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OBJECTIVE—Reductions in insulin sensitivity in conjunction
with muscle mitochondrial dysfunction have been reported to
occur in many conditions including aging. The objective was to
determine whether insulin resistance and mitochondrial dysfunc-
tion are directly related to chronological age or are related to
age-related changes in body composition.

RESEARCH DESIGN AND METHODS—Twelve young lean,
12 young obese, 12 elderly lean, and 12 elderly obese sedentary
adults were studied. Insulin sensitivity was measured by a
hyperinsulinemic-euglycemic clamp, and skeletal muscle mito-
chondrial ATP production rates (MAPRs) were measured in
freshly isolated mitochondria obtained from vastus lateralis
biopsy samples using the luciferase reaction.

RESULTS—Obese participants, independent of age, had re-
duced insulin sensitivity based on lower rates of glucose infusion
during a hyperinsulinemic-euglycemic clamp. In contrast, age
had no independent effect on insulin sensitivity. However, the
elderly participants had lower muscle MAPRs than the young
participants, independent of obesity. Elderly participants also
had higher levels inflammatory cytokines and total adiponec-
tin. In addition, higher muscle MAPRs were also noted in men
than in women, whereas glucose infusion rates were higher in
women.

CONCLUSIONS—The results demonstrate that age-related re-
ductions in insulin sensitivity are likely due to an age-related
increase in adiposity rather than a consequence of advanced
chronological age. The results also indicate that an age-related
decrease in muscle mitochondrial function is neither related to
adiposity nor insulin sensitivity. Of interest, a higher mitochon-
drial ATP production capacity was noted in the men, whereas the
women were more insulin sensitive, demonstrating further dis-
sociation between insulin sensitivity and muscle mitochondrial
function. Diabetes 59:89–97, 2010

A
s the population ages, the prevalence of several
chronic health problems such as obesity, type 2
diabetes, and cardiovascular disease has risen.
Insulin resistance is recognized as a key factor

contributing to the development of both type 2 diabetes
and its related cardiometabolic disorders (1,2). Insulin
resistance and impaired glucose tolerance are commonly
observed phenomena among elderly adults. For example,
the glucose excursion postprandially is substantially

greater and remains elevated longer in nondiabetic elderly
adults than in nondiabetic younger adults, which is indic-
ative of age-related declines in insulin sensitivity and
glucose tolerance (3). Aging is associated with detrimental
changes in body composition, which persists even when
elderly adults are matched to younger adults for BMI (4).
Adiposity, in particular abdominal adiposity, is well ac-
cepted as a determinant of insulin resistance and therefore
may be a key mediator for the development of age-related
insulin resistance. Despite an inverse relationship between
age and insulin sensitivity (4,5), it remains contentious
whether chronological age is a primary determinant of
insulin resistance or whether age-related elevations in
adiposity and/or physical inactivity are the primary causes
of age-related insulin resistance (6,7).

Aging is also associated with reductions in skeletal
muscle mitochondrial function. In particular, skeletal mus-
cle mitochondrial ATP production rates (MAPRs) in el-
derly people are reduced in vivo in the resting state (8) as
well as in vitro in the maximally stimulated state (3). These
age-related reductions in MAPRs have also been associ-
ated with concomitant reductions in skeletal muscle mi-
tochondrial enzyme activities (9), protein synthesis and
expression (3,10), and mtDNA abundance in humans
(3,11) and rodents (12). Of interest, insulin resistance is
closely associated with skeletal muscle mitochondrial
dysfunction in some (3,5,13,14) but not in all conditions
(15,16). This close association between muscle mitochon-
drial dysfunction and insulin resistance has led to the
hypothesis that mitochondrial dysfunction could be the
basis of insulin resistance (5). Another equally plausible
hypothesis is that insulin resistance causes muscle mito-
chondrial dysfunction (16,17). In support of the later
hypothesis is the demonstration that, in type 2 diabetic
people, muscle MAPR fails to increase in response to
physiologically high insulin levels, unlike in nondiabetic
people (18). However, it should be recognized that the
association between insulin resistance and mitochondrial
dysfunction are not consistent. For example, we recently
reported that Asian Indians in comparison with Northern
European Americans matched for age, sex, and BMI are
severely insulin resistant, while having higher muscle
MAPR and mitochondrial DNA copy numbers (19). Fur-
thermore, a recent report also indicated that while a
low-calorie diet substantially enhanced insulin sensitivity
(e.g., �30% increase in insulin-stimulated glucose dis-
posal), it failed to increase skeletal muscle mitochondrial
function in the absence of exercise (19). In contrast, in
rats, a high-fat diet caused insulin resistance while enhanc-
ing mitochondrial biogenesis (15). Together, the results
from the above studies indicate that the close association
between insulin sensitivity and muscle mitochondrial
function can be uncoupled, arguing against the hypothesis
that insulin resistance causes muscle mitochondrial dys-
function or vice versa.
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Age is not only associated with insulin resistance and
muscle mitochondrial dysfunction but is also associated
with changes in body composition, which likely contribute
to the development of age-related insulin resistance (20).
We therefore sought to determine whether the changes in
insulin sensitivity and muscle mitochondrial function are
secondary to age-related changes in body composition
rather than being directly related to chronological age. We
studied 48 lean and obese, young and elderly men and
women. Insulin sensitivity was measured using hyperinsu-
linemic-euglycemic clamp and skeletal muscle mitochon-
drial function by measuring MAPRs from freshly prepared
mitochondria obtained from muscle biopsy samples. The
studies demonstrated the impact of not only age and body
weight, but also sex on insulin sensitivity and muscle
mitochondrial function in humans.

RESEARCH DESIGN AND METHODS

Twelve elderly lean (65–80 years and BMI �25 kg/m2), 12 elderly obese (65–80
years and BMI �30 kg/m2), 12 young lean (18–30 years and BMI �25 kg/m2),
and 12 young obese (18–30 years and BMI �30 kg/m2) healthy sedentary
adults completed this cross-sectional study (Table 1). There were six men and
six women in each group. Participants underwent an initial screening that
included a medical history, physical examination, resting electrocardiogram,
incremental treadmill test, and biochemical tests of renal, hepatic, hemato-
logic, and metabolic function. Participants with evidence of diabetes, cardio-
vascular disease, thyroid dysfunction, or a history of alcohol or substance
abuse were excluded. Participants who reported using �-blockers were
excluded. A list of medications is reported in supplemental Table 1 (available
in an online-only appendix at http://diabetes.diabetesjournals.org/cgi/content/
full/db09-0591/DC1). Participants who reported exercising �2 days per week
or whose fasting glucose levels were �6.1 mmol/l (�110 mg/dl) were also
excluded. Activity levels were confirmed with a leisure-time activity question-
naire. The study was approved by the institutional review board of the Mayo
Foundation, and all participants gave written informed consent.
Study design. On a second outpatient visit, each participant underwent a
dual-energy X-ray absorptiometry (DPX-L; Lunar, Madison, WI) examination
to determine body composition and an incremental cycle ergometer exercise
test to determine peak oxygen uptake (peak VO2), as previously described
(21). Participants were placed on a weight-maintaining diet (energy content as
carbohydrate:protein:fat � 55:15:30%) provided by the Nutrition Unit of Mayo
Center of Translational Science Activities for 3 consecutive days before the
inpatient study period.

On the evening before each study day, participants were admitted to the
Mayo Center of Translational Science Activities Clinical Research Unit at 1700
and stayed overnight until 1500 the following day. A retrograde catheter was
inserted into a dorsal hand vein for sample collection, and the hand was kept
in a heating pad overnight. A second intravenous catheter was placed in the
contralateral forearm for infusions. After a standard dinner at 1800 and a

standardized snack at 2200, a fasting state was maintained, except for water,
until the end of the inpatient visit.

In the morning, the hand with the retrograde catheter was kept in a “hot
box” at 60°C to obtain arterialized venous blood. A hyperinsulinemic-eugly-
cemic clamp was performed infusing 1.5 mU � kg�1 fat-free mass (FFM) �
min�1 of insulin while maintaining similar plasma glucose levels [�5.0 mmol/l
(90 mg/dl)] in every participant (22,23). In addition, a standard amino acid
solution (10% Travasol) was infused (0.6 �mol leucine per kg of FFM per min)
to maintain leucine concentrations near fasting levels during the insulin
infusion, as previously described (22). Arterialized venous blood was used to
measure glucose levels every 10 min with a Beckman glucose analyzer
(Fullerton, CA). The glucose (40% solution) infusion rate was adjusted to
maintain euglycemia during the insulin infusion.
Muscle biopsies. Vastus lateralis muscle samples (300 mg each) were
obtained under local anesthesia (lidocaine, 2%) with a percutaneous needle, as
previously described (24). Baseline samples from the participants were
obtained at 0700 (0 h) and after 3 and 8 h from the contralateral thigh. Muscle
samples were immediately frozen in liquid nitrogen and kept at �80°C after
keeping apart a 50-mg fresh muscle sample that was used to measure MAPR.
Hormones and substrates. Plasma insulin was measured with a two-site
immunoenzymatic assay (Access; Beckman Instruments, Chaska, MN). Glu-
cose was measured with a Beckman Glucose Analyzer (Beckman Instruments,
Fullerton, CA). Plasma levels of amino acids were measured by an HPLC
system (HP 1090, 1046 fluorescence detector and cooling system) with
precolumn o-phthalaldehyde derivatization (25). Total adiponectin and HMW
adiponectin concentrations were measured by the human adiponectin double-
antibody radioimmunoassay kit (Linco Research, St. Louis, MO). Highly
sensitive C-reactive protein (hsCRP) concentrations were measured on the
Hitachi 912 chemistry analyzer by a polystyrene particle–enhanced immuno-
turbidimetric assay from DiaSorin (Stillwater, MN). Tumor necrosis factor-�
(TNF-�), interleukin-6 (IL-6), and leptin concentrations were measured as
previously described (26).
Mitochondrial ATP production rates. We measured maximal muscle
MAPRs as previously described (18). Briefly, fresh muscle tissue (150 mg) was
minced on a chilled glass plate and washed in buffer A (100 mmol/l KCl, 50
mmol/l Tris base, 5 mmol/l MgCl2, 1.8 mmol/l ATP, 1 mmol/l EDTA, pH 7.2).
The tissue was transferred to a glass mortar and homogenized in 20 volumes
of buffer A with a motor-driven Teflon pestle. Samples were centrifuged at
1,020g for 10 min at 4°C, and the supernatant was removed and respun at the
same speed. The supernatant was then centrifuged at 10,000g for 5 min at 4°C.
The resulting pellet was resuspended in buffer A and respun at 9,000g for 5
min at 4°C. This final mitochondrial pellet was suspended in buffer B (180
mmol/l sucrose, 35 mmol/l KH2PO4, 10 mmol/l Mg acetate, 5 mmol/l EDTA)
and used to measure MAPR with a bioluminescent technique as previously
described (8,14,27,28). The reaction mixture included a luciferin–luciferase
ATP monitoring reagent (BioThema, Haninge, Sweden), substrates for oxida-
tion, and 35 �mol/l ADP. Substrates used were (in mmol/l final concentration):
20 succinate plus 0.1 rotenone (SR), 10 glutamate plus 1 malate (GM), 1
pyruvate plus 1 malate (PM), 0.05 palmitoyl-L-carnitine plus 1 malate (PCM),
10 �-ketoglutarate (KG), and 1 pyruvate plus 0.05 palmitoyl-L-carnitine plus 10
�-ketoglutarate plus 1 malate (PPKM), with blank tubes used for measuring
background activity. Several substrates were used to allow for the potential

TABLE 1
Participant characteristics

Young lean
(n � 12)

Young obese
(n � 12)

Elderly lean
(n � 12)

Elderly obese
(n � 12)

P

Overall Age Sex BMI

Age (years) 22.0 (19, 29) 24.5 (21, 28) 67.5 (65, 80) 70.5 (65, 80) �0.001 �0.001 0.65 0.32
Body composition

BMI (kg/m2) 23.3 (20.2, 25.4) 30.9 (27.7, 34.0) 23.3 (19.1, 25.1) 29.2 (27.9, 34.3) �0.001 0.27 0.50 �0.001
Fat (%) 29.8 (10.7, 37.6) 44.3 (22.4, 53.5) 29.7 (17.5, 43.0) 40.4 (26.3, 50.0) �0.001 0.93 �0.001 �0.001
FFM (kg) 45.8 (32.3, 65.5) 53.2 (36.1, 78.1) 44.0 (27.4, 61.5) 47.8 (35.6, 64.2) �0.001 0.013 �0.001 �0.001
Fat mass (kg) 18.6 (6.2, 24.1) 35.3 (21.5, 59.6) 16.5 (11.5, 28.8) 32.4 (21.7, 38.6) �0.001 0.014 �0.001 �0.001
Truncal fat mass (kg) 8.5 (3.0, 10.8) 17.6 (10.9, 29.4) 8.0 (5.6, 14.4) 15.8 (11.5, 19.8) �0.001 0.23 0.025 �0.001

Fitness
Peak VO2 (l/min) 2.3 (1.37, 3.00) 2.65 (1.62, 3.66) 1.37 (0.76, 2.48) 1.47 (0.92, 3.06) �0.001 �0.001 �0.001 0.0189
Peak VO2 (ml � kg�1

FFM � min�1) 46.0 (41.3, 58.0) 46.6 (40.9, 55.6) 31.1 (24.3, 44.3) 30.3 (25.6, 47.6) �0.001 �0.001 0.17 0.79
Leisure-time activity

score* 256 (24, 893) 102 (13, 384) 201 (34, 736) 111 (40, 1,032) 0.38 0.66 0.53 0.12

Data are medians (minimum, maximum). *Data were log transformed prior to analysis.
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detection of pathway-specific differences among study groups. The SR sub-
strate, for example, delivers electrons to complex II of the respiratory chain,
whereas all other substrates used transfer energy predominately to complex I.
GM and PM rely on different transporters to enter mitochondrial and provide
fuel to different points of the tricarboxylic acid (TCA) cycle, whereas KG
enters the TCA after interconversion with glutamate. PCM processing uses the
carnitine-palmitoyl transferase system to enter mitochondria, then undergoes
fatty acid oxidation pathway before acetyl CoA units are directed to the TCA
cycle. The PPKM substrate provides an energy-rich combination to provide
substrates to multiple pathways. All reactions for a given sample were monitored
simultaneously at 25°C for 20–25 min and calibrated with addition of an ATP
standard using a BioOrbit 1251 luminometer (BioOrbit Oy, Turku, Finland).
Mitochondrial DNA (mtDNA) copy number. Skeletal muscle mtDNA copy
numbers were determined as previously described (16,18). Real-time PCR
(Applied Biosystems 7900HT Sequence Detection System) was used to
measure mtDNA copy numbers (3), using primer/probe sets targeted to
mtDNA-encoded cytochrome B gene normalized to 28S ribosomal DNA, which
was co-amplified within the same reaction well.
Statistical analysis. All statistical analyses were conducted using SAS
software (SAS Version 9.1, Cary, NC). All data examined for departures from
normality and transformations were used as needed. Analyses evaluating the
main effects of age (young versus elderly), BMI (lean versus obese), and sex
(male versus female) were conducted using three-way ANOVA. Because no
significant interactions were observed, the results are reported considering
only the main effects. Pair-wise comparisons between groups were made
using two sample t tests. Comparisons between baseline and ending values
within groups were made using paired t tests. Multiple linear regression
models were developed to determine the independent effects of age, BMI, and
sex, after adjusting for each other, on insulin sensitivity (glucose infusion rate
[GIR]) and MAPR. Finally, Spearman rank correlation analyses were con-
ducted among peak VO2, MAPR and mtDNA copy number.

RESULTS

Participant characteristics. As per the study design, our
young groups were younger than elderly, and our obese
groups had a higher BMI than lean. Percent fat and FFM
was higher in the obese groups than the lean (P �
0.001). Both absolute (l/min) and relative (ml � kg�1 FFM �
min�1) peak VO2 were significantly lower in the elderly
participants compared with the younger participants (P �
0.001), whereas leisure-time activity scores were similar
between the two age-groups. As expected, the absolute
peak VO2 was lower in women than men (P � 0.001),
whereas the relative peak VO2 was similar between men
and women (P � 0.17) (Table 1).
Hormones and substrates. Fasting glucose levels did not
differ among the groups, as by study design, all partici-
pants fasting glucose levels had to be �6.1 mmol/l (�110
mg/dl) for inclusion. However, there was a sex effect on
fasting glucose levels with women having lower glucose
levels (P � 0.009) than men (Table 2). Fasting insulin
levels were higher in the obese groups (P � 0.001), but
there was no significant difference in fasting glucagon

levels. The obese groups had lower levels of total and high
molecular weight (HMW) adiponectin (P � 0.027 and P �
0.001, respectively), and as expected, higher concentra-
tions of leptin (P � 0.001). The elderly groups had higher
concentrations of IL-6 (P � 0.012), hsCRP (P � 0.051), and
total adiponectin (P � 0.004). However, HMW adiponectin
levels were not different between the young and elderly
participants. Women had higher concentrations of HMW
adiponectin (P � 0.022) and leptin (�0.001) than men.
Insulin sensitivity. The GIR required to maintain similar
glucose levels during the euglycemic-hyperinsulinemic
clamp was significantly lower in obese participants com-
pared with the lean participants (P � 0.01), indicating that
obese participants were more insulin resistant than the
lean participants. Notably, there was no age effect (P �
0.99) on GIR. In addition, men required lower GIR than
women (P � 0.05), indicating that the women were more
insulin sensitive than the men (Fig. 1).
Mitochondrial ATP production rates. MAPRs normal-
ized to tissue weight showed an age effect, with the elderly
groups having lower MAPRs using substrate combinations
of SR, GM, PPKM, KG, and PCM but not PM (Fig. 2A).
When obese and lean groups were analyzed separately, we
found that with all six substrates, both groups showed a
significant age-related decline in MAPR or similar trend
(supplementary Fig. 1 in the online appendix), although
not all of these changes reached the level of statistical
significance. Notably, there was no BMI effect on MAPR
normalized to tissue weight. Figure 2C reveals that men
had higher MAPRs normalized for tissue weight using all
substrates except PCM. Similar trends were also observed
when the MAPR data were expressed relative to mitochon-
drial protein content (Fig. 2D–F); however, these differ-
ences did not reach the level of statistical significance
except when SR was used as a substrate. The 8-h infusion
of insulin resulted in significant increases in MAPR inde-
pendent of age (Fig. 3A), BMI (Fig. 3B), and sex (Fig. 3C).
As previously noted, MAPRs measured using SR, GM,
PPKM, and PCM were significantly (P � 0.05) increased in
response to the 8-h insulin infusion in the young lean
participants (Fig. 3A) (18).
Mitochondrial DNA (mtDNA) copy number. Skeletal
muscle mtDNA copy numbers were lower in the elderly
lean than the young lean participants (P � 0.047). There
was no age-related reduction in mtDNA copy numbers
among the obese participants. In addition, there was no sex
effect on mtDNA copy numbers (data not shown) (Fig. 4).

TABLE 2
Hormones and substrates

Young lean
(n � 12)

Young obese
(n � 12)

Elderly lean
(n � 12)

Elderly obese
(n � 12)

P

Overall Age Sex BMI

Fasting glucose (mmol/l) 4.9 (4.3, 5.5) 5.1 (4.6, 6.1) 5.2 (4.2, 5.8) 52 (4.8, 5.9) 0.005 0.055 0.009 0.061
Fasting insulin (pmol/l) 28.2 (20.4, 55.2) 39.6 (18.6, 111.0) 19.8 (9.6, 51.0) 36.0 (21.0, 62.4) 0.003 0.10 0.79 �0.001
Fasting glucagon (pg/ml) 66 (34, 174) 80 (50, 115) 59 (31, 90) 65 (45, 116) 0.080 0.17 0.15 0.090
CRP (mg/l)* 0.6 (0.3, 2.4) 0.6 (0.2, 17.0) 1.5 (0.3, 3.4) 1.8 (0.4, 11.5) 0.078 0.051 0.46 0.15
IL-6 (pg/ml)* 1.2 (0.7, 3.1) 1.1 (0.7, 11.7) 1.9 (0.9, 5.2) 2.9 (1.4, 8.4) 0.011 0.012 0.31 0.040
TNF-� (pg/ml)* 1.1 (0.5, 2.1) 0.9 (0.5, 1.7) 0.9 (0.5, 2.0) 1.2 (0.9, 2.0) 0.22 0.51 0.10 0.26
Adiponectin (�g/ml)* 9.1 (5.3, 12.0) 8.3 (4.4, 10.2) 12.9 (7.7, 26.8) 10.9 (3.6, 17.1) 0.003 0.004 0.12 0.027
HMW adiponectin (�g/ml)* 3.1 (1.4, 5.6) 2.4 (1.2, 4.5) 4.9 (2.3, 10.8) 2.5 (0.3, 5.5) �0.001 0.19 0.022 �0.001
Leptin (�g/ml)* 10.4 (1.6, 27.5) 14.1 (4.4, 65.8) 7.0 (1.3, 23.6) 18.7 (4.2, 50.7) �0.001 0.78 �0.001 �0.001

Data are medians (minimum, maximum). To convert values for glucose to milligram per deciliter, multiply by 18. To convert values for insulin
to micro-units per milliliter, divide by 6. *Data were log transformed prior to analysis.
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Regression analyses between peak VO2 and MAPR
and mtDNA copy numbers. Peak VO2 was positively
associated with skeletal muscle MAPR (Fig. 5). In con-
trast, peak VO2 was not associated with mtDNA copy
number (data not shown).
Multiple regression analyses. Multiple regression mod-
els were developed to determine the independent effects of
age, BMI, and sex on insulin sensitivity (GIR) and MAPR.
Because no significant interactions were observed, the re-
sults are reported for the models considering only the main
effects of age, BMI, and sex. Insulin sensitivity was not
associated with age after adjusting for BMI and sex. In
contrast, insulin sensitivity was lower in obese compared
with lean subjects after adjusting for age and sex and was
lower in men compared with women after adjusting for age

and BMI. MAPR were lower in the elderly participants
compared with the younger participants for five of the six
substrate combinations after adjusting for BMI and sex.
However, MAPRs were not associated with BMI after adjust-
ing for age and sex. Interestingly, MAPRs were higher in men
than in women after adjusting for age and sex. Multiple linear
regression analysis also revealed that there was no associa-
tion between truncal fat mass (by DPX) and MAPR after
adjusting for age, BMI, and sex (all P � 0.10, data not shown)
(Table 3).

DISCUSSION

The current study determined the effects of age and
adiposity on insulin sensitivity and mitochondrial function
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FIG. 1. Hyperinsulinemic-euglycemic clamp. A and B show the plasma insulin and glucose concentrations during the 8-h clamp, respectively. C

shows that the GIRs required to maintain euglycemia during the 8-h clamp were higher in lean groups than in the obese groups with no effects
of age. D–F show integrated area under the curve (AUC) for the GIR comparing the young and elderly participants, the lean and obese
participants, and men and women, respectively.
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to further explore whether age-related mitochondrial dys-
function and insulin resistance are direct effects of chro-
nological age or are related to adiposity. The main findings
of the current study are, first, that skeletal MAPRs were
higher among the young compared with the elderly partic-
ipants, independent of obesity or truncal fat. Second, in
contrast to the age effect on muscle mitochondrial func-

tion, insulin sensitivity was lower in the obese compared
with the lean participants, and there was no age effect.
Finally, of great interest, it was also shown that women in
general have higher insulin sensitivity than men, whereas
they have lower muscle MAPRs than men.

There is considerable interest in the inverse relationship
between age and insulin sensitivity, because of the age-
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FIG. 2. Mitochondrial ATP production rates. Age effect: An age-related decline in mitochondrial ATP production was observed when expressed
per gram of tissue using substrates succinate plus rotenone (SR), glutamate plus malate (GM), pyruvate plus palmitoyl-L-carnitine plus
�-ketoglutarate plus malate (PPKM), �-ketoglutarate plus glutamate (KG), and palmitoyl-L-carnitine plus 1 malate (PCM) but not pyruvate plus
malate (PM) (A). Similar trends were also observed when expressed per milligram of mitochondrial (mito) protein (D). BMI effect: No significant
BMI effect was observed when the mitochondrial ATP production rate was expressed per gram of tissue (B) or when expressed per milligram of
mitochondrial protein (E). Sex effect: Men had higher MAPRs than women using substrates SR, PM, GM, PPKM, and KG but not PCM when
expressed per gram of tissue (C), but significant differences were only observed when using the SR and KG substrates when expressed per
milligram of mitochondrial protein content (F). Data are presented as means � SE.
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related increase in the prevalence of type 2 diabetes (1)
and its related comorbidities (2). Using the hyperinsuline-
mic-euglycemic clamp, the current results demonstrate
that there were no differences in the insulin sensitivities
measured between the young and the elderly participants,
independent of obesity. Although numerous investigators
have previously reported age-related declines in insulin
sensitivity (4,29,30), our results are consistent with a
growing body of evidence that indicates that age-related
changes in adiposity and physical inactivity are the pri-
mary determinants of the age-related declines in insulin
sensitivity rather than chronological age (6,7,31–33). The
present results demonstrated that insulin sensitivity was

substantially lower in the obese compared with the lean
participants, independent of age, which is consistent with
a recent report in a large number of people (7) that
demonstrated that after adjusting for body composition
and cardiorespiratory fitness, the age-related differences in
insulin action were eliminated. We have also recently
reported that there were no differences in insulin sensitiv-
ity between highly trained young and elderly lean adults,
and the differences in insulin sensitivity were due to
differences in exercise status (6). Importantly, this later
study demonstrated that fat mass, abdominal adiposity,
and BMI were significant predictors of skeletal muscle
glucose disposal, independent of age (6). The present data,
in context of other recent findings (6,32), strongly support
the contention that the age-related reductions in insulin
action (3) are likely secondary to changes in body compo-
sition and physical activity and not inherent to chronolog-
ical aging.

The current study also helps clarify the independent
effects of age and obesity on changes in mitochondrial
function. Several prior studies have shown changes in
mitochondrial function with age (3,8,10,14), obesity (14),
and insulin resistance (3,5,10,14,18,34–36). The current
study helps to tease out two otherwise integrated pro-
cesses. Age-related decline in muscle mass and activities
results in a decline in physical activities and energy
expenditure, causing a relative increase in adiposity (37).
Indeed, the present data indicate that aging and not
age-related changes in body composition likely mediate
the age-related skeletal muscle mitochondrial dysfunction.
We found that irrespective of differences in body compo-
sition, there was a significant age effect on MAPRs. The
age-related reduction in MAPRs was a consistent effect of
age, since MAPR values were lower in the elderly groups
using several different substrates combinations, which is
in agreement with our previous reports that also indicated
an age-related lowering of MAPR when normalized per
gram of tissue (3,6). Here we also report MAPRs normal-
ized for mitochondrial protein content, which also showed
a similar trend to decline with age, although it did not
reach the level of statistical significance. Moreover, at the
end of the hyperinsulinemic-euglycemic clamp, we ob-
served an increase in MAPRs, similar to prior studies from
our group in nondiabetic participants (36), and this re-
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sponse was independent of age, sex, and BMI. We have
previously shown that many mitochondrial protein con-
centrations, especially those involved in oxidative reac-
tions, are reduced with age (3,6). The age-related decline
in MAPRs is proportional to the decline in mitochondrial
DNA abundance (3) and seems to be proportional to the
decline in protein content, since the age-related changes
are less evident when MAPR was normalized for the
mitochondrial protein content. These results indicate that
the decline in MAPR is largely due to the decline in
mitochondrial content rather than related to decline in
mitochondrial quality. We also measured muscle mito-
chondrial DNA abundance that confirmed that, in nono-
bese people, there is an age-related decline in muscle
mitochondrial DNA abundance, as we have previously
reported (3). However, we did not see a significant lower-
ing of mitochondrial DNA abundance with age in our
obese participants, and no clear explanation for this
observation emerges from the current study. Of interest,
MAPR showed significant age-related change or similar
trend in both obese and lean groups (Fig. 2 and supple-
mentary Fig. 1). It is possible that the lack of age-related
decline in mtDNA abundance in the obese group may
represent a type II error due to inadequate power for this

outcome variable. The underlying mechanism for this
discrepancy is unclear from the current study.

A rather intriguing and unexpected finding of the cur-
rent study was that MAPR was lower in women than in
men. These differences between men and women persists
only minimally after normalizing for mitochondrial protein
content, suggesting that, as in elderly people, the reduced
MAPR in women is related to reduced mitochondrial
protein content. The women may have had lower MAPR
than the men due in part to lower levels of physical activity
and/or fitness in the women. Another potential mechanism
that could have resulted in lower MAPR in women than
men could have been due to sex-related differences in fiber
type distribution, particularly if women had a higher
proportion of fast-twitch (glycolytic, type II) skeletal
muscle fibers. However, based on normative data for
mATPase-based fiber-type distributions in healthy un-
trained young men and women, slow-twitch (oxidative,
type I) skeletal muscle fibers tend to occupy a greater area
in the women than the men (38). Of interest, we also found
that the women had higher insulin sensitivity than the
men, which argues against lesser physical activity levels in
women. We also found no differences in peak VO2 per
kilogram FFM between men and women. Women have
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TABLE 3
Multivariate regression analyses

Intercept
Intercept
P value Age

Age
P value BMI

BMI
P value Sex

Sex
P value

Insulin sensitivity
GIR (�mol � kg�1 FFM � min�1) 58.2 �0.001 0.01 0.997 � 11.57 0.00113 � 7.83 0.023

Mitochondrial ATP production
SR* 0.670 �0.001 � 0.403 �0.001 � 0.117 0.21935 0.448 �0.001
PM* 0.809 �0.001 � 0.161 0.116 � 0.134 0.19074 0.156 0.128
GM 5.12 �0.001 � 1.674 �0.001 � 0.272 0.44408 1.596 �0.001
PPKM 5.09 �0.001 � 1.589 �0.001 � 0.357 0.30591 1.291 �0.001
KG 3.12 �0.001 � 0.982 �0.001 � 0.370 0.16317 1.307 �0.001
PCM 1.93 �0.001 � 0.374 0.0357 0.0032 0.98541 0.23218 0.186

Data were pooled for the multivariate regression analyses (n � 48). The model set young to 0 and elderly to 1; negative parameter estimate
indicates elderly � young. The model set lean to 0 and obese to 1; negative parameter estimate indicates obese � lean. The model set women
to 0 and men to 1; negative parameter estimate indicates men � women. Since no significant interactions were observed, the results are
reported for the model considering only the main effects. *Variables were log transformed for analysis.
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lower absolute peak VO2 that is proportional to their
lean tissue mass. We have previously found a close
association between peak VO2 and muscle MAPR, but it
is unclear whether the lower MAPR we observed in the
current study contributed to lower absolute peak VO2. In
the current study, we observed that women have lower
fasting glucose levels and are more insulin sensitive
than men. Using positron emission tomography, it has
been shown that women exhibit greater insulin sensitiv-
ity at the whole-body level, which was largely attributed
to greater glucose uptake by skeletal muscle (39). Lower
fasting glucose levels and greater postprandial glucose
disappearance rates in elderly women than in men were
also observed in another study (7). An important obser-
vation in the current study is the dissociation between
insulin sensitivity and muscle mitochondrial function,
with women being more insulin sensitive while having
lower muscle MAPR.

Aging is often associated with the development of
low-grade inflammation (40), which is an independent risk
factor for both type 2 diabetes and cardiovascular disease.
Indeed, the present data demonstrate that the concentra-
tions of proinflammatory cytokines, IL-6 and CRP, were
higher among the elderly than the young, independent of
obesity. In addition, we also examined the effect of aging
on adiponectin concentrations. Adiponectin has been sug-
gested to have both anti-inflammatory and antidiabetic
properties. The present results indicate that adiponectin
concentrations were higher among the elderly than the
young. Mechanistically, it has been suggested that adi-
ponectin concentrations increase with age due in part to
an age-related decline in renal clearance of adiponectin
(41). However, prior studies have also shown conflicting
results with respect to the age-related changes in adi-
ponectin concentrations (42). Recent data have also indi-
cated that an individual’s sex may modify the association
between adiponectin and age (43). However, the present
study was not powered to detect a sex differences for
adiponectin. The age-related reduction in MAPR that was
observed in our study may be related to low-grade inflam-
mation. Indeed, CRP concentrations were inversely re-
lated to MAPR for both complex I– and complex II–related
substrates (r � �0.44 and r � �0.40, respectively). There
is a clear association to the decline in mitochondrial copy
number and MAPR (3).

Low-grade inflammation is frequently observed in obese
adults, which has been proposed as a potential cause of
their increased risk for type 2 diabetes and cardiovascular
disease (44). As expected, obesity was associated with
higher IL-6 and leptin concentrations. In contrast, adi-
ponectin concentrations were lower among the obese
participants than their lean counterparts. Moreover, the
adiponectin concentrations were significantly correlated
to improved insulin sensitivity (r � 0.40). Increased in-
flammatory cytokines and decreased total and HMW adi-
ponectin concentrations have been associated with
obesity (45,46), intra-abdominal fat accumulation (47),
insulin resistance (48), the metabolic syndrome (49), and
cardiovascular disease (50).

In conclusion, the current study supports a hypothesis
that age-related decline in insulin sensitivity are secondary
to age-related changes in body composition, whereas the
age-related lowering in skeletal muscle mitochondrial ATP
production are related to chronological age. Further stud-
ies are necessary to help elucidate the sex-associated

changes in insulin sensitivity and MAPR, although changes
in adipokines and inflammation may play a role.
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