmetric model gave similar quality fits
to the symmetric model. In general, the results were robust to
small variations in the model.

For each organism, we fit the one-step, symmetric model to
the data by choosing an appropriate value for the slippage rate.
Higher values of slippage rate led to a heavier tail in the
stationary length distribution. Table 4 shows the different best

Table 2. Trinucleotide repeat counts in 1 Mb of sequence data

Length Human Mouse Fruit fly Yeast
5 19 16 26 23
6 4 15 14 10
7 5 4 2 3
8 1 4 2 4
9 0 5 2 3
10 1 0 0 1
11 0 1 0 0
12 0 0 0 0
13 1 0 0 0
14 0 1 0 0
15 3 0 0 0
16 0 1 0 0
19 0 2 0 0
20 0 1 0 0
26 0 2 0 0
Total 34 52 46 44

Proc. Natl. Acad. Sci. USA 95 (1998)

Table 3. Tetranucleotide repeat counts in 1 Mb of sequence data

Length Human Mouse Fruit fly
5 23 33 3
6 7 18 0
7 1 12 0
8 0 8 0
9 0 7 0
10 4 1 0
11 3 4 0
12 0 8 0
13 0 1 0
14 0 2 0
15 1 0 0
18 0 1 0
Total 39 95 3

fit slippage rates per dinucleotide microsatellite per genera-
tion. The results indicate that slippage rates are highest in mice,
followed by humans, then yeast, and then fruit flies. To
compare the per repeat unit slippage rates given by the best fits
with experimentally determined per locus rates, it is necessary
to multiply the rates by (/ — 1), where / is the average
microsatellite length in the experimental study. For example,
mutation rates in dinucleotide repeats in fruit flies were
estimated to be 9.3 X 107° per locus per generation (M.D.S.,
C. Hutter, K. Wetterstrand, M. Gaudette, T. Mackay, and
C.F.A., unpublished results). The per repeat unit slippage rate
from the best fit of the model to dinucleotide data was 2.3 X
1077, and the average number of repeat units per microsatellite
in the study was 13.1, so our per locus slippage rate estimate
is (2.3 X 1077)(12.1) = 2.8 X 107°. The other entries in Table
4 were computed in the same way.

Weber and Wong (26) presented data showing that tet-
ranucleotide repeats in humans are more mutable than di- or
trinucleotide repeats. However, most subsequent studies (14,
24, 33) indicate that dinucleotides have the highest mutation
rate, on average, followed by tri- and tetranucleotide repeats.
Our results support this latter view. Chakraborty et al. (24)
explain that Weber and Wong (26) may have over-estimated
average tetranucleotide mutation rates and performed a two-
way ANOVA to determine that dinucleotide repeats in hu-
mans have a per locus mutation rate that is higher than the
trinucleotide rate by a factor of 1.22-1.97 and higher than the
tetranucleotide rate by a factor of 1.48-2.16. Because average
allele lengths are not reported, we cannot give comparable per
locus estimates. However, our per repeat unit estimates for di-,
tri-, and tetranucleotides (4.8 X 107°, 2.2 X 107, and 5.2 X
1077, respectively) suggest that dinucleotide repeats in humans
have a dinucleotide slippage rate that is higher than the
trinucleotide rate by a factor of 2.2 and higher than the
tetranucleotide rate by a factor of 9.2.

An analysis of population variation (M.D.S., C. Hutter, K.
Wetterstrand, M. Gaudette, T. Mackay, and C.F.A., unpub-
lished results) in fruit flies, using Chakraborty’s approach,
showed that per locus dinucleotide mutation rates in fruit flies
are 6.4 times higher than trinucleotide mutation rates and 8.4
times higher than tetranucleotide mutation rates. The average
number of repeat units per microsatellite was 13.1, 6.5, and
5.75 for di-, tri-, and tetranucleotides, respectively. Given these
locus lengths and per repeat unit slippage rates of 2.3 X 1077
and 1.3 X 1077 for di- and trinucleotide repeats respectively,
our per locus estimates would indicate that dinucleotides are
a factor of 3.6 times more mutable than trinucleotide repeats.
We had insufficient data to estimate tetranucleotide mutation
rates. The same trends were evident in mouse and yeast data.
The per repeat unit slippage rates in di-, tri-, and tetranucle-
otide repeats in mouse were 1.0 X 1075, 4.4 X 107°, and 1.5 X
107°, respectively. The per repeat unit dinucleotide slippage



Genetics: Kruglyak et al.

Proc. Natl. Acad. Sci. USA 95 (1998) 10777

450 60 100
human dinucleotides human trinucleotides human tetranucleotides
75 ¢+
300 + a0+
] € £
3 3 3 <+
3 3 3 50
150 + 20 4
25 4
, Tihmm N ] N
10 14 18 22 26 30 34 38 42 48 50 54 58 62 66 70 74 78 1518212427 30 333639424548 5154 576063 6669727578 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
length length length
450 50 100
mouse dinucleotides mouse trinucleotides mouse tetranucleotides
300 4 a0
€ H €
] 3 3
8 3 3
150 4 20 |
. g2 . | | 11
10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 15 18 21 24 27 30 33 36 33 42 45 48 5 54 57 6063 66 697275 78 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
length length length
450 60
fruit fly dinucleotides fruit fly trinucleotides
300 40 4
E -
g
© o
150 20 4
0 0 I —0—0-
10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78
length length
450 80
yeast dinucleotides yeast trinucleotides
300 + 40 4
€ €
2 3
3 8
150 4+ 20 4
0 hrhm.\,\u o i

10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78

length

1518212427 303336 394245485154 5760636669727578

length

Fic. 1. The best fit results of the model across organisms and repeat motifs. Observed counts of di-, tri-, and tetranucleotide repeats from 1
Mb of sequence in each organism are given by the histogram. Expected counts based on the model are given by the line graph. The counts are
presented according to the counting scheme described in the text, and the lengths are given in number of nucleotides.

rate in yeast was 9.3 X 1077, and the trinucleotide rate was
2.0 X 1077,

Our results are consistent with the trends evident in exper-
imental findings and are in approximate agreement with
experimentally determined slippage rates. There are several
reasons for expecting some differences between our estimates
and those found in the literature. Most importantly, our model
does not include all of the biological complexities of micro-
satellite evolution and can only be expected to provide rough
estimates. For example, we do not account for unequal cross-
ing over or the possibility of selective constraint. Furthermore,
we make the rough estimate that the point mutation rate a is
fixed at 1 X 1078 per nucleotide per generation across organ-
isms and repeat motifs. Because our true parameter is b/a, the

ratio of slippage and point mutation rate, one may conjecture
that differences in length distributions are caused by differ-
ences in the value of a. However, this seems unlikely because
significantly different values of b/a were found in di-, tri-, and
tetranucleotide repeats within the same species. Because per
basepair substitution rates should be the same in this situation,
the different ratios are likely caused by different values of
slippage rate.

An alternate reason for the discrepancies between our rate
estimates and experimental estimates may be the uncertainty
involved in the experimental studies. Because mutation events
are rare, most experimental estimates are based on finding a
small number of mutant alleles. For example, the estimates in
humans were based on finding one and two mutations, respec-
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Table 4. A comparison of dinucleotide slippage rates per locus
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Predicted rates

Experimental rates

Per repeat unit Mean locus length Per locus Per locus Reference
Human 4.8 X 107° 24.7 1.1 x 1074 4.5 %1074 28
4.8 X 107° 28 1.3x 107 23 X107 29
Mouse 1.0 X 1073 20 1.9 x 1074 4.6 X 107 30
1.0 X 1073 — — 4.7 %1074 31
Fruit fly 23 x 1077 13.1 2.8 x10°° 9.3 X 107° i
Yeast 9.3 X 1077 14 1.2x107° 3.0 X107 32

A comparison between our predicted dinucleotide repeat slippage rates and experimentally determined
rates. Per locus rates are obtained by multiplying the per repeat unit rates from the best fit of the model
by (! — 1), where [ is the locus length of the corresponding experimental study. Locus length was not
available for one mouse microsatellite study (—). The locus length of 20 in Ref. 30 is an approximation
based on the authors statement that only microsatellites of length 10 or more repeat units were considered,
and 85% of microsatellites were longer than 15 repeat units.
fM.D.S., C. Hutter, K. Wetterstrand, M. Gaudette, T. Mackay, and C.F.A., unpublished result.
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