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Abstract

We report the direct observation of a bent geometry for a non-stabilized nitrile imine in a metal-
coordination crystal. The photoinduced tetrazole ring rupture to release N, appears to depend on the
size of voids around the N3-N“ bond in the crystal lattice. We further observed the selective formation
of 1,3-addition product when a reactive nitrile imine was photo-generated in water. Taken together,
the bent nitrile imine geometry agrees with the 1,3-dipolar structure, a transient reactive species that
mediates the photoinduced 1,3-dipolar cycloaddition in the aqueous medium.

The photoinduced ring-opening of 2,5-diphenyltetrazole with the generation of N, and a nitrile
imine was first reported by Huisgen et al. in 1967.1 As a highly reactive dipole, nitrile imine
reacts readily with a variety of dipolarophiles? to form the 5-membered ring heterocycles.3
Recently, we have employed the photo-generated nitrile imines for functionalization of an
alkene-containing protein in living cells.* Whereas crystal structures of the stabilized nitrile
imines have been reported,? the non-stabilized N-aryl nitrile imines have only been
spectroscopically observed as transient intermediates in the low-temperature matrices.

Four alternative structures have been postulated for the non-stabilized nitrile imines:
propargylic, allenic, 1,3-dipolar, and carbenic structure (Scheme 1). So far, theoretic
calculations of the nitrile imine structures have generated the conflicting results in the literature.
For example, in 1993 a high-level calculation study with the configuration interaction (QCISD)
and a large basis-set concluded that the stable nitrile imine structure has a non-planar, allenic
geometry and that the propargylic structure does not correspond to a local minimum on the
potential energy surface.” More recent DFT calculations in combination with the natural
resonance theory indicated that all four resonance structures are necessary for a full description
and that the carbenic form dominates for F-CNN-F and H,N-CNN-NH,.8 In contrast, a spin-
coupled valence bond calculation using the geometry from a CASSCF calculation suggested
that the stable electronic structure of H-CNN-H is predominantly propargylic.® To provide
direct evidence, herein we report the use of photocrystallography20 to observe for the first time
the structure of a non-stabilized nitrile imine generated photochemically in situ in the solid
state.

In our initial study, a crystal of 2-(4'-methoxyphenyl)-5-(2”-iso-propoxy-4”-methoxyphenyl)-
tetrazole? was photoirradiated with a 325-nm He-Cd laser (45 mW/cm?) at 280 K for 12 h.
While the crystal showed a darkening of its color, no products could be detected in the X-ray
photodifference map, defined as the difference in electron density after- minus before-laser
exposure. A closer examination revealed that the tetrazole molecules are tightly packed in the
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crystal lattice with the distance between dissociating N3-N* atoms and an adjacent methyl
group on the neighboring tetrazole equal to 2.65 A, resulting in a very small void for N to
escape (Figure S1 in the Supporting Information). To overcome this problem, we envisioned
that the void next to N3-N4 can be enlarged by the use of rigid hydrogen-bonded
supramolecular frameworks formed by complexing carboxylates with Zn.11 To test this, we
prepared a small panel of N-aryl tetrazoles carrying carboxyl groups and/or potential hydrogen-
bond donors such as NH, and OH (1-6) (Figure 1). The crystals of Zn-tetrazole complexes
were obtained by allowing ~17 mM tetrazole solutions (dissolved in 2:1 MeOH/H,0 and mixed
with Zn(NO3), and NH4OH) to stand in air at room temperature for 2 weeks (Figure 2; see
Table S1 for crystal data and structural refinement). Structural analyses indicated the Zn to be
tetra-coordinated with two carboxylates and two waters in all structures except the Zn-tetrazole
4 structure in which two NH3 serve as the ligands (Figure 2d). A close examination of the
tetrazole packing revealed that the empty spaces (voids) vary significantly with the distance
between N3-N* and the nearest surrounding atoms being 2.66, 2.90, 3.21, 2.43, 2.70, and 2.35
A, respectively (Figure 2).

To test the photoreactivity, all six crystals were exposed to the 325-nm He-Cd laser beam.
Whereas the crystals of Zn-2-5 showed slow decay indicated by color darkening (Figure 3a),
only the Zn-tetrazole 3 crystal afforded a discrete photodifference map after 2-min
photoirradiation at 90 K (Figure 3b). This is consistent with the fact that crystal 3 has the largest
void around N3-N# (3.21 A in Figure 2c). Subsequent least-square refinement gave a 13%
yield of the corresponding nitrile imine product. The dissociated N was visible in the
photodifference map, with a bond length of 0.89(9) A (Figure 3c), within experimental error
of its value in molecular N, (1.09 A). The occupancy of N in the crystal lattice was 8%, less
than 13% for the nitrile imine, suggesting that part of the N, has escaped from the crystal lattice.
Since apart from the CNN center tetrazole 3 structure is symmetric, the photodifference map
showed a two-fold symmetry (Figure 3b). Using a free geometry refinement model,12 we fit
the electron density to two symmetry-related nitrile imine geometries (only one is shown in
Figure 3c).13 Evidently, in the solid state nitrile imine adopted a bent geometry with an
increased twisting of the flanking phenyl rings (dihedral angle = 62.1° for the nitrile imine vs.
38.8° for the tetrazole 3; compare Figure 3c to Figure 2c) to allow the trapping of the escaping
N> in the intra-strand space (Figure 3d). The photoreactivity of 3 is not due to the electronic
effect of the carboxylic groups as photoirradiation of the Zinc-free crystal of 3, which has
smaller voids around N3-N# in the crystal (Figure S2), did not yield a recognizable
photodifference map.

The bent geometry of the nitrile imine can be ascribed to either the 1,3-dipolar or carbenic
structure (Scheme 1). These two can be distinguished by a water-quenching experiment; it is
expected that the dipolar structure undergoes 1,3-addition to generate a hydrazonic acid
intermediate which tautomerizes to afford the stable hydrazide while the carbenic structure
undergoes 3,3-addition!* to generate metastable a-hydroxyazobenzene which decomposes
slowly to produce benzaldehyde and phenyl-diazene!® (Scheme 2). When tetrazole 3 was
irradiated at 302 nm in acetonitrile/water (1:1), the 1,3-addition product was found to be the
major product in the product mixture based on IH-NMR (Figure S3). Moreover, water-
quenching of the nitrile imine derived from reactive 2-phenyl-5-p-methoxyphenyl
tetrazole?P yielded exclusively the 1,3-addition product with no traces of benzaldehyde (Figure
S4), thereby excluding the existence of the carbenic structure. To ensure there is no cross-over
between the 1,3- and 3,3-addition pathways, we prepared a-hydroxyazobenzene separately
from a-azohydroperoxide and followed its decay in the NMR tube in CD3CN/D,0 (1:1). We
found the major product to be benzaldehyde with no traces of hydrazide (Figure S5). Hence,
we propose that the 1,3-dipolar structure represents the major electronic structure of the photo-
generated nitrile imine. The bent geometry in the 1,3-dipolar structure can explain the high
reactivity of the photo-generated nitrile imines in the cycloaddition reactions in the aqueous
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medium? because of the lower activation barriers, the result of dipole structural pre-
organization.16

In summary, we report the direct observation of a photo-generated, bent nitrile imine structure
in a Zn-coordination crystal. The efficiency of tetrazole ring rupture in the solid state appears
to depend on the size of the void around the N3-N# bond. A water-quenching study suggested
that the bent geometry represents the 1,3-dipolar form, a major electronic structure involved
in the photoinduced 1,3-dipolar cycloaddition in the aqueous medium.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Structures of the tetrazole compounds used in this study.
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Figure 2.

Crystal structures of Zn-tetrazole complexes: (a) Zne1,¢(H20)5; (b) Zne2,; (c) Zne3¢(H,0);
(d) Zne4d+(NH3)2; (€) Zne5,¢(H20)4¢(CH30H); (f) Zne6o2(H20)42(NH4)7. Zn is shown in
silver. The distances between N3-N* and the nearest surrounding atoms are marked on the
structures.
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325 nm He-Cd laser

90 K, 2 min

Figure 3.

Photocrystallography of Zn-tetrazole 3 complex: (a) Color change of the crystal upon laser
exposure. (b) Photodifference map based on the F,, (after)-F, (before). Blue, 2.0; light blue,
1.0; orange, —1.0; red, —2.0 e/A3. Only one half of the map is shown because of the 2-fold
symmetry. (c) ORTEP representation of the geometry-refined nitrile imine structure. (d)
Packing of the nitrile imines and molecular N5 in the crystal lattice. The N=N bonds are
perpendicular to the plane of view.
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