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The new influenza A H1N1 virus: Balancing on the interface of humans 
and animals

Frank�J.U.M.�van�der�Meer,�Karin�Orsel,�Herman�W.�Barkema

Abstract — In the spring of 2009, a new human influenza A H1N1 virus emerged in Mexico and the United States. 
The strain was referred to as “swine flu” as it has strong similarities with current circulating swine influenza viruses, 
although the first outbreak on a swine farm was recorded more than 2 mo following the first human reports. This 
new strain, designated as pandemic (H1N1) 2009, has shown the ability to spread amongst the human population 
and can be found on all continents. The way influenza viruses and specifically this influenza A pandemic (H1N1) 
2009 virus evolve is described in this manuscript.

Résumé — Le nouveau virus de l’influenza A H1N1 : En équilibre à l’interface des humains et des animaux. 
Au printemps 2009, un nouveau virus de l’influenza A H1N1 est apparu au Mexique et aux États-Unis. La souche 
a été appelée «grippe porcine» car elle présente de fortes similarités avec les virus d’influenza porcine en circulation 
à l’heure actuelle, même si la première éclosion sur une exploitation porcine a été enregistrée plus de 2 mois après 
les premiers rapports d’infection chez les humains. Cette nouvelle souche, désignée comme virus (H1N1) 
pandémique 2009, a manifesté la capacité de se propager parmi la population humaine et se trouve sur tous les 
continents. La façon dont les virus de l’influenza évoluent, particulièrement ce virus (H1N1) de l’influenza 
A pandémique 2009, est décrite dans ce manuscrit.

(Traduit par Isabelle Vallières)

Can Vet J 2010;51:56–62

Introduction

E ver since the H1N1 Spanish flu raged around the world in 
1918–1920, people have feared a subsequent outbreak of a 

similar or greater magnitude. With over 50 million human casu-
alties (1,2), and especially high rates of mortality among young 
adults aged 18 to 40 y (3,4), the Spanish flu pandemic has set the 
stage for the preparations underway today. Although it was not 
the first influenza outbreak (5), it was by far the most devastating 
and at that time, people were completely unaware of the nature 
of the disease. The first successful isolation of an influenza virus 
occurred in 1930 (6,7), and during the last 2 pandemics (the 
1957 H2N2 Asian flu and the 1968 H3N2 Hong Kong flu), 
the scientific world had at least a better understanding of the 
causative agent (8). This first isolate was a swine influenza virus. 
The earliest recorded observations of an influenza- like illness in 

swine coincided with the human influenza pandemic in 1918, 
and already during that period there were suggestions that human 
flu and swine flu might be similar diseases (8,9). However, 
the exact transmission route between species (human-to-pig 
or pig-to-human) remains unresolved. Until now all pandem-
ics (Spanish, Asian, and Hong Kong flu) have been caused by 
influenza viruses of avian origin (10), the spread of the pandemic 
(H1N1) 2009 (pH1N1) virus marks the first known pandemic 
influenza virus of swine origin. This manuscript describes the 
characteristics and evolution of influenza viruses and specifically 
focuses on the pH1N1 virus.

Influenza A viruses are characterized based on the envelope 
glycoproteins hemagglutinin (H or HA) and neuraminidase 
(N or NA). So far, the human population has been confronted 
on an epidemic scale with 3 different HA types: H1, H2, 
and H3. There is no reason to exclude the possibility that 
humans can be infected with all other variants, this has already 
been reported for H5, H7, and H9 (5). Influenza A viruses are 
members of the Orthomyxoviridae family, which is comprised 
of enveloped, negative strand RNA viruses. The influenza 
A genome consists of 8 gene segments [HA, NA, matrix protein 
(MP), nucleo-protein (NP), Polymerase A (PA), Polymerase B1 
and 2 (PB1 and PB2) and the non-structural protein (NS)] cod-
ing for 11 different proteins. Sixteen subtypes of HA (H1–H16) 
and 9 subtypes of NA have been found to date (N1–N9) (11). 
A new human influenza pandemic will therefore be caused 
by an influenza virus containing an HA antigenic makeup 
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heretofore unknown to humans. Also, the NA type contributes 
to antibody generation upon exposure to the immune system. 
The Hong Kong flu (H3N2) outbreak showed that the neur-
aminidase (NA) induced a limited protection, as this N2 had 
some antigenic similarities to the NA type found in the H2N2 
Asian flu pandemic (12–17). In light of this, it is not surprising 
that the emergence of human infections with an H5N1 avian 
flu (18–20), with a current human mortality rate of 60% (21), 
led to an international effort to prevent the spread of this virus.

continuing diversification and  
host range of influenza viruses

Influenza viruses infecting humans consist of 3 variants: types A, 
B, and C. The B and C types are almost exclusively found in 
humans although influenza B can also be found in aquatic mam-
mals (22) and influenza C was shown to be present in some swine 
herds (23) and caused upper respiratory tract infections (24). 
The influenza A virus particle is enveloped, and within this enve-
lope 3 membrane proteins are present: HA, NA, and one of the 
2 proteins coded by MP the ion channel M2 (24–26). HA and 
NA appear at the outer surface of the virus and they can induce 
antibodies with a neutralizing effect (26).

Currently, almost all combinations of HA and NA have been 
detected in birds, especially gulls and waterfowl (11,26,27). 
Birds contribute significantly to the spread of influenza viruses 
through their migration patterns in specific flyways (27). 
Equines can be only infected with influenza viruses H3N8 and 
H7N7, although the latter has not been detected in horses in 

recent years and may have disappeared completely (28). Dogs 
can also be infected with the H3N8 equine variant (29,30). 
A variety of influenza viruses have been found in aquatic mam-
mals (H1, H3, H4, H7, and H13 containing variants) (26,31). 
The avian flu H5N1 outbreak in cats, leopards and tigers 
demonstrated that it was also possible to infect felids with this 
strain (32,33). In porcines, the H3N2, H1N1 and reassorted 
versions of these 2 viruses [H1N2, H3N1, and H1N1 vari-
ants containing the swine H3N2 internal genes (rH1N1)] are 
present (34–37). Recently, a new H1N1 with a human-derived 
H1 gene (huH1N1) was detected in swine herds and appears to 
be circulating (36). The classic H1N1 porcine variant is present 
in both Europe and North America. However, while an avian 
H1N1 variant introduced in the European swine population 
has almost completely replaced the classic variant in Europe 
(38–41), the classic H1N1 still continues to infect swine herds 
in North America (34,36,37).

As a consequence of the segmentation of the genome, the 
virus must include all 8 segments during assembly of the viral 
particle. In the rare event that a second, different, influenza virus 
enters the same cell, the cell will contain 2 different genes of 
each segment. The viral particle can include either of the 2 seg-
ments leading to a rearrangement (42) of genes. For example: 
an H1N1 influenza virus infecting a cell already infected with 
an H3N2 influenza virus might lead to the aforementioned 
rearrangements resulting in H1N2 or H3N1 viruses. This pro-
cess is called antigenic shift and represents a dramatic change 
in antigenic makeup of the viral particle (43). All genes seem 

Figure 1. Genetic�relationships�of�human,�swine,�and�avian�influenza�viruses�for�H1.�
Names�represent�viruses�all�containing�an�H1�and�different�neuraminidase�types�(as�indicated).�Year�of�isolation�is�indicated.�The�2007�
WHO�recommended�H1N1�vaccine�strain:�A/Brisbane/59/2007�(H1N1)�is�underlined.�The�2009�pandemic�H1N1�(pH1N1)�can�be�
found�at�the�top�branch�of�the�tree.�Scale�bar�indicates�amino�acid�substitutions�per�site.
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to be able to end up in a rearranged influenza virus indepen-
dently, although whether that is really the case remains to be 
established (44); it might be that some combinations are less 
successful or even impossible.

Influenza genes can also change more gradually by means of 
point mutations which result in alteration of the transcribed 
proteins (45). These mutations are random errors introduced 
during the copying of RNA and are part of a regular evolution-
ary process called antigenic drift (46).

The new pandemic (H1N1) 2009 virus
Recently, a new influenza variant was identified as the source of 
a cluster of human pneumonia cases in the state of California 
(USA) and in La Gloria, Mexico (47,48). This variant was soon 
designated as “swine flu” virus although it was never detected 
in porcine populations until the occurrence in a swine herd in 
Alberta, Canada in May 2009 (49), in Argentina in June 2009 
(50), and in Australia at the end of July 2009 (51). Later, 
names like Mexican flu virus, swine-origin H1N1, or pandemic 
(H1N1) 2009 arose, but the nomenclature remains unclear. 
Pandemic (H1N1) 2009 abbreviated to pH1N1 will be used  
herein.

When pH1N1 genes are compared with genes already known 
in influenza viruses, pH1N1 does not cluster with any of the 
known and currently circulating human H1N1 seasonal flu 
viruses. Instead, all gene segments cluster with currently circulat-
ing swine viruses. An overview of the phylogenetic trees indicat-
ing the relationship of the HA and NA genes is represented in 

Figures 1 and 2. Phylogenetic trees of other gene segments will 
be provided upon request.

Compared with the genes of other influenza viruses, the 
pH1N1 seems to be the result of a reassortment of 2, but maybe 
even 3 different viruses, resulting in a combination of genes not 
previously reported in humans or porcines (Figure 3). At pres-
ent, the assumption is that pH1N1 is the product of a reassort-
ment of the genes of 2 viruses, as this is a more likely event than 
a triple reassortment (3 different viruses). For a reassortment, 
the viruses have to be in the same cell at the same time. The 
first contributing virus is the ‘Eurasian’ H1N1 swine influenza 
virus. This virus donated the NA, and most likely also delivered 
the MP as it also clusters with the Eurasian swine viruses. The 
MP gene is a highly conserved gene amongst the influenza A 
viruses; therefore, it is difficult to type due to its close resem-
blance with a number of MP genes of other influenza variants. 
For the same reason the conserved MP gene is used in molecular 
diagnostics to detect the presence of influenza A viruses in speci-
mens (52,53). Both NA and MP of the Eurasian swine H1N1 
virus were originally derived from an avian influenza virus that 
entered the European swine population at the end of the 1970’s 
(54). The other genes of pH1N1 were most likely derived from 
a swine H1N2 virus. The pH1N1 HA gene clusters with swine 
H1N2 viruses. These swine H1N2 viruses emerged from a rear-
rangement of classic swine H1N1 and swine triple reassorted 
H3N2 (trH3N2) genes (55). The H1 gene of swine H1N2 
underwent a significant antigenic drift since it was derived from 
classic swine H1N1, hence the HA of H1N2 can currently be 

Figure 2. Genetic�relationships�of�human,�swine,�and�avian�influenza�viruses�for�N1.�
Names�represent�viruses�all�containing�an�N1�and�different�hemagglutinin�types�(as�indicated).�Year�of�isolation�is�indicated.�The�2007�
WHO�recommended�H1N1�vaccine�strain:�A/Brisbane/59/2007(H1N1)�is�underlined.�The�2009�pandemic�H1N1�(pH1N1)�can�be�
found�at�the�top�branch�of�the�tree.�Scale�bar�indicates�amino�acid�substitutions�per�site.
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identified as a genetically separated cluster. The swine trH3N2 
virus contributed all other gene segments to the swine H1N2. 
The history of the aforementioned swine trH3N2 virus is inter-
esting and illustrates the ability of influenza viruses to rearrange 
their genes and cross species barriers. The H3, N2, and PB1 
genes of the swine trH3N2 virus were all derived from a human 
H3N2 virus related to the Hong Kong flu pandemic influenza 
strain. This contribution could be made by introduction of a 
human influenza virus into the porcine population. The PB2 
and the PA genes of the swine trH3N2 virus show similarities 
to influenza genes still found in the avian population in North 
America. The MP, NS, and NP were all derived from a North 
American classic swine H1N1 virus (56). A triple reassortment 
of the classic swine H1N1, the human H3N2, and the avian 
influenza virus resulted in the swine trH3N2 virus. This same 
swine trH3N2 has also been detected in turkeys (57,58).

Eventually, the swine H1N2 contributed together with the 
H1N1 Eurasian viruses to the pH1N1 (59–63). Although this 
seems a likely sequence of events, it should still be regarded as 
a theoretical genesis of pH1N1 deducted from publicly known 
sequences. It cannot be excluded, however, that the actual reas-
sortment events were different. This reassortment event is not 
unique, and indeed swine H1-containing influenza viruses are 
regularly infecting humans (64), but this extensive spread within 
the human population is extremely rare. The results of evaluations 
of available swine and human sequences show that all genes of the 
pH1N1 virus were derived from swine influenza viruses, but they 
were derived from geographically widely distributed ancestors (62).

The divergence between the pH1N1 virus and the circulating 
human seasonal flu H1N1 variants is significant. Because only 
73% of the pH1N1 HA gene is genetically similar to the H1N1 
vaccine strain A/Brisbane/59/2007(H1N1) (65) the introduc-
tion of pH1N1 in the human population may even be described 
as a “pseudo-antigenic shift” (5) (Table 1). The currently applied 
seasonal H1N1 influenza vaccine will therefore likely provide 
only limited protection to humans. As such, given that pH1N1 
has appeared in the fall of 2009 an updated vaccine that protects 
the human population is currently applied (66).

The situation is slightly different concerning protection of 
porcine herds. As the HA of the pH1N1 closely resembles the 
HA of an H1N2 swine virus, application of a vaccine containing 
a recent strain of a swine H1N2 may provide some protection 
against introduction and/or influenza virus-related pathology 
in a swine herd.

It is unclear why there are no reports of an earlier infection of 
a swine herd than the outbreak recorded in Alberta. Serological 
evaluations of human and porcine populations and detailed back-
tracing of the outbreak may lead to an answer. But these studies 
can be time consuming, costly, and ultimately unsuccessful. The 
only way to avoid unexpected confrontations with new viruses 
is an intensive surveillance of influenza viruses around the world 
and in a variety of animal species. The establishment of open 
access databases such as The Global Initiative on Sharing Avian 
Influenza Data (GISAID) and the Influenza Virus Resource 
(NCBI IVR) (67,68) are recent initiatives contributing to a bet-
ter understanding of influenza virus evolution. Not only should 

Figure 3. The�origin�of�pandemic�(H1N1)�2009�
The�triple�reassortment�event�between�an�avian�influenza�virus�(Av),�a�human�H3N2�(HuH3N2),�and�a�classic�swine�H1N1�(cSwH1N1)�
that�lead�to�the�swine�triple�reassorted�H3N2�(TrH3N2)�virus�is�indicated�on�the�left.�The�introduction�and�spread�of�an�AvH1N1�into�
the�swine�herd�resulted�in�the�Eurasian�H1N1�(EaH1N1).�TrH3N2�reassorted�with�cSwH1N1�which�resulted�in�SwH1N2.�Eventually�a�
reassortment�event�of�EaH1N1�and�SwH1N2�lead�to�the�new�pandemic�(H1N1)�2009�(pH1N1).�The�origin�of�the�respective�genes�is�
indicated�in�the�oval�shapes,�hemagglutinin�and�neuraminidase�genes�are�underlined.
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the HA and NA be characterized, but the other 6 gene segments 
that can prove valuable for backtracing and evolutionary stud-
ies, as this pH1N1 example illustrates, should also be routinely  
sequenced.

Methods used for figures 1, 2 and table 1
Sequences of H1N1 2009 influenza viruses and all other viruses 
described in this paper and in Figures 1 and 2 and Table 1 
were downloaded from the databases GISAID and NCBI IVR 
(67,68). Phylogenetic and molecular evolutionary analyses were 
conducted using MEGA version 4 (69) and Bioedit 7.0.9.0 (70). 
The phylogenetic trees were modified using FigTree v1.2.2 (71).

Strains used for Table 1: Spanish flu H1N1 1918 = A/South 
Carolina/1/1918 (H1N1); Vaccine strain H1N1 2007 = 
A/Brisbane/59/2007 (H1N1); Seasonal flu H1N1 USA 2008 = 
A/New York/05/2008 (H1N1); Seasonal flu H1N1 Norway 
2008 = A/Norway/76/2008 (H1N1); Human pH1N1 USA 
2009 = A/California/04/2009 (H1N1); Human pH1N1 Canada 
2009 = A/Canada-AB/RV1532/2009 (H1N1); Swine pH1N1 
Canada 2009 = A/swine/Alberta/OTH-33-1/2009 (H1N1); 
Swine H1N2 USA 2000 = A/Swine Indiana/P12439/00 
(H1N2); Swine H1N2 Korea 2005 = A/swine/Korea/JL04 
2005 (H1N2); Swine H1N2 Canada 2004 = A/swine/
Ontario/48235/04 (H1N2); Eurasian swine H1N1 Belgium 
1979 = A/swine/Belgium/WVL1/1979 (H1N1); Eurasian swine 
H1N1 Spain 2003 = A/swine/Spain/51915/2003 (H1N1); 
Classic swine H1N1 USA 1930 = A/swine/Iowa/15/1930 
(H1N1); Classic swine H1N1 Canada 2003 = A/swine/

Alberta/56626/03 (H1N1); Avian H1N1 Canada 1976 = 
A/duck/Alberta/35/76 (H1N1); Avian H1N1 USA 2007 = 
A/mallard/Minnesota Sg-00121/2007 (H1N1)

For detailed versions of phylogenies of genes of pH1N1 please 
contact the corresponding author. CVJ
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clinical Radiology of Exotic companion 
Mammals

Capello V, Lennox AM. Wiley-Blackwell, Ames, Iowa, USA. 
2008. ISBN 9780-8138-1049-2. $179.99.

A s a small animal practitioner who sees a steady stream 
of exotic patients, along with cats and dogs, I eagerly 

awaited the publication of this text. When it comes to exotic 
animal medicine, a new source of clinical information is always 
welcomed. The goal of this book is best stated in the preface, 
“We hope this reference can eliminate the number of times we’ve 
had to examine a radiograph, and be faced with the fact that we 
might know what we were seeing ‘if only this were a very small 
dog or cat…’” As stated on the cover, this text is an extensive 
review of both normal and abnormal radiographic patterns. It’s 
going to be an oft-used addition to my library.

Chapter 1 deals with the basics of radiology including a 
brief overview of the physics involved (ugh), how to obtain and 
process a good quality film, equipment, contrast radiography, 
an introduction to computed tomography, and radiation safety. 
I found the most useful section of this chapter to be the infor-
mation on patient positioning. Excellent quality photographs 
of the positioned patient are accompanied by an image of the 
radiograph you’d expect to obtain. This chapter would make a 
great read for any technician as well.

The remaining 14 chapters are organized by species and 
include the rabbit, guinea pig, chinchilla, degu, rat, mouse, 
hamster, prairie dog, and other squirrel-like rodents, ferret, 
skunk, sugar glider, Virginia opossum, potbellied pig, and 
African pygmy hedgehog. Some chapters, for example the more 
commonly seen species such as rabbits and ferrets, are covered 
in more depth than others.

Each chapter is broken down by anatomic structure. The 
rabbit chapter begins with radiographs of the normal head in 
various projections, including intraoral. Two copies of the same 
radiograph are shown. One is labeled extensively to help you 
locate anatomic features. As a reminder, an image of the animal 
being radiographed in its proper position is included. The next 
series of images are abnormalities of the head, including diseases 
of the teeth. In the margins are helpful figures that illustrate the 
pathology, accompanied by a written description. The author 
often includes ‘little pearls of wisdom’ in these descriptions 
(for example the treatment of choice for a given problem) that 
I found to be both interesting and helpful. Lastly, computed 
tomography of the head is illustrated. In similar fashion to the 
head, the chapter continues with normal total body projec-
tions, the normal and abnormal thorax, abdomen and vertebral 
column, myelography of the vertebral column, and normal and 
abnormal thoracic and pelvic limbs. Not all chapters contain all 
this information. For example, the sugar glider chapter includes 
only the normal, whole body projections, though still extremely 
well labeled.

The text ends with an extensive list of references for those 
who want to research a particular topic in more detail and a 
comprehensive index.

I would absolutely recommend this text to any clinician 
whose patients include exotic mammals. The number of species 
covered in this well-organized book, along with the extensive 
coverage of both normal and abnormal radiographic patterns 
will make it a welcome addition to their library.

Reviewed by Julie M. Deroo, HBSc, DVM, Ferris Lane Animal 
Hospital, 133 Ferris Lane, Barrie, Ontario L4M 2Y1.
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