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Transporters play a vital role in both the resistance mech-
anisms of existing drugs and effective targeting of their
replacements. Melarsoprol and diamidine compounds simi-
lar to pentamidine and furamidine are primarily taken up by
trypanosomes of the genus Trypanosoma brucei through the P2
aminopurine transporter. In standardized competition experi-
ments with [3H]adenosine, P2 transporter inhibition constants
(Ki) have been determined for a diverse dataset of adenosine
analogs, diamidines, Food and Drug Administration-approved
compounds and analogs thereof, and custom-designed trypano-
cidal compounds. Computational biology has been employed to
investigate compound structure diversity in relation toP2 trans-
porter interaction. These explorations have led to models for
inhibition predictions of known and novel compounds to obtain
information about the molecular basis for P2 transporter inhi-
bition. A commonpharmacophore for P2 transporter inhibition
has been identified along with other key structural characteris-
tics. Our model provides insight into P2 transporter interac-
tions with known compounds and contributes to strategies for
the design of novel antiparasitic compounds. This approach
offers a quantitative and predictive tool for molecular recogni-
tion by specific transporters without the need for structural or
even primary sequence information of the transport protein.

Trypanosoma brucei are unicellular trypanosomal parasites
that cause African sleeping sickness in humans and nagana in
livestock. These trypanosomes are auxotrophic for purines and
thus rely entirely on purine supplies salvaged from the host
environment. As such,T. brucei brucei expresses amultitude of
purine nucleoside and nucleobase transporters (1). One of
these, the T. brucei aminopurine P2 transporter, is unusual as a
genuine nucleoside-nucleobase transporter in that it equally
transports the nucleoside adenosine and the nucleobase ade-
nine but has virtually no affinity for any other natural purines or
pyrimidines (1–3). Yet, despite this apparent high level of selec-
tivity, it has been shown that P2 alsomediates cellular uptake of

the Food and Drug Administration-approved drugs melarso-
prol and pentamidine (2, 4, 5), themain veterinary trypanocides
diminazene aceturate (6) and possibly isometamidium (7), and
various nucleoside drugs (8).
The unusual nature of this transporter has led to efforts to

exploit it as an efficient conduit for novel trypanocides (9, 10),
but this requires the identification of the exact pharmacophore
as well as the physical limitations on size and charge distribu-
tion of the extracellular binding site of the transporter. From
the structural similarities between known P2 substrates, it
could be concluded early on that the so-called amidinemotif of
adenine, i.e.N(1)�C(6)-NH2 (see Fig. 1), was very likely to play
amajor role in the high affinity interaction with the transporter
(3, 11). However, quantitative information or three-dimen-
sionalmodels explaining the high affinity binding, by one trans-
porter, of such diverse molecules as adenosine (Fig. 1A) (2, 3),
stilbamidine (Fig. 1C) (12),melarsoprol (Fig. 1F) (2, 3), and even
isometamidium (Fig. 1G) (7), have not been available. The
apparent broad selectivity has been all the more intriguing for
the highly similar transport efficiencies of P2 for adenosine and
adenine, amost unusual feature for nucleoside transporters (1).
To construct a predictive and quantitative model of P2-sub-

strate interactions, we determined theKi values of a large num-
ber of highly diverse potential inhibitors, with affinities ranging
over several orders of magnitude, through competition experi-
ments with radiolabeled adenosine. These values and struc-
tures were then employed for a computational modeling ap-
proach to gain more information about the molecular basis for
P2 transporter inhibition. The resulting model can be used to
evaluate the affinity of the P2 transporter for existing and novel
compounds in silico, potentially aiding in the development of
novel and selectively targeted trypanocides. More important
yet, this strategy allows robust three-dimensional insights into
transporter-ligand binding while not requiring knowledge of
the structure, or indeed the sequence, of a transporter and can
be applied to any solute transport mechanism for which uptake
or binding experiments can be routinely performed.

EXPERIMENTAL PROCEDURES

Transport of [3H]Adenosine by Bloodstream Forms of T.
brucei—Bloodstream forms of T. brucei brucei strain 427 were
taken fromstocks in liquid nitrogen and injected in adult female
Wistar rats, fromwhich they were harvested by exsanguination
by cardiac puncture at peak parasitemia. Parasites were isolated
from the blood by elution over a DE52 column (Whatman) (13)
and washed twice in assay buffer (AB: 33 mM HEPES, 98 mM
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NaCl, 4.6 mM KCl, 0.3 mM CaCl2, 0.07 mM MgSO4, 5.8 mM

NaH2PO4, and 14mM glucose, pH 7.3). Cells were resuspended
in this buffer at �108 cells/ml prior to use in transport experi-
ments. Cell counts were performed using a hemocytometer.
Transport of [3H]adenosine (20–40 Ci/mmol; Amersham Bio-
sciences) was performed exactly as described previously (14), in
the presence of 250 �M inosine to block the P1 adenosine
uptake system (2). Briefly, 100 �l of 50 nM [3H]adenosine,
mixed with various concentrations of nonradiolabeled test
compounds, was added to 100�l of AB containing 107 trypano-
somes and incubated at room temperature for 30 s, within the
linear phase of uptake (3). Uptake was terminated by the addi-
tion of 1 ml of ice-cold assay buffer containing 1 mM adenosine
followed by immediate centrifugation through an oil layer to
separate cells from external radiolabel. The amount of radio-
labeled adenosine inside the cell was then determined using
a scintillation counter and corrected for externally associated
label as described previously (14). A plot of inhibitor concen-
tration versus adenosine uptake rate (expressed as pmol(107
cells�1 s�1)) yielded sigmoidal curves with Hill coefficients of
approximately �1, consistent with monophasic competitive
inhibition (Prism 4.0, GraphPad). Inhibition constants were
calculated from the EC50 values, using the Cheng-Prusoff equa-
tion as described previously (12).
Inhibitor Dataset—Compounds were acquired from several

academic laboratories as well as purchased from various com-
mercial sources. Their respective in vitro transport activities
along with the compound names and sources are shown in sup-
plemental Table 1. Employing the formula pKi � �log(Ki), the
Kimicromolar values for the 112 compoundswere converted to
corresponding pKi values. The pKi values for this training set
span more than 4 log units.
Software—All 112 compounds were constructed in silico

with the SYBYL 8.1 software package on a Fedora Core 5 Linux
workstation. Compound structures wereminimized to conver-
gence using a conjugate gradient of 0.01 kcal/(mol Å) and a
maximum of 104 iterations employing the Tripos force field
with Gasteiger-Hückel charges. A three-dimensional cubic lat-
tice with 2-Å grid spacing in all directions was created to ana-
lyze compounds that were aligned as described below. No
improvementwas seen in themodels when the grid spacingwas
reduced to 1 Å (15).
Initial Alignment—Through the implementation of the

SYBYL software alignment modules, the compounds were
three-dimensionally arranged by an initial analysis of structur-
ally and chemically related atoms. Algorithm-generated align-
ment was performed using the align data base command,
whereas the atom-to-atom alignment implemented the match
feature of the alignment tools. The algorithm alignment took
place first by employing similar backbone structures so that the
majority of similar compounds was overlaid in the samemolec-
ular space. Structurally related aligned compounds were then
moved into separate data bases. The compounds that belonged
to the same structural classes, but which varied in atom types or
had slight structural differences, were placed into respective
data bases and aligned to the most structurally related com-
pound using atom-to-atom alignment. Seven optimum data
bases of compounds resulted from initial alignment.

Whenmore rigid compound structures, consisting of a larger
number of atoms, were selected as scaffolds for alignments, a
greater number of data bases were created. These data bases
lacked the variation necessary to form comparative molecular
field analysis (CoMFA)2 and comparative molecular similarity
indices analysis (CoMSIA) models for predictability. Also,
when the data bases were aligned by less rigid scaffolds, consist-
ing of a smaller number of atoms, fewer models resulted, and
the models produced were not statistically significant in terms
of q2cv (16). The best models were obtained when compounds
were aligned by the carbons of common compound backbones.
These scaffolds for alignment were obtained from the com-
pounds displayed in Fig. 1: dataset A, adenine; dataset B, fura-
midine; datasetC, stilbamidine; datasetD, pentamidine; dataset
E, 1,1�-(nonane-1,9-diyl)diguanidine; dataset F, melarsoprol;
and dataset G, isometamidium. Datasets E–G are composed of
four, seven, and four compounds, respectively. The alignment
for these last three datasets can be viewed in supplemental Fig.
1. These data bases together consist of less than 8% of the total
compounds. Because the purpose of the initial alignmentwas to
determine the pharmacophore for the final alignment, only ini-
tial datasets A–Dwere evaluated through statistics and contour
maps. All 112 compounds were included in the final pharma-
cophore models.
Multiple Regression Analysis—CoMFA and CoMSIA quanti-

tative structure-activity relationshipmodels were generated for
molecular data bases through a partial least squares (PLS) mul-
tiple regression analysis withmolecular descriptors as indepen-
dent variables and the pKi values as dependent variables. Statis-
tical significance in the form of q2cv was assessed through the
leave-one-out cross-validationmethod. Thenumber of compo-
nents was determined by the smallest predicted error sum of
squares, a value that does not always correspond to the highest
q2cv value. Further statistical significance assessment was per-
formed for the final model using 10-fold cross-validation. The
values obtained from the 10-fold cross-validation assessment
are averages of 10 trials implementing random compound
selection. Column filtering did not improve the signal-to-noise
ratio (16).
Molecular Descriptors—There are two CoMFA molecular

descriptors. The steric van der Waals interaction and the elec-
trostatic Coulombic interaction descriptors were calculated at
each lattice intersection using a probe, an sp3 carbon atomwith
a formal�1 charge. Standard scaling and default energy cutoffs
were employed. There are five CoMSIA molecular descriptors.
Steric, electrostatic, hydrophobic, hydrogen bond donor, and
hydrogen bond acceptor descriptors were calculated using a
standard probe as follows:�1 charge, 1 Å radius and�1 hydro-
phobicity, �1 hydrogen bond donor, and �1 hydrogen bond
acceptor. Steric descriptors are related to the third power of
the atomic radii. Electrostatic descriptors are derived from par-
tial atomic charges. Hydrophobic descriptors are derived from
atom-based parameters. Hydrogen bond donor and acceptor
atoms are derived from experimental values.

2 The abbreviations used are: CoMFA, comparative molecular field analysis;
CoMSIA, comparative molecular similarity indices analysis; PLS, partial
least square; SEE, standard error of estimate.
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Three-dimensional Contour Analysis—The interactions of
CoMFA and CoMSIA descriptors were visualized through
mapping of the product standard deviation with respect to
molecular descriptor values and coefficients (S.D.*Coeff.) at
each lattice point. For the initial models, the default levels of
contour by contribution were employed as follows: 80% for a
favored region and 20% for a disfavored region. Data were ana-
lyzed, and a common pharmacophore was identified. The com-
pounds of the final pharmacophore model were further ana-
lyzed through a contour by actual analysis, where the software
output assisted in the determination of proper ranges for
assigned values of favored and disfavored contour regions.
Pharmacophore Model—Common contours for the initial

quantitative structure-activity relationshipmodels were identi-
fied through the analysis of favored and disfavored contour

regions. The alignment of such contours aided in the identifi-
cation of a final pharmacophore. All compounds were re-
aligned, and the final models were constructed.

RESULTS

As seen in supplemental Table 1, this study employs 112
compounds acquired from several academic and industry loca-
tions. These compound all exhibit some level of inhibitory
activity for the T. brucei brucei P2 transporter. For large data-
sets of compounds with known activity values, it is possible to
employ computational biology to investigate the molecular
basis of their activity in terms of structural contributions to Ki
values. Predictive models can then be constructed, and impor-
tant interactions can be identified. Because a large number of
diverse compounds are in our data base, a two-step procedure
was used to establish a final model.
Initial Quantitative Structure-Activity Relationship Models—

As a first step, compounds were obtained in their minimal
energy conformation by using standard molecular mechanics
energyminimizationmethodswith theTripos force field. Com-
pound alignment by similar atoms of backbone structures ini-
tially separated the 112 compounds into seven data bases,
although the majority of the compounds resided in four of the
sets. The datasets with the majority of compounds were used
for initial PLS modeling. Table 1 displays the total number of
compounds in each dataset, the number of components (n)
used in PLS, and the statistics for each model as follows: the
cross-validated correlation coefficient (q2), the standard error
of estimate (SEE), the coefficient of determination (r2), and the
F statistic. When q2 is greater than 0.5, a model is said to have
predictability better than chance (16); however, it is also impor-
tant that the r2 value is near 1, the SEE is small, and the F
statistic is large. The r2 is a positive value between zero and one;
with one being the best correlation and zero being no correla-
tion. The SEE is a measure of the accuracy of the predictions.
The F statistic is used in comparing the variance between the
experimental and predicted values; a larger value indicates a
more statistically significant model.
The average statistics for the initial fourmodelswithCoMFA

molecular descriptors are as follows: q2cv equal to 0.64; SEE
equal to 0.23; r2 equal to 0.95; and F statistic equal to 123. Sim-
ilarly, the average statistics for the four models with CoMSIA
molecular descriptors were as follows: q2cv equal to 0.58; SEE
equal to 0.26; r2 equal to 0.92; and F statistic equal to 130.

FIGURE 1. Scaffolds for initial alignment: A, adenine; B, furamidine;
C, stilbamidine; D, pentamidine; E, 1,1�-(nonane-1,9-diyl)diguanidine;
F, melarsoprol; G, isometamidium. All 112 compounds could be aligned to
one of these scaffolds. Most compounds were in A–D.

TABLE 1
CoMFA and CoMSIA model statistics for the datasets A–D of Fig. 2

A B C D

CoMFA
Total Compounds 36 29 16 16
n 7 4 5 2
q2cv 0.65 0.55 0.57 0.79
SEE 0.29 0.32 0.17 0.12
r2 0.93 0.89 0.98 0.99
F statistic 55.9 50.5 74.4 311

CoMSIA
Total compounds 36 29 16 16
n 5 3 3 2
q2cv 0.50 0.55 0.65 0.61
SEE 0.32 0.34 0.26 0.11
r2 0.91 0.86 0.93 0.99
F statistic 62.5 51.5 47.4 358
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Although the models with CoMFA and CoMSIA molecular
descriptors were comparable, the ones with CoMFAmolecular
descriptors display better overall potential for analysis of
molecular descriptor contribution by contourmaps. This is pri-
marily due to the simplicity of two versus five molecular
descriptors.
Contour maps of CoMFA molecular descriptor contribu-

tions were generated for each model (Fig. 2). The electrostatic
interactions are shown as red and blue contours, and the
steric interactions are displayed as green and yellow con-
tours. Increasing partial positive charge is favored in blue
regions, and increasing partial negative charge is favored in red
regions, whereas increasing bulk in substituents are favored in
green regions and disfavored in yellow regions.
The red, blue, yellow, and green regions were then analyzed

to find common alignment features of structures that are of
importance for the final, combined pharmacophore alignment.
Red regions of dataset A are in the areas above C6, below N9,
and beside the imidazole ring of adenine, whereas those of data-
sets B–Dwere localized to a single locationmost often than not
on the backbone structure. The red contours of datasets A–D
can be aligned in several ways to one another; thus, this descrip-

tor alone is not enough to find the final pharmacophore for
alignment. The blue regions were most commonly found in
areas of N(R1)�C(R2)-NH(R3), where R3 is usually H. The
alignment was much improved with the inclusion of both the
red and blue regions and further enhanced by the addition of
the yellow and green regions. Yellow contour regions can be
reduced by realignment of compounds into green regions. The
yellow regions for dataset A are small in relation to all other
contours, and reside near the 2�- and 3�-hydroxy groups of the
ribose moiety. Dataset B exhibited yellow contours on both
ends of the furamidine backbone, whereas dataset C displayed a
yellow contour only at one end of the stilbamidine backbone.
The areas of yellow contour appear most at regions that consist
of several compounds with substituents that are not precisely
aligned, either because they differ largely in structure or
because the backbone allows for deviations in the alignment.
Dataset D consisted of yellow regions in the areas consisting of
compounds that were longer than pentamidine and/or that did
not align fully to the pentamidine backbone. Green regions of
dataset A were shown above C6 and next to bond C8/N9 of the
adenine backbone, whereas the green contours of dataset B
appear near and encompassing the phenyl with the most pre-
cise alignment. Datasets C consists of green contour near the
most precise alignment of the compounds. For dataset D, green
contourswere located in areas thatwere not precisely aligned to
the pentamidine structure. The green and yellow contours of
dataset D both reside in areas of structural deviation; however,
the green appears nearest the aromatic linking oxygen and the
unaligned amidines.
The identification of important structural features, described

above, made it possible to realign all 112 compounds, primarily
by the common N(R1)�C(R2)-NH(R3) structure found in the
blue contour regions and secondarily by the other contour
regions. The red regions of the four main datasets overlapped
strongly, whereas the yellow regions of datasets B–D can be
aligned to green regions of dataset A. The large compounds of
dataset A also had to be realigned. Fig. 3A displays the align-
ment of all 112 compounds with adenine displayed in purple,
and Fig. 3B zooms in on the location of the adenine now with

FIGURE 2. First alignment processes produced seven different data bases
for the 112 compounds. The compounds of the larger datasets, A–D, were
employed for quantitative structure-activity relationship CoMFA and CoMSIA
studies. Resulting three-dimensional CoMFA molecular surfaces are shown
for datasets A–D, which are labeled A–D, respectively. Steric contributions are
shown in green (favors bulky substituents) and yellow (bulky substituents
impact negatively on binding), and the electrostatic contributions are dis-
played in blue (favoring a positive charge) and red (favoring a negative
charge).

FIGURE 3. Final alignment of 112 compounds, with adenine displayed in
purple.
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the purple displayed as transparent, and this clearly shows the
pharmacophore alignment.
Final Pharmacophore Model—Aligned by the N(R1)�C(R2)-

NH(R3) structure with respect to contour regions, as described
above, compounds were then employed for PLS modeling. As
before, CoMFA and CoMSIA models were generated and
examined for statistical significance. The twomodels each con-
sisted of 112 compounds but use different molecular descrip-
tors and a different number of components. Although the q2cv
values are similar, the remaining statistics are not; the model
with CoMFA molecular descriptors achieved a higher level of
confidence than the model with CoMSIA molecular descrip-
tors (Table 2). To further validate these models, 10-fold cross-
validation was performed. The q210-fold values for the models
withCoMFAandCoMSIAmolecular descriptorswere 0.56 and
0.54, respectively. These values, along with the rest of the sta-
tistics, indicate statistical significance within each model.
The calculated predictions of the models formed from the

dataset with 112 compounds exhibit linear relationships with
the experimental Ki values (Fig. 4). Predictions from the model
with CoMSIA molecular descriptors are somewhat scattered,
especially at high affinity, whereas the model with CoMFA
molecular descriptors produces more linear pKi predictions,
especially for compounds with high affinity for the P2 adeno-
sine transporter (Fig. 4). The r2 values for the linear relation-
ships are 0.95 for themodelwithCoMFAmolecular descriptors
and 0.86 for the model with CoMSIA molecular descriptors.
These models can be further evaluated through examination

of the final contour maps. Although it is useful to analyze mod-
els as a whole to gain information about a possible pharma-
cophore, once a pharmacophoremodel is obtained,muchmore
information can be gathered by evaluating the contour regions
of individual compounds within the model. Because the model
with CoMFA molecular descriptors is outperforming the
model with CoMSIA molecular descriptors, the focus of this

analysis will remain on the contours of the model with CoMFA
molecular descriptors. As before, the steric contributions are
displayed in yellow and green, and the electrostatic contribu-
tions are shown in red and blue.
The overall contour regions from the initial model have

changed significantly with realignment and incorporation of all
112 compounds. These changes appear most dramatic when
looking at individual compounds. In the initial models, each
compound contributed roughly 2.8–6.3%. Thiswas due to sim-
ilar compounds being aligned by a common backbone scaffold
and their being only 16–36 compounds in each dataset; 1 in
36 is �2.8%, and 1 in 16 is about 6.3%. This percent of contri-
bution is much larger than the final model, where 1 in 112
compounds is roughly 0.89%. It is also important to note that a
larger quantity of compounds with similar backbones will have
a significant effect on the contribution. Hence, based on initial
models, the compounds with the adenosine scaffold structure
should contribute the most. There are 36 of these compounds.
Those with the pentamidine and stilbamidine scaffolds are
similar and align to one another well within the final model.
There are 32 of these compounds, whereas there are 29 com-
pounds related to furamidine.
From close observations of compound structure relation-

ships in the form of contour maps, it is possible to determine
where partial charge addition or subtraction to substituents
could improve compound interactions with the P2 adenosine
transporter. The evolutionary process by which this model cal-
culates predictions can be viewed through the evaluation of
contour regions and experimentally determined Ki values (Fig.
5). The Ki of 2-aminopyridine is 14 �M. When an amino group
is added into the favorable steric and positive electrostatic con-
tour regions to form 4,6-diaminopyrimidine, the Ki becomes
3.2 �M. Note that the amino group has a partial positive charge.
This amino group addition thus results in improved affinity.
When the additional groups, which reside in even more favor-
able contour regions, are added to the compound structure, the
Ki value becomes even smaller. Adenine is an example of a
compound with groups residing in favorable contour regions.
This compound has a Ki of 0.30 �M. When a compound inter-
acts with both positive and negative contour regions, the Ki

FIGURE 4. Actual versus predicted results from PLS models employing
CoMFA (left) and CoMSIA (right) molecular descriptors.

FIGURE 5. Calculated three-dimensional molecular surfaces for analyses
of compound structural relationships with P2 transporter inhibition.
From left to right, the compounds shown above are 2-aminopyridine, 4,6-
diaminopyrimidine, adenine, and adenosine. Colors are as in Fig. 2.

TABLE 2
CoMFA and CoMSIA model statistics for the 112 compound data
base

CoMFA CoMSIA

Total compounds 112 112
n 11 6
q2cv 0.55 0.54
q210-fold 0.56 0.54
SEE 0.22 0.37
r2 0.95 0.86
F statistic 190 109
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increases; the Ki value for adenosine, for example, increases
3-fold relative to adenine as a result of the bulky ribose group.
The evolutional process taken when using these potentials to
design compounds for synthesis is quite similar to the progres-
sion shown in Fig. 5. It is important to make small changes and
evaluate how the designed compound will fit within the steric
and electrostatic potentials assigned by the model.
Other important compounds to evaluate with this model are

the pentamidine-, furamidine-, and melarsoprol-like com-
pounds (Fig. 6). Pentamidine, furamidine, and melarsoprol all
have good affinity for the P2 transporter with respective Ki val-
ues of 0.37, 1.19, and 0.54 �M. Contour regions of pentamidine,
furamidine, and melarsoprol are displayed in Fig. 6. These
regions display several areas where some steric bulk and partial
positive charge can be added to improve affinity for the P2
adenosine transporter. A loss of affinity will occur if bulky sub-
stituents interact with the unfavorable yellow contour regions
and/or if positive charge interacts with the red contour regions.
With pentamidine, which is a very flexible compound, the

final pharmacophore model yellow contours display most cen-
tral atoms to be suitable for substituent addition; however, the
area nearest the pharmacophore should not be modified.
Melarsoprol is a more rigid structure, although rotation can
occur throughout the compound. There can be rotation
between the melamine ring and the phenyl and between the
phenyl and the dithiarsolan ring. For this compound, the yellow
contours reside near the melamine and the phenyl. This sug-
gests that a loss of affinity may result from substituent addition
to the atoms in these regions. Furamidine is a much more rigid
and curved structure. For this structure, the yellow contours are
much more abundant near the phenyls and yet away from the
furan and the amidines. This is even clearer when the com-
pound and its contour are viewed in three-dimensional space.
The areas where yellow contours do not exist are optimum for
substituent modification.
The red contours encompass both pentamidine and furami-

dine, whereas blue contours surround melarsoprol. The blue
contours appear to be based on the partial charge distribution.

For the diamidine compounds the partial charge distribution is
strongly localized at the amidines. This appears beneficial for
binding to the transporter; however, it is evident that more
charge to an amidine location will not improve binding.
Instead, a partial charge distribution that is sharedwithin a ring
structure appears to be more advantageous. This is seen in the
melamine-like structure of melarsoprol. Findings suggest that
additional charge, which is less localized, may be able to
improve binding of diamidine compounds.

DISCUSSION

The efficacy of many drugs is determined to a large extent by
the processes that govern their uptake into the cell or into the
cellular compartment that is the site of action (7, 17–19). These
processes obviously include transporters for water-soluble
drugs but even rates of diffusion for lipophilic drugs. An exam-
ple of the latter is chloroquine, which as a weak base diffuses
across several membranes before it reaches the Plasmodium
falciparum food vacuole where it is trapped by protonation and
fatally inhibits heme polymerization (20, 21). Equally, efflux
systems such as ATP-binding cassette transporters (22) and the
P. falciparum CRT1 channel-like protein (23) have been impli-
cated in resistance to drugs ranging from antibiotics and anti-
parasitics to antineoplastic drugs. As such, detailed insights
into the processes that determine drug flux across the (plasma)
membranes of target cells are vital for the rational optimization
of drug activity and both the prevention and bypassing of drug
resistance.
It is of pivotal importance that we gain insight into the

molecular mechanisms by which transporters bind and thus
select their substrates as this would allow us to construct mod-
els with predictive value, which would allow us to optimize
substrate design. Although in silico screening of virtual libraries
and predictions of substrate affinity are now possible for pro-
teins with known or computable structure (24–26), this is not
ordinarily possible for transporters as very few structures have
been obtained, and the protein structures, with usually 10–12
transmembrane domains, are highly complex and extremely
difficult to crystallize, although there have recently been some
notable successes, mostly with prokaryotic membrane proteins
(27–29). One approach is to use the few known transporter
structures as scaffolds for other transporters, by a computa-
tional process called fold recognition or threading.We recently
obtained a model for the T. brucei brucei nucleobase trans-
porter NBT1 by this process and validated it by site-directed
and random mutagenesis (30). The creation of a structural
model of the closely related Leishmania donovani LdNT1.1
nucleoside transporter by ab initio calculation was also very
recently reported (31). Although these approaches did produce
approximate models for the overall structure of the transport-
ers and identified key amino acid residues, they allow at best
limited prediction of substrate selection, and only if the amino
acids involved in binding have been separately identified. Thus,
with the current technologies, it is exceedingly difficult to
obtain the required functional insights with the protein struc-
ture as starting point.
A radically different approach was pioneered some time ago

to study purine transport in T. brucei brucei by systematically

FIGURE 6. Three-dimensional molecular surfaces for pentamidine (top),
furamidine (middle), and melarsoprol (bottom). Colors are as in Fig. 2.
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altering the substrate and calculating inhibition constants, Ki,
and from there binding energy �G0 (1, 17). This method was
used to explain substrate preferences of purine and pyrimidine
transporters inT. brucei brucei (32), Leishmaniamajor (33, 34),
Toxoplasma gondii (35), Leishmania mexicana (36), and the
human NBT1 nucleobase transporter (14), human concentra-
tive nucleoside transporters (37), and human equilibrative
nucleoside transporters (38) with semi-quantitative models of
substrate binding that did not require any structural or genetic
information about the transport protein. However, thismethod
still did not allow genuinely quantitative or three-dimensional
predictions nor was it suitable for screening of virtual libraries.
In this study, we have adapted the method to address the

above issues; energy-minimized three-dimensional structures
of 112 compounds with experimentally obtained binding affin-
ities for the TbAT1/P2 transporter were employed through the
use of CoMFA and CoMSIA molecular descriptors for PLS
model regression construction and analysis. The various mole-
cules were preliminarily aligned by their common structural
and chemical features, resulting in four datasets of compounds,
Fig. 2,A–D, largeenough for individualmodel formationandanal-
ysis. This was followed by optimized alignment of all 112 com-
pounds using fourmolecular descriptor contour potentials, nega-
tive and positive steric and electrostatic, as a guide. This has
generated an in silico computationalmodel into which newmole-
cules can be entered to arrive at a reliable estimate of binding
energy. This constitutes a first computational approach to the
design of novel ligands for the TbAT1/P2 transporter and allows
for in silico evaluation of large numbers of known and novel com-
pounds as substrates. The computational analysis was validated to
be statistically significantusing leave-one-out cross-validationand
10-fold cross-validation, aswell as by other statistics and the inter-
nal predictability of this model, as displayed in Fig. 4.
The contour profiles of steric and electrostatic factors also

allow fundamental insights into how various ligands interact
with the transporter binding pocket. The P2 transporter, with
its highly unusual substrate profile and involvement in drug
transport and resistance (2–5, 11, 39), was chosen for this study
to gain insight into how a transporter that is on the one hand
completely selective for adenine and adenosine only (out of all
nucleosides and nucleobases) can also bind molecules as
diverse as isometamidium, melarsoprol, and furamidine with
similar affinity. Previous studies (3, 11) already identified the
“amidine” motif formed by R1-N1�C6(R2)-NH2 of adenine as
the main motif responsible for P2 binding, and it was further
argued that the positive charge on N9 of adenine and adeno-
sine, as well as the aromaticity of the purine, also makes impor-
tant contributions to the high substrate affinity (3, 17).
The calculated substrate-transporter interaction contours for

adenine and adenosine in Fig. 5 now allow us to evaluate these
earlier conclusions against the advanced modeling approach
employed in this study. Fig. 5 identifies four substrates that have a
partial positive charge on the position of the amino group of
2-aminopyridine/adenine/adenosineasessential foroptimalbind-
ing. Similarly, a partial negative charge is strongly favored at posi-
tion 1, along with a positive charge at positions 8 and 9, whereas
there is no clear electrostatic preference at positions 3 and 7 or
most of the ribose moiety, except perhaps a preference for a posi-

tive charge at the 2�-position. Large substitutions are indicated as
unfavorable inpositions 1, 2, 8, and2�, and at the6-aminogroupof
adenosine (Fig. 5, yellow indicators), but the position of the ribose
group does not appear to be restricted with respect to further
expansion/elongation, in linewith thepositioningandhighaffinity
of the long diamidines.
The above interpretation of the CoMFA and CoMSIA mod-

els is entirely consistent with the experimentally obtained �G0

values listed in supplemental Table 1. For instance the impor-
tance of the partial negative charge on position 1, presumably as
hydrogen bond acceptor, is demonstrated by the reduced affin-
ity of 1-deazaadenosine versus adenosine (�(�G0)� 9.7 kJ/mol)
and of 1-deazapurine versus purine (�(�G0)� 5.7 kJ/mol). Sim-
ilarly, the positive charge provided by the 6-position amine is
quantified by comparison of purine riboside with adenosine
(�(�G0) � 7.3 kJ/mol), purine with adenine (�(�G0) � 10.2
kJ/mol), and 6-chloropurine ribosidewith adenosine (�(�G0)�
7.0 kJ/mol). As shown in Fig. 7, this gives estimates of contribu-
tions of 7.7 and 8.2 kJ/mol for the N1 and 6-amino groups,
respectively. The loss of both these groups should thus result in
a loss of binding energy of �16 kJ/mol, and this was demon-
strated by comparing 2�-deoxyinosine with 2�-deoxyadenosine
(�(�G0) � 16.3 kJ/mol) and 1-deazapurine with adenine
(�(�G0) � 15.8 kJ/mol). The strong contribution fromN9 like-
wise follows from comparing 9-deazaadenosinewith adenosine
and 4,6-diaminopyrimindine with 2-aminopyridine (�(�G0) �
6.4 and 5.7 kJ/mol, respectively). The relative unimportance of
positions N3 and N7 was demonstrated using 3-deazaade-
nosine and 7-deazaadenosine, respectively, as cataloged in sup-
plemental Table 2, which also lists relative affinities for com-
pounds with substitutions at positions 2 and 8.

FIGURE 7. Model of adenosine, giving estimates of the contributions to
the total binding energy of 34 kJ/mol in the black numbers, with the red
numbers indicating the position on the purine or ribose rings. The half-
circles indicate positions where substitutions reduced the adenosine binding
affinity. The aromatic rings are estimated to contribute �12 kJ/mol to the
binding energy, although this could not be verified directly, as a nonaromatic
adenosine analog would have a completely different three-dimensional
structure. However, comparisons between aromatic diamidines and nonaro-
matic diamidines (supplemental Table 2) are consistent with this estimate.
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Finally, a substantial contribution to binding ismade through
interactions between the aromatic purine or benzamidinemoi-
eties, and amino acids in the transporter binding pocket,
through �-� stacking with aromatic residues, cation-� bond-
ing, or amino-aromatic interactions (40). Although this cannot
be directly demonstrated by the use of “nonaromatic purines,”
which would have a completely different three-dimensional
structure, uniquely for P2 this can be shown and quantified
comparing aromatic and nonaromatic diamidines (supplemen-
tal Table 2). The diagram in Fig. 7 summarizes these data in the
form of an interaction diagram between the P2 transporter and
adenosine. This figure, gained from experimental data and
using a previously validated approach (1, 17), is in close agree-
ment with data presented in Fig. 5 based on the predictive PLS
regressionmodel. It is important, however, to be clear that both
modeling approaches (Figs. 5 and 7) are predictive with respect
to substrate binding rather than translocation, i.e. do not pre-
dict transport efficiency for any individual substrate. This limi-
tation is not inherent to the computational approach, rather it
is the result of using Ki values (transport inhibition through
extracellular binding) instead of Michaelis-Menten constants
(Km and Vmax values, determined from measurement of trans-
port) as input for the models. A similar approach as followed
here could predict transport, but it would have required radio-
labeled analogs of all the compounds used in the study, and this
was not feasible. We also would not wish to suggest that effi-
cient uptake by a pathogen is sufficient to ensure efficacy of a
potential therapeutic agent, as this requires optimal interaction
with the intended intracellular target as well. In summary, we
have developed and validated a novel computational approach
to analyze, explain, and predict the interactions between trans-
porters and their substrates that does not require prior knowl-
edge of transporter structure or indeed primary sequence.
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