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Abstract
One of the greatest challenges facing iterative fully-3-D positron emission tomography (PET)
reconstruction is the issue of long reconstruction times due to the large number of measurements
for 3-D mode as compared to 2-D mode. A rotate-and-slant projector has been developed that
takes advantage of symmetries in the geometry to compute volumetric projections to multiple
oblique sinograms in a computationally efficient manner. It is based upon the 2-D rotation-based
projector using the three-pass method of shears, and it conserves the 2-D rotator computations for
multiple projections to each oblique sinogram set. The projector is equally applicable to both
conventional evenly-spaced projections and unevenly-spaced line-of-response (LOR) data. The
LOR-based version models the location and orientation of the individual LORs (i.e., the arc-
correction), providing an ordinary Poisson reconstruction framework. The projector was
implemented in C with several optimizations for speed, exploiting the vertical symmetry of the
oblique projection process, depth compression, and array indexing schemes which maximize serial
memory access. The new projector was evaluated and compared to ray-driven and distance-driven
projectors using both analytical and experimental phantoms, and fully-3-D iterative
reconstructions with each projector were also compared to Fourier rebinning with 2-D iterative
reconstruction. In terms of spatial resolution, contrast, and background noise measures, 3-D LOR-
based iterative reconstruction with the rotate-and-slant projector performed as well as or better
than the other methods. Total processing times, measured on a single cpu Linux workstation, were
∼ 10× faster for the rotate-and-slant projector than for he other 3-D projectors studied. The new
projector provided four iterations fully-3-D ordered-subsets reconstruction in as little as 15 s—
approximately the same time as FORE + 2-D reconstruction. We conclude that the rotate-and-slant
projector is a viable option for fully-3-D PET, offering quality statistical reconstruction in times
only marginally slower than 2-D or rebinning methods.

Index Terms
Fully-3-D imaging; image reconstruction; positron emission tomography (PET)

I. Introduction
ITERATIVE statistical reconstruction techniques in positron emission tomography (PET)
provide a robust framework for modeling the statistical properties of the measurement,
modeling the image acquisition process, and incorporating prior knowledge (when desired)
about the reconstruction solution. While iterative reconstruction has largely become the
standard for PET, complete utilization of such methods has been limited due to large
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computational demands. This is especially true for fully-3-D PET, where both direct and
oblique coincidence lines are measured to produce high sensitivity—but very large—
datasets. A variety of approaches have been proposed for iterative reconstruction of fully-3-
D PET data. The most fundamental, and potentially highest quality, implementation requires
that the raw data be operated upon directly by the reconstruction algorithm, thereby making
full use of Poisson-based statistical models and avoiding any unnecessary degradation or
blurring accompanying data preprocessing steps (e.g., arc-correction). However, these
implementations tend to be the most computationally demanding as well. At the other end of
the spectrum, preprocessing methods—such as rebinning fully-3-D data into a set of 2-D
sinograms followed by 2-D iterative reconstruction [1]–[4]—can be used to greatly speed
the reconstruction; however, such methods tend to spoil the Poisson statistics of the data
and/or introduce undesired blurring or other degradations.

The objective of this work was to develop a fast and accurate projector for iterative fully-3-
D PET reconstruction that offers the potential for full utilization of iterative statistical
reconstruction algorithms, that has low computational cost, and that is amenable to modeling
the physics and spatially variant resolution effects of the PET acquisition. A key
requirement for the projector (and backprojector) is that it can map directly from the image
to the raw coincidence line-of-response (LOR1) measurement space (and vice versa), such
that the projection operation explicitly models the nonuniform spacing of the coincidence
lines acquired by modern PET tomographs [5]. We use the term “LOR-based”
reconstruction to set apart methods that directly reconstruct the raw coincidence-LORs of
the scanner from those that operate on arc-corrected or otherwise preprocessed sinograms. In
effect, the “arc correction” is incorporated into the projector/backprojector of the
reconstruction itself, avoiding interpolations and other degradations that occur when
preprocessing projection data prior to reconstruction. The broad class of LOR-based
reconstruction methods includes both algorithms that reconstruct from raw LOR histograms
as well as listmode algorithms that operate on an event-by-event basis, and they have been
studied by us [6] and other groups e.g., [7]–[9]. By reconstructing directly from the raw
LOR measurements, the Poisson statistical nature of the PET data is preserved, and the full
benefits of maximum-likelihood (ML) statistical reconstruction [10], [11] can be realized.

The proposed projector, which we name the rotate-and-slant projector, takes advantage of
certain redundancies in the fully-3-D measurement geometry to provide very efficient
projection to multiple oblique sinogram sets. It is an extension of the 2-D rotation-based
projector for parallel-beam projections [6], [12], [13], which essentially resamples the image
via rotation so that the columns align with the projection bins at a given azimuthal angle ϕ.
The new projector also implements a new LOR sampling scheme which provides volumetric
integration over the geometric LOR volumes, and that is readily adaptable to future
incorporation of spatially distributed sensitive volumes (i.e., the spatially variant point
spread function). In this paper, we present an overview of the projector, describe how
models for various object- and system-dependent responses can be incorporated, discuss a
number of computational optimizations, characterize their effect upon projection and
reconstruction times, and compare the new projector to several existing ones in terms of
reconstruction time and measures characterizing features of image quality. A full
mathematical description of the projector is also provided as an Appendix.

1We use “LOR” to broadly refer to the geometric linkage between a pair of detector elements in coincidence. In increasing order of
complexity, an LOR may be approximated/interpreted as a line between the centers of detector elements, as a 2-D strip between
elements within a slice, as a 3-D volumetric “tube” connecting the surface areas of two detector elements, or as the spatially-
distributed 3-D sensitive volume of image space that has potential to give rise to prompt coincidence events between the pair of
detector elements in question.
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II. Projector Description
A. Rotate-and-Slant Projector

Fig. 1 shows the (s, ϕ, z, δ) coordinate system used to parameterize fully-3-D LORs for a
generic ring PET tomograph. In order to develop a computationally-efficient fully-3-D
projector, similarities of the measurement geometry were analyzed to identify projection
computations which could be grouped and shared among LORs, leading to the rotate-and-
slant projector. Like the rotation-based projector for 2-D tomography, the rotate-and-slant
projector works by resampling the image so that the columns of the image matrix align with
the projection lines. Projection is then accomplished by summing the columns of the
resampled image matrix. In 2-D, this resampling amounts to rotating the image matrix to
azimuthal angle ϕ. We use the three-pass method of shears [12], [14] for this rotation, which
breaks down the 2-D rotation process into a series of three computationally efficient 1-D
shears.

For fully-3-D PET, the 2-D rotation-based projector can be used for projecting to direct
sinograms (ring difference δ = 0). For oblique sinograms (δ ≠ 0), the projection rays are not
perpendicular to the axis of symmetry of the scanner and lie at some polar angle θ. Here,
resampling the image matrix so that the columns align with oblique projection rays requires
an axial slant (shear) operation, as shown in Fig. 2. This slant is a 1-D depth-dependent
resampling operation that can be performed much faster than the 2-D rotation operation of
Step 1. Furthermore, since the image can be rotated once, stored in memory, then slanted
repeatedly to all ring differences, the computational cost of projecting to multiple ring
differences is a relatively small increase over projecting to a single ring difference. As a
result, the rotate-and-slant projector has high computational efficiency for projecting to
datasets with large numbers of ring differences. Backprojection, which is the transpose of
these operations, is likewise computationally efficient since 1-D slants from all ring
differences can be summed prior to a single rotation back to the object space. Projection to
all segments is additionally speeded through the use of depth compression, as described in
Section II-C. The most important elements of the projector are described below, and a full
mathematical description of the projector is provided in the Appendix. Note that the
projector computes nearly-exact geometric volume integrals of each individual LOR, as
described below and in the Appendix, where departures from the exact geometry are noted
and all approximations are small relative to the size of the (much broader) point response
function.

1) Volumetric Projection—The interpolation method used to performed the rotation and
slants has implications for the type of projection integrals that are computed. Since each pair
of crystals in coincidence for a typical ring tomograph samples a spatial region with finite
volume, we consider the associated LOR to be volumetric. The projector, then, should
integrate this entire volume, rather than a line through it. From a purely geometric
standpoint, the volume contained between a pair of crystals in coincidence is a
parallelepiped formed by the front faces of the crystals. The actual sensitive volume would
be spatially variant and extend beyond this parallelepiped region due to positron range,
acollinearity, and depth-of-interaction effects. We treat the sensitive volume of an LOR as
being separable into two components: the (uniform-sensitivity) geometric component
computed directly by the projector, and a spatially variant component which takes into
account the remaining features and can be considered the point response function. Future
incorporation of models for the spatially variant point response function could be
implemented in the rotate-and-slant projector using image-space convolutions [15] in a
manner similar to that used for depth-dependent collimator-detector response modeling in
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single photon emission computed tomography (SPECT) (e.g., [16]). In this work, we
consider only the geometric component.

The geometric response function for an opposing pair of crystals of width d is triangular
with full-width at half-maximum (FWHM) of d/2 [17]. The geometric component of the
response becomes narrower closer to the side of the ring in the same way that adjacent
LORs get closer together with larger |s|. The LOR width used here was thus set to half the
edge-to-edge crystal width in the transverse direction, and half the ring spacing in the axial
direction, where the width in the transverse direction decreased with larger |s| in the same
manner that the LOR spacing decreases for a ring tomograph. This does not translate into
improved spatial resolution for larger |s|, however—depth-of-interaction effects make the
spatially variant portion of the response significantly wider at larger |s|, and the spatial
resolution of the tomograph hence worsens away from the center of the scanner. Also note
that tomographs typically “interleave” LORs from immediately adjacent angles as shown in
Fig. 1 (right), effectively binning the data with double the radial sampling rate but half the
angular sampling rate. We use the conventional approximation that the interleaved LORs all
fall at the same angle, though the projector could easily be adapted for data binned without
LOR interleaving as well (in which case, successive angular bins would alternate between
having even and odd numbers of LORs).

In order to integrate the volumetric LORs, the resampling steps of the rotator and slants are
performed using volume-of-overlap calculations. The volume-of-overlap is determined by
computing the length-of-overlap in the transverse plane after rotation (equivalent to the
transverse area-of-overlap, since the rotated columns are parallel to the LORs and the height
of each row is 1.0), followed by the area-of-overlap in the axial plane, the product of which
provides the volume-of-overlap. This is closely related to distance-driven projection [18]
(which computes the transverse length of overlap between the LOR and each image row—
almost an area-of-overlap computation), extended to include a more complete volumetric
computation and accounting for the position and size of each individual LOR. Consider, for
example, 2-D rotation using the three-pass method of shears for projection to a set of direct
LORs (δ = 0) at azimuthal angle ϕ. The objective is to resample the image matrix via
rotation such that the columns of the matrix align with the LORs, where the left and right
edges of each rotated column coincide with the left and right edges, respectively, of the
volumetric LORs. As seen in Fig. 3, the first two shears map square pixels to square pixels
of the same size, hence area-of-overlap and linear interpolation are equivalent (see the
Appendix for more details). However, in the third step, each row of the image matrix is
translated to accomplish the shear and at the same time resampled to align with the LOR
volumes. If one were projecting to arc-corrected, evenly-spaced projection bins the same
size as the image pixels, this third step would amount to a linear interpolation. However, for
projection to raw volumetric LORs (whose width and spacing vary with s), the area-of-
overlap is computed for the resampling. Fig. 3 also depicts the use of a depth compression
factor for acceleration, as described in Section II-C.

B. Incorporation of Object- and System-Dependent Effects
The rotate-and-slant projector provides a convenient image-based framework for modeling
object- and system-dependent measurement effects. These effects can be separated into three
distinct classes [19], [20]: 1) multiplicative effects such as attenuation, normalization, and
deadtime, which affect the sensitivity of individual LORs, 2) additive effects such as
randoms and scatter, which contribute to the number of prompt coincidences measured but
do not provide high-resolution spatial information about the source activity distribution, and
3) geometric effects which map the precise location and geometry of each LOR measured by
the tomograph, ultimately including variant point responses caused by positron range,
noncollinearity effects, and depth-of-interaction [17]. Incorporation of each of type of effect
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into the rotate-and-slant projector closely follows the method used for the 2-D rotation-
based projector as described in [6], with a few additional issues related to oblique LOR
positions as described below. In this work, scanner geometries and standard estimates for
multiplicative and additive effects were obtained from the scanners using manufacturer-
provided research tools, and these were then implemented offline with our reconstruction
code.

1) LOR Position—For fully-3-D data, the exact position of oblique (δ ≠ 0) LORs is
somewhat more complicated than for direct (δ = 0) LORs. For example, as shown in Fig. 1,
the polar angle θ for a given ring difference δ changes as a function of s for a cylindrical
scanner. Similarly, “direct plane” and “cross plane” slices are often stacked by alternating
between even and odd ring differences to form a final slice spacing that is one-half the ring
spacing. This causes the polar angles for oblique LORs in adjacent slices to alternate in
value. The position and orientation of each LOR is easily modeled in the slant step of the
rotate-and-slant projector (making it a spatially variant 1-D operation), thereby matching the
geometry of the PET tomograph in question and avoiding many of the approximations
commonly used in other PET projectors. In common practice, LORs from multiple ring
differences are sometimes binned together to reduce the number of segments. This polar
undersampling is sometimes referred to as “mashing” or “axial compression.” The resultant
segment contains contributions from multiple ring differences, hence the corresponding
sensitive volume is depth-dependent (in a manner analogous to single-slice rebinning). In
our current implementation, we consider the geometric component of the response (as
modeled by our projector) to include contributions from the central ring difference contained
in the segment, and leave the depth-dependent component of the response to be treated as
part of the spatially variant point spread function (as described earlier in Section II-A).

C. Computational Efficiency and Optimizations
There are a number of symmetries and other numerical matters that can be exploited to
greatly improve the computational efficiency of the projector [21]–[23]. We have
implemented the rotate-and-slant projector in C and tested several relatively straightforward
optimizations as described below, measuring their effects upon projection and reconstruction
times using the 3-D ordered-subsets expectation-maximization (OSEM) algorithm.
Measurements of processing times were performed on one core of a single-CPU 2.66-GHz
Intel Xeon Linux workstation with no parallelization or multithreading, and all times could
be significantly shortened using parallel-implementations on multiple processors as desired.

1) Depth Compression—When using the rotate-and-slant projector, the volume-integral
computations amount to summing each column of the rotated image. Essentially, each row
of the rotated image corresponds to a different “depth” between the detector crystals (due to
the cylindrical symmetry of the scanner, the “zero” depth can be considered to fall halfway
between the crystals—i.e., at the plane intersecting the axis of the detector cylinder—and
depth-dependent effects will often be vertically symmetric about this zero depth). Projection
to oblique segments involves an axial slant, which amounts to a depth-dependent z-shift of
each row of the rotated image. Since the oblique LORs lie at small angles from vertical, the
difference in axial shift for neighboring rows is small, and relatively little depth information
is required to perform the slant to very good approximation. We have incorporated a depth
compression factor into the rotator which collapses the image vertically (by summing
adjacent rows) during the second x-shear, essentially compressing the depth information of
the rotated image. As a result, both memory utilization and the number of operations to
perform multiple slants to the oblique segments is reduced. This depth compression bears
some relation to multilevel 2-D projection/backprojection methods such as described by
Brandt et al. [24]. The effects of using depth compression upon projection time and image
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quality are presented in the results, Section IV-B. Using a very large depth compression
factor affects the data in a manner similar to single-slice rebinning (SSRB), whereas a depth
compression factor of one exactly retains all depth information.

2) Array Indexing—The orders in which the reconstructed image matrix and projection
data matrix arrays are indexed can have a significant impact upon processing time.
Accounting for the manner in which the arrays are accessed within the projector routine, the
array indices can be ordered in such a way as to access contiguous blocks of memory when
possible. For example, the 3-D reconstructed image matrix would typically be indexed with
three indices: column i, row j, transaxial slice k. This array would commonly be ordered
such that i varies fastest, followed by j, and k would vary the slowest; which we refer to as
i : j : k ordering. In other words, the (i, j, k) element of the image array would be at memory
location i + Ni × (j + Nj × k), where Ni, Nj, and Nk are the dimensions of the i, j, and k
directions, respectively.

The i : j : k ordering is efficient for applications which treat the image one slice at a time,
e.g., a transaxial image display program. For fully-3-D projection and reconstruction,
however, the image volume is better treated as a whole. Considering the main steps of the
rotate-and-slant projector as shown in Fig. 2, several different ordering schemes may be
considered. We compared projection and reconstruction times for three ordering schemes: i :
j : k, k : i : j, and k : j : i. The degree of improvement for the different ordering schemes was
dependent upon the image dimensions. The k : i : j ordering scheme consistently provided
projection and reconstruction times that were 41%–66% as long as for i : j : k ordering, with
k : j : i falling in between. This was not surprising, given that the innermost projection loop
is a 1-D axial resampling procedure, and the k : i : j indexing allowed contiguous memory
blocks to be accessed for this loop.

Two different projection data indexing orders were also studied, LOR:slice:angle and
slice:LOR:angle. The slice:LOR:angle indexing order was consistently found to be 12%–
17% faster, and hence it was used throughout this work. Overall, optimizing the image and
projection data array ordering schemes resulted in a factor of ∼ 2× savings in projection and
reconstruction times.

3) Vertical Projection Symmetry—The approximately cylindrical geometry of most
modern PET scanners provides what we refer to as a vertical symmetry for the projection
operation. Referring to Fig. 2, Step 2 of the rotate-and-slant projection requires a depth-
dependent axial slant of the rotated image matrix. Defining the zero depth to be at the center
of the image matrix (i.e., at the depth of the axis of symmetry of the scanner), the slant for
rows at positive depths is the reverse of the slant for rows at negative depths. Since the slant
requires a row-by-row 1-D linear interpolation, the interpolation factors can be shared for
the positive and negative depths. In effect, this replaces two multiplications with two
additions for each voxel in the row, and this occurs within the innermost loop of the slanting
routine. This resulted in a time savings of about 18%. Other symmetries or optimizations
could also be exploited as in [21]–[23], though we believe that those used here provide the
most acceleration without unduly increasing the complexity of the projector.

III. Evaluation Methods
The rotate-and-slant projector was configured for the geometries of three common PET
tomographs: the General Electric Medical Systems Advance PET scanner (283 LORs × 336
angles, 35 slices) and Discovery ST PET/CT scanner (249 LORs × 210 angles, 47 slices),
and the Siemens Medical Solutions TruePoint Biograph PET/CT scanner (335 LORs × 336
angles, 81 slices). Lookup tables containing the edge positions and orientation of each LOR
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as functions of s, ϕ, z, and δ were computed based on the geometry of each scanner and
provided to the projection routines. An analytical experiment and two physical phantom
experiments were performed to evaluate the performance of the new projector as described
below. No polar mashing (i.e., no “axial compression”) was used for the experimental data,
though different mashing factors (and thus different numbers of segments) were studied for
the projection and reconstruction times presented in Section IV-D.

A. Projection Accuracy
The projection accuracy of the new projector was tested versus analytically computed
volume-integral projections of a modified high-contrast Shepp–Logan phantom consisting of
twelve ellipsoids. The results were compared to those for two conventional projectors: 1) a
ray-driven projector based on Siddon et al. [25], which computes a projection line integral
using the length-of-intersection of the projection ray with each image voxel, and 2) the
distance-driven projector of De Man and Basu [18], which takes into account the width of
each LOR and uses a length-of-overlap voxel weighting scheme. These projection models
represent a progression from a simple 1-D line-integral projection model to a more
volumetric model, and lead toward the fully volumetric rotate-and-slant projection model.
All three projectors were programmed into the same C code, using precomplier directives to
differentiate the relevant pieces of code, and all used the same set of code optimizations
when applicable. Projection accuracy was assessed by computing the root mean squared
error (RMSE) between the projected values from each projector and analytically-computed
volume-integrals for the same LOR geometry.

B. Reconstruction Performance
Fully-3-D iterative reconstruction performance with the proposed and conventional
projectors were evaluated using five reconstruction schemes: 1) Fourier rebinning (FORE,
[1], [2]) followed by 2-D attenuation-weighted (AW-)OSEM with the ray-driven projector;
2) conventional 3-D AW-OSEM using the ray-driven projector, where the measured
projection data were arc-corrected prior to the reconstruction step; and 3-D LOR-OSEM
using 3) the ray-driven projector, 4) the distance-driven projector, and 5) the rotate-and-slant
projector. The LOR-OSEM methods reconstructed directly from the raw PET histograms
with delayed-coincidences stored in a separate file (i.e., used the ordinary Poisson statistical
model applied to nonprecorrected data [26]), where all corrections including the arc-
correction were incorporated in the projector/backprojector. In all five reconstruction
schemes, the exact same scatter+randoms estimates and attenuation × normalization factors
were used, though the order of implementation of each differed for schemes 1), 2), and 3)-5)
according to the requirements of each. For example, 1) the scatter+randoms estimate was
presubtracted prior to FORE for reconstruction scheme; 2) it was arc-corrected and then
added to the forward projection of the iterative reconstruction for scheme; and 3)–5) it was
added (without arc-correction) to the forward projections of schemes. The different
reconstruction schemes were evaluated and compared using experimentally acquired
phantom data as described below.

1) NEMA Phantom Experiment—The NEMA image quality phantom was imaged in 3-
D mode on a Discovery ST PET/CT scanner. The phantom was filled with a total of 111
MBq 18F in water, and contained cold spheres of 37- and 28-mm diameter and hot spheres
(8:1 target:background) of 17-, 13-, and 10-mm diameter. The phantom was centered in the
scanner field-of-view and imaged for 7.5 min, storing delayed coincidences in a separate file
for later use. The raw data and scanner normalizations were then offloaded to a Linux
workstation and processed offline into multiplicative, additive, and geometric components,
as described in Section II-B. The data were then reconstructed onto 128 × 128 × 49 slice
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images with 3.125 mm in-plane voxels using each of the five reconstruction schemes and
analyzed as described below.

2) Resolution and Contrast Phantom Experiment—The Deluxe Jaszczak Phantom
(Data Spectrum Corporation, Hillsborough, NC) was scanned on the Advance scanner to
characterize hot-object resolution and cold-sphere contrast. The phantom contained a plastic
insert of six wedges of hot rods with diameters 4.8, 6.4, 7.9, 9.5, 11.1, and 12.7 mm,
arranged with center-to-center spacing in each wedge equal to twice the rod diameter. Six
cold spheres of diameters 9.5, 12.7, 15.9, 19.1, 25.4, and 31.8 mm were also placed in the
phantom. The phantom background was filled with 50 MBq 18F-FDG in water, positioned
on the imaging table with the rods aligned with the long axis of the scanner, and centered in
the field-of-view. High count data were acquired by scanning the phantom for 30 min in 3-D
mode with the septa retracted, again saving delayed coincidences in a separate file, and a 10-
min transmission scan was acquired using rotating 68Ge pin sources. The scan data were
then offloaded, processed, and reconstructed onto 128 × 128 × 49 slice images with 3.125-
mm in-plane voxels using each of the reconstruction schemes.

3) Analysis Methods—The five reconstruction schemes were comparatively evaluated
using parameters describing image spatial resolution, object contrast, and background noise,
taking into consideration differences in the rate of iterative convergence resulting from the
different LOR models inherent in different projectors. The effect of using depth compression
upon axial resolution was analyzed by fitting Gaussians to axial profiles of the 13-mm-
diameter hot sphere from the NEMA phantom experiment, where the Gaussian function was
selected as an ad hoc function which fit the axial profiles sufficiently well to characterize
changes in the width of the response. The FWHM of the fitted Gaussians were analyzed as a
function of depth compression factor, and also compared to those for reconstructions using
single-slice rebinning. The effect of depth compression on projection accuracy was also
evaluated by studying its effect on the RMSE error for projections of the Shepp-Logan
phantom.

Three analysis measures were computed for the Deluxe Jaszczak phantom experiment: 1)
the average peak/valley ratio for the wedge of 4.8-mm hot rods, which is a measure closely-
related to the recovered spatial resolution, 2) the contrast of the 12.7-mm-diameter cold
sphere, computed as (BG-FG)/(BG+FG),2 yielding a measure where 0.0 and 1.0 reflect no
contrast and perfect contrast, respectively, and 3) the standard deviation of 256 spatially
separated background voxels, quoted as a percent of the mean value, where the background
voxels were randomly spaced over the image background but away from the phantom
objects and outer contour. This final measure provides a measure of the statistical noise in
the image. These two measures were first analyzed as a function of iteration to identify
differences in the rate of iterative recovery of image features for each of the reconstruction
schemes. The noise measure was then analyzed as a function of the resolution and contrast
measures, providing comparisons which account for the different rates of iterative recovery.

IV. Results
A. Projection Accuracy

Projection accuracy for each of the three projectors was studied using four discretized
versions of the Shepp–Logan phantom with different voxel sizes. The phantom was first
discretized onto a 1024 × 1024 × 648 array with 0.4-mm voxels in-plane and a slice

2FG and BG represent the average voxel values within regions-of-interest drawn within the object foreground and background,
respectively.
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thickness of 0.25 mm. This was then collapsed in all directions by factors of 2, 4, and 8 to
produce phantoms with successively larger voxel sizes and levels of partial-volume effect
due to discretization error. Each phantom was projected with the ray-driven, distance-driven,
and rotate-and-slant projectors onto 335 LOR × 81 slice × 336 angle projection arrays using
the geometry of the TruePoint Biograph scanner. The RMSEs for a significantly oblique
segment (ring difference δ = 20) are shown in Table I, quoted as the percent of the mean
nonzero projection value.

For all matrix sizes, the distance-driven and rotate-and-slant projectors had similar accuracy,
and the ray-driven projector had larger %RMSE. This was expected since the ray-driven
projector uses a line-integral projection model, whereas the other two projectors are more
volumetric. Comparing the different columns of Table I provides an assessment of the
contribution of projector error and discretization error, which dominates for the larger voxel
sizes (e.g., 128 × 128 matrix) and decreases rapidly with decreasing voxel size. The
distance-driven projector had slightly better accuracy for the 128 × 128 image, likely
because it had slightly smaller interpolation error than the rotate-and-slant projector. On the
other hand, the rotate-and-slant projector had slightly better accuracy for the 1024 × 1024
image, where the discretization error was smaller and the truly volumetric nature of the
rotate-and-slant projector produced more accurate results than the area-of-overlap based
distance-driven projector. Overall, the accuracy of the distance-driven and rotate-and-slant
projectors was deemed to be very comparable.

B. Effect of Depth Compression
The use of a depth compression factor with the rotate-and-slant projector reduces the
number of computations required for projection to multiple oblique sinograms. However,
since the use of such factors results in some loss of depth information, there may be a
consequent loss of projection accuracy for oblique LORs which cross different slices at
different depths. Like SSRB, depth-compression creates a depth-dependent approximation
for oblique LORs. However, while the error for SSRB increases with increasing depth to the
edge of the field-of-view, the error for depth-compression only increases as one moves from
the center to the edge of each depth-compressed slab (it does not successively increase
across all slabs). For example, when using a depth-compression factor of 8 with a 128 × 128
image, we have 16 depth-compressed slabs. The depth-information at the center of each slab
is exactly retained, and at the edge of the slab the error is similar to that of SSRB at 8/2 = 4
voxels away from the center of the image. Since depths map (in a sense) to radii in the
reconstructed image, the errors map to concentric rings on the reconstructed image as shown
in Fig. 4. The error is very small at the central radius of each ring and maximal (though still
small for depth-compression factors of ∼ 8 or less) between each ring. Note that a very
similar analogous approximation exists for FORE, where small ring differences (less than
δlim as defined in [1]) are binned using the SSRB approximation. A typical value of δlim for
FORE would be on the order of 4–5, which roughly corresponds to the same approximation
encountered for a depth-compression factor of twice δlim, or about 8.

Fig. 5 shows the CPU times for fully-3-D projection of a 128 × 128 image to LORs for the
three scanner geometries (each having a different number of LORs, slices, angles, and
segments as listed earlier) with different depth compression factors. Projection times are
markedly reduced for depth compression factors up to about 8, beyond which they remain
relatively stable. Fig. 5 also shows two figures-of-merit related to projection accuracy—the
reconstructed axial FWHM of the 13-mm sphere for the NEMA phantom experiment, and
the %RMSE between analytical and projected values for the Shepp-Logan phantom. Both of
these measures were largely unaffected by depth compression factors up to 8, beyond which
accuracy was degraded due to the loss of depth information. As a reference for comparison,
the FWHM of the 13-mm sphere when reconstructed by SSRB followed by 2-D-OSEM was
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20.8 mm—somewhat higher that that for the rotate-and-slant projector with the very large
depth compression factor of 64. These data suggest that use of a depth compression factor of
8 (for a 128 × 128 image) with the rotate-and-slant projector offers a significant (almost 3 ×)
speedup with negligible loss of accuracy. In general, the optimal depth compression factor
will depend upon the image dimensions, number of segments, and range of ring differences
included in the projection data, and in general would be smaller if very large ring differences
are included. All remaining results for the rotate-and-slant projector presented in this paper
used a compression factor of 8.

C. Characteristics of Reconstructed Images
Fig. 6 shows example images of the Deluxe Jaszczak Phantom for each of the five
reconstruction schemes. The images are shown at 10 iterations OSEM with 21 subsets (16
angles per subset) for each scheme. The 4.8-mm rods are clearly resolved on this dataset,
and the smallest 9.5-mm cold sphere is likewise clearly resolved. Small circles of
radioactivity surrounding the support posts for the spheres can also be seen between the
wedges of hot rods. The images for the rotate-and-slant projector and the other
reconstruction methods show similar image quality, and the most significant differences
noted were differences in reconstructed noise texture. Horizontal profiles across one row of
the 7.9-mm-diameter and 11.1-mm-diameter rods show somewhat better peak-to-valley
definition for the distance-driven and rotate-and-slant projectors as compared to the other
cases.

Results of the quantitative analysis of the Deluxe Jaszczak phantom experiment are shown
in Fig. 7. Plots of the resolution (average peak/valley ratio of the 6.4-mm rods) and contrast
(12.7-mm cold sphere) measures versus iteration reveal differences in the rate of iterative
recovery of image features for the different reconstruction schemes. The plots on the bottom
row of Fig. 7 effectively normalize for this effect, permitting comparison of image noise at
the same resolution or contrast. The data demonstrate a trend toward improved image
quality measures when moving from the preprocessing reconstruction schemes to fully-3-D
LOR-OSEM. This reflects the improved statistical models of the fully-3-D iterative
methods, coupled with reduced degradation when arc correction is included in the projector
(LOR-based) and more-volumetric projectors are used. It is not clear why FORE
outperformed AW-OSEM3D in Fig. 7, though this may have to do with differences in noise
correlations which are not well characterized by the noise measure that was used. Notably,
the rotate-and-slant projector performed as well as, or slightly better than, the two other
projectors studied for the LOR-OSEM 3-D reconstructions. In particular, the rotate-and-
slant and the distance-driven projectors provided comparable results for the analysis
presented. The rotate-and-slant projector computes the full volume-of-intersection of each
LOR with each image voxel, whereas the distance-driven projector accounts for most, but
not all, of the volume-of-intersection. However, the rotate-and-slant projector also has a
slight amount of blurring associated with the first two steps of the rotation operation which
the distance-driven projector does not have. Overall, the accuracy of the rotate-and-slant and
distance-driven projectors were deemed very similar, with both projectors providing
comparable reconstructions.

D. Projection and Reconstruction Times
The CPU times required for fully-3-D projection and 3-D LOR-OSEM reconstruction on a
single-CPU Linux workstation with no parallelization or multithreading are shown in Figs. 8
and 9. The TruePoint Biograph scanner geometry was used for the projection time
computations, and the advance geometry was used for the reconstruction time computations.
Both sets of timings were measured as a function of the number of segments included in the
reconstruction, where the typical operating points for 2-D and fully-3-D modes are marked.
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The cases with fewer segments correspond to using larger polar mashing (or axial
compression), whereas the cases with the most segments correspond to no polar mashing. It
can be seen from Fig. 8 that the projection time for the rotate-and-slant projector includes a
component associated with 2-D projection and increases slowly with the number of oblique
segments. In contrast, the projection time for the other two projectors rises rapidly with
increasing number of projection rays (LORs), and each oblique segment adds significant
time to the computation.

The total reconstruction times plotted in Fig. 9 show similar trends. Notably, fully-3-D
iterative reconstruction with the rotate-and-slant projector was accomplished nearly as fast
as FORE followed by 2-D iterative reconstruction, whereas fully-3-D reconstruction with
the conventional projectors took many times longer. Thus, the computational efficiency of
the rotate-and-slant projector enables fully-3-D iterative reconstruction to be performed in
timeframes approaching those for rebinning followed by 2-D reconstruction. Given the
results of the quantitative analysis comparing image quality features, we conclude that the
rotate-and-slant projector offers a viable solution for direct fully-3-D PET reconstruction
which takes full advantage of statistical algorithms without associated limitations in
processing time.

V. Discussion
The proposed projector addresses one of the most important issues for iterative fully-3-D
PET reconstruction—that of long reconstruction times. A number of different approaches to
accelerating fully-3-D reconstruction have been proposed. The approach most widely used
today on commercial scanners consists of rebinning the fully-3-D data to an equivalent 2-D
dataset (e.g., via FORE), followed by 2-D iterative reconstruction. While this results in fast
processing times, drawbacks include the need for preprocessing which may have some
associated blurring or other degradation, along with compromising the Poisson statistical
nature of the raw data (though methods of preserving the statistics while rebinning are under
investigation). The more fundamentally-direct application of statistical reconstruction to raw
LOR data itself (i.e., LOR-based reconstruction) overcomes the drawbacks of rebinning, but
has been associated with very long reconstruction times. The proposed projector largely
resolves this concern. Other fast fully-3-D projectors such as Fourier-based [27]–[30] and
matrix-driven [31] methods are under investigation by several groups, but no direct
comparison of projection times or projection accuracy was available for this paper. The
rotate-and-slant projector does bear some similarities to the SSP algorithm recently
published by Hong et al. [32]. Both approaches rotate the image matrix and exploit
projection symmetries to obtain fast projection (and backprojection), though they use very
different implementations. Our work explicitly computes volumetric projection integrals but
only references the possibility of using parallelization techniques, whereas Hong et al.
compute line integral projections but specifically implement single instruction multiple data
(SIMD)-based parallelization.

In addition to its computational efficiency and volumetric nature, the rotate-and-slant
projector has a number of other desirable properties. It provides a convenient image-based
framework for modeling effects such as the spatially variant point spread function and
scatter. For time-of-flight (TOF) PET, the TOF depth is immediately available after the
rotation and easily accessed. As compared to matrix-driven projectors, it has modest
memory requirements and can be used to project and/or reconstruct any voxel size without
the need for any special setup (such as the need to recompute a projection matrix for each
voxel size). The proposed projector is easily adaptable to a wide variety of scanner
geometries and can map directly to unevenly-spaced LORs, something which is more
challenging for Fourier-based projectors. It is also well-suited for block-iterative methods,

Kadrmas Page 11

IEEE Trans Med Imaging. Author manuscript; available in PMC 2009 December 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



and it offers so-called “embarrassingly simple” parallelization at the angle and/or subset
level. Since the rotate-and-slant projector relies upon a rotator, however, there is a small
degree of interpolation error associated with the rotation. When reconstructing voxels ∼ 4
mm and smaller, these interpolation errors are quite small relative to the size of the PET
point spread function, and the analysis results demonstrated accuracy very similar to the
distance-driven projector. Perhaps the biggest limitation of the rotate-and-slant projector is
that it is not well suited for event-by-event listmode reconstruction because it relies upon
sharing operations among grouped sets of LORs.

VI. Conclusion
A computationally efficient projector for fully-3-D PET reconstruction has been developed
which can provide fully-3-D iterative reconstruction in times similar to rebinning and 2-D
reconstruction, and markedly faster than conventional 3-D projectors. The rotate-and-slant
projector was implemented in C and configured for three modern PET scanners, and several
optimizations were performed to speed reconstruction times. Several image quality measures
were analyzed for experimental phantom data, and the new projector compared favorably
with the other projectors studied. The rotate-and-slant projector provides a viable option for
performing accurate fully-3-D iterative PET reconstruction with reconstruction times fast
enough for routine clinical use. The time savings offered by the new projector reduces the
need for aggressive subsetting or use of accelerated algorithms that potentially diminish
image quality, and it may also permit the use of more accurate though time-consuming
methods of compensating for image-degrading effects.
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Appendix Mathematical Description of the Projector

Let Ak,i,j represent the Nk × Ni × Nj image matrix value at slice k, column i, and row j.
Projection of A to all segments m at azimuthal angle ϕ by the rotate-and-slant projector
requires two steps: 1) rotation of A about the z-axis by angle ϕ while simultaneously
resampling the rotated image columns to the LOR sampling at angle ϕ and applying depth-
compression, and 2) projection to each segment by applying axial shears and summing the
resultant image columns. We implement step 1) using the three-pass method of shears as
described below, where the LOR-resampling and depth-compression are performed during
the 3rd shear. The following description assumes −45° ≤ ϕ < +45°; for angles outside of this
range, the image A is rotated as needed by 90° or 180° by swapping and/or inverting the x-
and y-axes (i, j indices) so that the remaining rotation angle lies within [−45°, +45°]. Note
that other implementations of the rotate-and-slant projector could be used, such as
computing the transformation matrix for step 1) and implementing the step as a matrix-
vector multiplication. We have not assessed such alternate implementations in this work.

Step 1): Rotation, LOR-Resampling, and Depth Compression
First X-Shear—Let dy(j) = j − (Nj − 1)/2 be the perpendicular distance of the center of row
j from the central axis. The shear is accomplished by shifting each row j (numbered 0, 1,…,
Nj − 1)by Δx(j) = −dy(j) • tan(ϕ/2), using interpolation when Δx(j) is noninteger. Since the
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shifted and original pixels have the same size and spacing, interpolation by length-of-
overlap is identical to linear interpolation, and we have

(1)

where

Here, A′ represents the image matrix after the first x-shear, and floor() returns the operand
rounded down to the nearest integer. Equation (1) is applied for every i, j, and k. For
efficient computer implementation, the outermost loop would be over j, followed by i, and
the innermost loop would be over k.

Y-Shear—The second shear is in the y-direction. Here, dx(i) = i − (Ni− 1)/2 is the
perpendicular distance from the center of column i to the central axis, and Δy(i) = −dx(i) •
sin(ϕ) is the shift for each column i. Length-of-overlap interpolation is again equivalent to
linear interpolation, and we have

(2)

where

Here, A″ represents the image matrix after the y-shear. Equation (2) is efficiently
implemented with outermost loop over i, middle loop over j, and innermost loop over k.

Second X-Shear + LOR-Resampling + Depth-Compression—The final shear of the
rotator is identical to that of (1), but applied to A″ to yield the final rotated image. One
could choose to complete the final shear, and then perform the LOR-resampling on the
rotated image; however, this would involve consecutive interpolations in the x-direction—
one for the final shear, and one for the LOR-resampling. We perform the LOR-resampling
simultaneously with the final shear so that a single interpolation is performed, providing a
faster implementation with less interpolation error.

For the shear portion of the calculation, dy(j) = j − (Nj − 1)/2 and Δx(j) = −dy(j) • tan(ϕ/2) as
above. As shown in Figs. 1 and 10, the LOR spacing is spatially variant, individual LORs
have different widths, and adjacent LORs may be separated by gaps or even overlapping
depending on the scanner geometry and LOR model used. In performing the LOR-
resampling, we want to compute the intersection of each individual LOR with the rotated
image voxels, weighted by the area-of-overlap within the image slice.3 Since the LORs
(within the slice) are parallel to the columns of the rotated image matrix, the vertical length-
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of-overlap between LORs and image rows is always 1.0; however, the length-of-intersection
of each LOR with each (shifted) voxel of each row needs to be computed.

Let  be the positions of the left and right edges of LOR n at angle ϕ expressed in
units of image pixels; these would typically be obtained from a lookup table describing the

specific scanner geometry. Also, let  and  be the left and right edges of the shifted
image voxels for column i and row j (where the voxel positions have been shifted by Δx(j)
for the final x-shear). The rotated, LOR-resampled, depth-compressed image matrix,
Bk,n,jcomp, is then computed as shown in (3) at the bottom of the page. The first summation
performs the depth-compression by summing all rows (depths) j such that floor(j/γ) = j,
where γ is the depth-compression factor (γ = 1.2,4,8,…). The second summation is over all

i such that shifted image column i intersects LORn, and  is the length-of-overlap (and,
equivalently, area-of-overlap) between shifted voxel i and LORn in row j in units of pixels.
We implement (3) with outermost loop over j, middle loop incrementing i and n in
conjunction, and innermost loop over k.

Step 2): Projection of Rotated Image to All Segments
Bk,n,jcomp equals the sum of the intersection of image voxels within slice k and depth-
compressed slab jcomp with LOR n. Projection to a “direct” segment (i.e., with ring
difference δ = 0; equivalently a 2-D projection) is simply accomplished by summing over
depths

(4)

where  represents the projected value at slice k for LOR n. Projection to oblique
segments with ring difference δ ≠ 0 involves applying an axial shear followed by summing
over depths. The choice of axial shear depends on certain interpretations of the segment
geometry. Consider, first, the case where the measured data were binned with minimum
span; i.e., each segment contains two ring differences. For example, the “first” oblique
segment would contain ring differences δ = 2 and δ = 3, where slices in line with the rings
of the scanner (sometimes referred to as “direct-plane”) slices have δ = 2, and slices lying
halfway between rings (“cross-plane”) have δ = 3. The exact axial shearing operation would
differ for direct-planes and cross-planes, which would add a small degree of complexity to
the shear computation. In this work, we make the approximation that all slices of the
segment fall at the average ring difference (δ = 2.5 in this example). This approximation has
no effect at zero depth (center of the scanner), but adds a small degree of error in the shear
operation for image rows away from the center. For applications where the highest axial
resolution is important the exact shear should be used; however, we note that the axial
mispositioning/blurring due to this approximation is considerably smaller than that
introduced by binning the data with other than minimal span. Also note that, as described in
Section II-B. LOR Position, the polar angle θ for LORs with the same ring difference varies
as a function of s, an effect which we include in our scanner geometry lookup tables and
account for in the axial shear operation described below.

3The rotate-and-slant projector computes projection integrals weighted by (almost) the volume-of-overlap between each individual
LOR and the image voxels. The area-of-overlap in the transaxial plane is computed by this rotator/resampler, and the remaining
(axial) component of the volume is computed during the axial shears of step 2)–projection to each segment.
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The second consideration for the axial shear relates to binning oblique sinograms with polar
mashing or “axial compression,” where groups of ring differences are binned together in
order to reduce the total number of segments. The effect of this is to add a degree of depth-
dependent axial blurring to each segment similar to that of single-slice rebinning but smaller
in magnitude (according to the mashing factor). In our implementation, we project the image
to LORs at the central ring difference of the segment, and suggest that the width of the
segment can be considered as a component of the spatially variant point spread function.
However, since the rotate-and-slant projector can project to many segments with low
computation cost, we suggest that polar mashing generally be avoided and the complete
fully-3-D dataset be utilized for reconstruction. Of course, other issues such as memory and
disk usage should also be considered when making this determination.

(3)

Projection to oblique segment m, then, requires knowledge of the polar angle θ(m, n, ϕ) for
each LOR n at the given azimuthal angle ϕ. This would typically be stored in a lookup table
for the particular scanner geometry, where we note that the LOR-dependence arises from the
s -dependence of θ for scanners with cylindrical (or similar) geometries. The depth of the
center of each depth-compressed slab jcomp is given by dz(jcomp) = γ × (jcomp − (Ny/γ − l)/
2), giving a depth-dependent axial shift of

A typical image model uses contiguous evenly-spaced slices, where the slice thickness
equals one-half the ring spacing. The intersection between each oblique LOR and an image
row is trapezoidal as shown in Fig. 10. Since θ is in general not large, this trapezoidal
intersection spans two slices in almost all cases, and the trapezoidal area-of-intersection can
be computed by simple linear interpolation at the depth of the center of the image row. In
certain situations when the oblique LOR is centered or nearly-centered upon an image
column at the given row, the intersection traverses three slices. In our current
implementation, we count the contribution from the two columns nearest the LOR for these
cases and ignore the small contributions from the third column; this introduces a small
approximation into the volume-of-overlap calculation for these specific cases.

According to the vertical projection symmetry (Section II-C.), the shift for positive depths is

the reverse of that for negative depths. Let  be the index for the depth-compressed slab
at the opposite depth of jcomp. Projection to LOR n of slice k, oblique segment m is then
computed by

(5)
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where

and

We implement (5) with outermost loop over image rows (slabs), middle loop over LORs n,
and innermost loop over slices k. Projection to all segments at angle ϕ is efficiently
accomplished by repeating (5) for all segments m.
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Fig. 1.
Coordinate system (s, ϕ, z, δ) used to parameterize an LOR for a generic ring PET
tomograph. The z coordinate describes the axial position of the midpoint of the LOR, which
falls at the point of closest approach to the central axis of the tomograph. Note that the
length of the LOR (here denoted Δy, where the y-direction is defined perpendicular to s
within the transaxial plane), is dependent upon s. As a result, the polar angle θ is not only
dependent upon the ring difference δ, but there is also a secondary dependence upon s. For
cylindrical ring PET tomographs, the LORs grouped into a parallel projection at a given
angle are unevenly spaced in s. The diagram at right also shows interleaving of LORs from
adjacent azimuthal angles (solid and dashed lines), which have been merged into a single
angular bin, effectively halving the number of angular samples but doubling the transverse
sampling in each.

Kadrmas Page 18

IEEE Trans Med Imaging. Author manuscript; available in PMC 2009 December 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
The proposed rotate-and-slant projector follows three major steps. Note that Step 2, slanting
to ring difference δ, involves only a 1-D slant, which is very fast and can be done repeatedly
to all ring differences after a single rotation from Step 1. This makes the rotate-and-slant
projector computationally efficient for fully-3-D projections to a large number of ring
differences.
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Fig. 3.
Illustration of rotation by the three-pass method of shears, where arc-correction and a depth
compression factor of 2.0 were used. Projection to unevenly-spaced LORs is efficiently
accomplished by incorporating the LOR-resampling directly into the third shear of the
rotator. This reduces the interpolation error while maintaining the speed advantage of this
rotator.
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Fig. 4.
Example images showing the depth-dependent behavior of the approximations introduced
by the use of depth-compression. These images show the absolute value percent error of a
simulated disc phantom one slice thick, centered in the field-of-view, and reconstructed
using fully-3-D OSEM with depth-compression factors ranging from 2 to 64 as indicated.
The top images share the same greyscale as shown; the greyscales for the bottom images
were normalized individually, with average percent error shown in parenthesis. Depth-
compression effectively compresses the depth information into coarse slabs, where the
center of each slab is unaffected and the upper- and lower-edges of the slab experience the
greatest approximation. Since depths map to radii in the reconstructed image, each depth-
compressed slab produces a concentric ring on these error images. The extreme case of a
depth-compression factor of 128 (equal to the image dimension) would be analogous to
SSRB, where there would be one “ring” with little error at the center but very large error at
the edge.
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Fig. 5.
Effect of using depth compression factors upon projection time (left) and accuracy measures
(right). Here, the FWHM characterizes the axial profile of the 13-mm sphere in the NEMA
phantom reconstructed image, and %RMSE provides a measure of accuracy for projections
of the modified Shepp-Logan phantom at ring difference δ = 20. Projection times dropped
quickly with compression factors up to about 8, whereas accuracy was largely unaffected for
compression factors of 8 and below. These results indicate that using a compression factor
of 4 or 8 (for a 128 × 128 image) offers significant speedup of the rotate-and-slant projector
without a significant concomitant loss of accuracy.
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Fig. 6.
Example images of the Deluxe Jaszczak Phantom at 10 iterations for the five reconstruction
methods studied. The smallest 4.8-mm-diameter rods are resolved for each reconstruction
method, as is the smallest 9.5-mm-diameter cold sphere. Small circles of radioactivity are
also visible surrounding the support rods for the spheres, which appear between the wedges
of hot rods. The images for each of the reconstruction methods were visually similar, with
differences in noise texture being the largest effect noted. Horizontal profiles across one row
of the 7.9- and 11.1-mm-diameter rods show somewhat better peak-to-valley definition of
the rods for the distance-driven and rotate-and-slant projectors as compared to the other
cases. A depth-compression factor of 8 was used for the rotate-and-slant projector.
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Fig. 7.
Quantitative analysis of image quality measures for the five reconstruction schemes studied.
The resolution and contrast measures (top row) demonstrate broad similarities for each
reconstruction method, with some differences in the rate of iterative recovery of these image
features. The plots on the bottom row permit comparison of image background noise at
matched resolution (left) or contrast (right). Fully-3-D LOR-OSEM outperformed the
rebinning and conventional AW-OSEM methods, and the more volumetric projectors
(rotate-and-slant, distance-driven) outperformed the ray-driven projector.
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Fig. 8.
Projection CPU times for the TruePoint Biograph scanner, plotted as a function of the
number of oblique segments, for the three projectors studied. A 128 × 128 × 81 slice image
matrix was used, and the projectors mapped to 335 unevenly-spaced LORs at each of 336
angles. The rotate-and-slant projector used a depth-compression factor of 8 for this data.
Processing time for the conventional projectors scaled poorly with increasing numbers of
oblique segments, whereas the rotate-and-slant projector scaled very efficiently, even for the
complete fully-3-D case with all segments. This is due to the manner in which the rotate-
and-slant projector efficiently conserves azimuthal operations for computing 3-D projection
to multiple oblique segments.
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Fig. 9.
Reconstruction CPU times for the Advance scanner, plotted as a function of the number of
oblique segments, for 4 iterations OSEM with 14 subsets and four reconstruction schemes.
Each sinogram of the raw projection data had 283 unevenly-spaced LORs and 336 angles,
and the reconstruction matrix was 128 × 128 × 35 slices. The first three curves are for
fully-3-D LOR-OSEM, and the final curve is for Fourier rebinning followed by 2-D AW-
OSEM. Using the rotate-and-slant projector with depth-compression factor of 8, total
processing time for fully-3-D iterative reconstruction was similar to that for 2-D
reconstruction.
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Fig. 10.
Diagrams showing the intersection of LORs (shaded) with image columns in the transverse
plane (left) and with image slices in an axial plane (right), after rotation of the image matrix
to angle ϕ. The area-of-overlap between LOR A and image voxel 1 is indicated (left
diagram) and can be computed by the length-of-overlap between the LOR edges and voxel
as indicated. The area-of-overlap in the axial plane between LOR C and image voxel 5 is
similarly indicated (right diagram), and is computed based on the length-of-overlap as
shown (which introduces a slight approximation in some cases as discussed in the text).
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TABLE I

Projection Accuracya(%RMSE) for Three Projectors

Projector 128 × 128 256 × 256 512 × 512 1024 × 1024

Ray-Driven 8.00 4.48 3.03 2.69

Distance-Driven 6.15 2.47 1.20 0.85

Rotate-and-Slant 6.26 2.58 1.21 0.84

a
Shepp-Logan phantom, versus analytically-computed volume integrals.
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