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Abstract

A major goal for the treatment of patients with systemic lupus erythematosus with cytotoxic therapies is the induction of
long-term remission. There is, however, a paucity of information concerning the effects of these therapies on the
reconstituting B cell repertoire. Since there is recent evidence suggesting that B cell lymphopenia might attenuate negative
selection of autoreactive B cells, we elected to investigate the effects of cyclophosphamide on the selection of the re-
emerging B cell repertoire in wild type mice and transgenic mice that express the H chain of an anti-DNA antibody. The
reconstituting B cell repertoire in wild type mice contained an increased frequency of DNA-reactive B cells; in heavy chain
transgenic mice, the reconstituting repertoire was characterized by an increased frequency of mature, high affinity DNA-
reactive B cells and the mice expressed increased levels of serum anti-DNA antibodies. This coincided with a significant
increase in serum levels of BAFF. Treatment of transgene-expressing mice with a BAFF blocking agent or with DNase to
reduce exposure to autoantigen limited the expansion of high affinity DNA-reactive B cells during B cell reconstitution.
These studies suggest that during B cell reconstitution, not only is negative selection of high affinity DNA-reactive B cells
impaired by increased BAFF, but also that B cells escaping negative selection are positively selected by autoantigen. There
are significant implications for therapy.
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Introduction

Systemic lupus erythematosus (SLE) is a systemic autoimmune

disease characterized by the production of autoantibodies against a

vast array of self antigens, most notably double stranded (ds) DNA

[1]. Autoreactive B cells arise routinely in all individuals as a

consequence of the molecular processes that govern V gene

recombination and B cell receptor (BCR) diversification. In

healthy individuals, the B cell repertoire is purged of potentially

pathogenic autoreactive B cells at multiple developmental

checkpoints; however, in SLE patients, many of these checkpoints

are breached and autoreactive B cells become part of the mature,

immunocompetent and activated B cell repertoire [2–4].

A mainstay of lupus therapy for many decades has been

cyclophosphamide (CY), a cytotoxic agent that has been shown to

preferentially target B cells [5,6]. New therapies recently explored

for SLE include the use of the anti-CD20 antibody, which

selectively depletes B cells [7,8], as well as autologous hematopoi-

etic stem cell transplantation, which leads to both T and B cell

depletion. In each case, the underlying therapeutic strategy is to

permit the development of a reconstituted B cell repertoire devoid

of autoreactive B cells. It is clear that CY is beneficial in lupus

patients. Initial studies of human SLE patients and lupus-prone

mouse strains suggested that B cell depletion usually given together

with CY ameliorates disease activity in a subset of patients [9,10],

but two large randomized, placebo controlled studies of B cell

depletion with anti-CD20 antibody failed to show efficacy at 12

months. There remains a lack of critical information about how

autoreactive B cells reconstitute following B cell depletion,

especially in light of the observation that serum levels of BAFF

rise following B cell depletion [11] in an attempt to restore B cell

homeostasis. To begin to address this important issue, we studied

the effects of CY-induced B cell depletion on the selection of

DNA-reactive B cells in wild type (WT) BALB/c mice and in the

R4A Tg BALB/c mouse that expresses the heavy chain of a

pathogenic anti-DNA antibody. We demonstrate that during B

cell reconstitution, there is an increased maturation of high affinity

DNA-reactive B cells resulting in increased serum titers of anti-

DNA antibodies. A reduction in the elevated levels of BAFF that

result from B cell depletion or a decrease in antigen availability

diminished the expansion of these autoreactive B cells.

Results

Reconstitution of Splenic B Cell Subsets Following CY
Treatment

CY is a DNA alkylating agent that is cytotoxic to hematopoietic

cells, most notably B cells [5,6], and is commonly used to treat
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patients with lupus nephritis and neuropsychiatric lupus [12]. To

establish the kinetics of B cell reconstitution following a single dose

of CY (200 mg/kg of body weight), we first examined WT BALB/

c mice. As expected, CY-induced B cell depletion was almost

complete on day 3 with a greater than 95% reduction in splenic B

cells (Figure 1 A&B and Table 1). While CY treatment also

depleted T cells, T cell depletion was less extensive than B cell

depletion (Figure 1), confirming previous reports that B cells are

more susceptible to CY treatment [13].

Having established a dose of CY that induced near total B cell

depletion and partial T cell depletion, we determined the pattern

of B cell reconstitution. The absolute number of B cells in all

subsets increased substantially between days 3 and 14 (Figure 1A

and Table 2), there was a greater than 50% repopulation of

transitional T1 and T2 subsets, while the number of mature FO

and MZ B cells still lagged at this time point, such that total B cell

numbers were still reduced by 80% in CY-treated mice compared

to PBS-treated mice on day 14.

Figure 1. B cells following CY treatment. (A) B cell numbers following CY or PBS treatment. Flow cytometry was performed to identify B (B220+)
cells and the Tg (IgG2b+) B cells. The B cell numbers from individual mice is represented. A significant decrease in total B cell numbers in both the
BALB/c WT mice as well as the BALB/c R4A Tg mice following CY treatment was observed at all time points analyzed, but was near normal by day 28.
(B) Lymphocyte numbers following CY or PBS treatment. Flow cytometry was performed to identify B (B220+) cells and T (CD3+) cells. A representative
dot plot is shown.
doi:10.1371/journal.pone.0008418.g001
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Between days 14 and 28, total B cell number in CY-treated

mice increased to greater than 60% of that in PBS-treated mice;

FO and MZ B cell numbers increased to 50% of levels in PBS-

treated mice, demonstrating that during this period, restoration of

mature splenic B cell compartments was occurring (Table 2 and

Figure 2). Taken together, these data indicate that significant

reconstitution of mature B cell subsets takes place over a span of

approximately 28 days after the existing B cell populations are

depleted by a single dose of CY, and are in agreement with

previous studies suggesting that B cell numbers return to near

normal levels within a month after CY treatment [6].

To understand the antigenic specificity of the reconstituting B

cell repertoire, we chose to enumerate DNA-reactive B cells. On

day 14, we examined the repertoire in WT mice by DNA-specific

IgG ELISpot assay. CY-treated mice had a significantly higher

frequency of B cells spontaneously secreting anti-DNA antibody

than PBS-treated mice (Figure 3). Thus, the reconstituting B cell

repertoire was enriched for activated DNA-reactive B cells.

Expansion of High Affinity DNA Reactive B Cells during
Reconstitution in CY-Treated R4A Tg Mice

Since the primary purpose of this study was to determine the

effects of CY-induced B cell depletion on the reconstitution of the

B cell repertoire of a lupus patient,, we decided to continue our

studies using the R4A Tg mouse that expresses the IgG2b heavy

chain of the R4A anti-DNA antibody. Most transgene expressing

B cells are allelically excluded and express a non-DNA binding

antibody or a low affinity DNA binding antibody and display a

normal maturational program. There is small number of allelically

included (IgM and IgG2b) anergic B cells that express an IgG2b

anti-DNA antibody and an IgM antibody that is not DNA-

reactive. These cells can only be detected by fusion of LPS-

stimulated splenic B cells. We have previously shown that the high

affinity DNA-reactive B cells are deleted at both the immature to

transitional and transitional to mature stages. Tolerance induction

of low affinity DNA-reactive B cells occurs only at the immature to

transitional stage. Thus, B cell tolerance is maintained in R4A Tg

BALB/c mice and the mice do not express elevated serum titers of

anti-DNA antibody despite the enforced expression of the

transgenic anti-DNA heavy chain in about 5–10% of B cells.

The majority of B cells express an endogenous IgM BCR, allowing

for normal competition among B cells for survival niches [14]. On

day 3 after CY treatment, R4A Tg-BALB/c mice displayed a

greater than 95% loss of splenic B cells, and thereafter mice

exhibited a pattern of B cell reconstitution similar to that exhibited

by WT BALB/c mice (Table 3 and Figure 1A). The effect of CY

treatment on the reconstitution of Tg+ (B220+/IgG2b+) B cells was

also determined (Table 4 and Figure 1A). Transgene-expressing B

cells of R4A BALB/c mice were reduced on day 3 following CY

treatment by greater than 90%. The reconstitution of Tg+ B cells

compared to Tg2 B cells was slightly although not significantly

more rapid, resulting in an increased relative frequency of Tg+ B

cells during reconstitution.

Our previous analysis of hybridomas from R4A Tg BALB/c

have allowed us to identify germline-encoded light chains which,

when paired with the R4A heavy chain, give rise to high affinity

DNA-reactive B cells. Previously, we have demonstrated that the

pairing of the R4A heavy chain with either germline-encoded

Vk1A-Jk1 or Vk1A-Jk4 light chains generates an antibody with

high affinity for DNA [15]. Usually, these cells are tolerized, and

eliminated during the early stages of selection [16,17]. To analyze

the frequency of high affinity DNA-reactive B cells within the

reconstituting repertoire, individual Tg+ B cells from 3 individual

mice were isolated and single cell RT-PCR and sequence analysis

was performed. Tg+ B cells were first analyzed to confirm that they

expressed a c2b heavy chain. We also examined Tg+ B cells for

expression of a m heavy chain to ensure that we were not seeing a

preferential increase in survival of allelically included B cells. Of 15

Tg+ B cells isolated by single cell sorting, 14 expressed a c2b heavy

chain; none expressed a m heavy chain (data not shown). Thus, the

cells we studied maintained allelic exclusion. The frequency of

mature Tg+ B cells utilizing light chains that generate a high

affinity anti-DNA antibody was determined. On day 14 the

frequency of high affinity DNA-reactive transitional and mature

Tg+ B cells that were present in CY-treated mice was significantly

increased compared to PBS-treated R4A Tg mice (Table 5),

indicating that more potentially pathogenic autoreactive B cells

bypassed the stages of negative selection in both bone marrow and

spleen during reconstitution and entered in the immunocompetent

repertoire. Interestingly, on day 28, the frequency of transitional

and mature high affinity DNA-reactive B cells was still increased in

CY-treated R4A Tg mice; there was a decrease of nearly 50%

when compared with day 14, although this difference was not

statistically significant (data not shown). These data demonstrate

that negative selection was altered in the reconstituting B cells

repertoire as there were more high affinity DNA-reactive B cells in

the transitional and mature B cell compartments.

Elevation in BAFF Following CY Treatment
BAFF has emerged as a crucial factor that modulates B cell

survival and development [18] and is required for the stages of B

cell maturation beyond the T1 stage and for the maintenance of

FO and MZ B cells [19–21]. There are also data to suggest that

autoreactive B cells require more BAFF than non-autoreactive B

cells for survival and excess BAFF can rescue anergic autoreactive

B cells when there is a reduced number of naı̈ve, competitor B cells

[22]. It is now established that B cell depletion in humans leads to

Table 1. Absolute number and percentages of splenic B cells
and T cells on day 3.

Treatment B cells (6105) B cells (%) T cells (6105) T cells (%)

PBS 193 (634) 49.4 (63.3) 146.0 (623.6) 41.0 (65.4)

CY 8.3* (62.3) 5.4 (61.8) 35* (67.7) 81.4 (61.9)

n = 5 mice per group. Data are presented as the mean6SD.
*p,161024.
doi:10.1371/journal.pone.0008418.t001

Table 2. Percentage of splenic B cells during reconstitution.

Transitional B cells Mature B cells

T1 T2 FO MZ

Day 3 PBS 24.9 (63.1) 13.7 (62.2) 54.8 (69.2) 5.6 (60.7)

CY 27.6(67.3) 15.6(60.01) 29.6* (60.05) 18.6* (64.7)

Day 14 PBS 19.5 (62.1) 10.8 (62.1) 59 (69.2) 4. 2 (61.3)

CY 50.1* (69.8) 29.9* (66.0) 20.4* (67.8) 4.5 (60.01)

Day 28 PBS 12.6 (62.7) 10.6 (61.4) 62.9 (612.4) 12.9 (61.7)

CY 12.4(60.04) 19.8* (62.8) 63.8 (68.3) 5* (61.8)

n = 5 mice per group. Data are presented as the mean6SD.
*denotes that the comparison of PBS to CY-treated mice was p,0.001.
doi:10.1371/journal.pone.0008418.t002
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a rise in serum levels of BAFF [11]. To determine the effects of CY

treatment on circulating BAFF levels, serum was obtained from

both WT and R4A Tg mice before and after treatment and BAFF

levels were quantified by ELISA. In both CY-treated WT BALB/c

and R4A Tg BALB/c mice, a significant elevation in BAFF was

observed (Figure 4 and data not shown). While the increase in

BAFF peaked by day 5, BAFF levels remained significantly

increased until day 21 following CY treatment. Thus, these data

indicate that serum BAFF levels are markedly elevated during B

cell reconstitution.

BAFF Neutralization Prevented the Accumulation of High
Affinity DNA-Reactive B Cells in the Reconstituting
Repertoire

The expansion and escape from normal mechanisms of B cell

tolerance of high affinity DNA-reactive B cells during B cell

reconstitution strongly suggests positive selection of this BCR

specificity. To understand the mechanism(s) for the change in B

cell selection, we focused on the role of BAFF and autoantigen in

the reconstituting repertoire. BAFF is a critical B cell survival

factor and BAFF levels have been shown to rise in autoimmune

patients following B cell depletion [11,23]. It has been shown

experimentally that increasing the levels of BAFF in a B cell

depleted environment can promote the survival of autoreactive B

cells that would normally be silenced [22]. We, therefore, assessed

the effects of BAFF neutralization on B cell reconstitution and the

Figure 3. ELISpot assay to enumerate the DNA-reactive B cells.
Five BALB/c mice were treated with CY and five with PBS. Student’s t
test was used to determine the significance between the groups. A
significant increase in the DNA-reactive cells was observed in CY-treated
mice (p,0.05).
doi:10.1371/journal.pone.0008418.g003

Figure 2. Splenic B cell populations following CY or PBS treatment. The markers B220 and AA4.1 were used to differentiate mature (B220+/
AA4.12) and transitional (B220+/AA4.1+) B cell subsets. The mature B cell gate was used to identify marginal zone (CD21hi/CD232) and follicular
(CD21hi/CD23pos) populations and the transitional gate was used to identify T1 (CD21neg/HSAhi) and T2 (CD21pos/HSAhi) subsets. Five mice were
analyzed at each time point. Representative data are shown. The absolute numbers are presented in Table 2.
doi:10.1371/journal.pone.0008418.g002

Table 3. Percentage of splenic B cells of R4A Tg mice
following treatment with CY.

Transitional B cells Mature B cells

T1 T2 FO MZ

Day 3 PBS 8.3 (62.7) 5.3 (61.6) 49.7 (69.2) 25.3 (69.7)

CY 13.7* (65.2) 7.7(63.3) 14.2* (65.0) 42.5*(67.8)

Day 14 PBS 15.2 (64.3) 8.8 (62.5) 48 (66.9) 14.7 (63.5)

CY 31.5* (65.9) 21* (63.8) 27.7* (67.5) 11.3 (66.7)

Day 28 PBS 8.5 (62.3) 9.5 (61.0) 47.7 (614.6) 26.9 (68.5)

CY 5.0* (61.0) 9.9 (64.8) 57.5 (69.5) 17.3 (67.6)

n = 4–5 mice per group. Data are presented as the mean6SD.
*denotes that the comparison of PBS to CY-treated mice was p,0.001.
doi:10.1371/journal.pone.0008418.t003
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frequency of high affinity DNA-reactive B cells following CY-

induced B cell depletion. R4A Tg mice were given recombinant

BAFF-R-Ig as previously described beginning 3 days after CY

administration [24]. BAFF-R-Ig treatment resulted in an accu-

mulation of transitional T1 B cells on day 14 (data not shown), as

expected, since BAFF is required for maturation to the transitional

T2 stage [20]. In addition, neutralization of BAFF resulted in a

decrease in MZ B cells, which is also in agreement with previous

studies indicating the sensitivity of this B cell subset to changes in

BAFF levels [19]. Neutralization of BAFF with BAFF-R-Ig

reduced the frequency of immature and mature high affinity

DNA-reactive B cells to that present in PBS-treated mice (Table 6),

indicating that the emergence of high affinity-DNA reactive B cells

into the transitional and then mature B cell repertoire may be due,

at least in part, to the increased serum concentration of BAFF in

the lymphopenic host.

DNase Treatment Blocks Maturation of High Affinity
DNA-Reactive B Cells

DNase treatment of B/W F1 mice has been shown to reduce

anti-DNA antibody titers, but there are conflicting data regarding

the efficacy of DNase treatment on glomeruloneprhritis and

survival [25,26]. Presumably the reduced production of anti-DNA

antibodies reflects a lower amount of DNA to drive the expansion

of DNA-reactive B cells.

While it has not been conclusively demonstrated that DNA itself

is the eliciting antigen that drives the selection and expansion of

DNA-reactive B cells, CY induces massive cell death augmenting

the antigenic load potentially capable of stimulating DNA-reactive

B cells. We, therefore, asked whether DNase might reduce the

expansion of DNA-reactive B cells. We reasoned that DNase-

treatment would decrease DNA levels in CY-treated mice, and

thus limit the positive selection of high affinity DNA-reactive B

cells. Beginning 4 days after R4A mice were given CY, daily

injections of active or heat-inactivated DNase were administered

for 14 days. Analysis of the DNA-reactive repertoire revealed that

the expansion of high affinity DNA-reactive B cells that was

observed in CY-treated mice was diminished by administration of

active DNase but not by heat-inactivated DNase (Table 7). This

was discernable in both the transitional and mature B cell

populations, suggesting that the positive selection of autoreactive B

cells by antigen begins at the transitional stage of development.

Anti-DNA Antibody Titers Following CY Treatment
In order to determine if the CY-induced skewing of the

reconstituting B cell repertoire toward autoreactivity was of

consequence, we assayed for anti-DNA antibodies in the serum.

CY-treated R4A Tg mice displayed higher titers of anti-DNA

Table 6. Frequency of high affinity DNA-reactive B cells in
R4A Tg mice treated with CY and BAFF-R-Ig.

PBS CY CY+BAFF-R-Ig

Transitional 5/65 (8%) 16/60 (27%)* 3/60 (5%)

Mature 5/64 (8%) 25/70 (36%)* 4/59 (7%)

Data are presented as the frequency of Tg+ B cells expressing Vk1a/Jk1 or Jk4
out of the total number of B cells examined. The percentages are shown in
parenthesis. There was an increase in high affinity DNA-reactive B cells in CY vs
PBS-treated mice (*p,0.01), but not in CY+BAFF-R-Ig treated mice.
doi:10.1371/journal.pone.0008418.t006

Table 4. Percentage of IgG2b+ B cells of R4A Tg mice
following treatment with CY.

Transitional B cells Mature B cells

T1 T2 FO MZ

Day 3 PBS 13.0 (61.0) 7.8 (61.0) 33.0(62.3) 37.4 (64.2)

CY 15.4(63.0) 7.7 (61.5) 23.1* (66.9) 46.0 (67.7)

Day 14 PBS 16.7 (66.5) 13.5 (61.7) 34.1 (65.6) 30.2 (64.0)

CY 12.8 (62.2) 8.4* (61.0) 37.2 (64.2) 32.8 (63.7)

Day 28 PBS 15.1 (62.3) 12.3 (61.8) 37.8 (67.3) 34.0 (64.5)

CY 11.2 (62.7) 13.7 (62.1) 33.3 (65.0) 37.3 (67.2)

n = 4–5 mice per group. Data are presented as the mean6SD.
Tg+ B cells were reconstituted in all subsets by day 28. They were significantly
reduced in CY-treated mice prior to that time.
*p,0.01.
doi:10.1371/journal.pone.0008418.t004

Table 5. Frequency of high affinity DNA-reactive B cells in CY-
treated R4A Tg mice.

PBS CY

Transitional 4/55 (7.3%) 16/65 (24.4%)*

Mature 3/60 (5%) 20/71 (28.2%)*

Data are presented as the frequency of Tg+ B cells expressing Vk1a/Jk1 or Jk4
out of the total number of B cells examined in PBS and CY-treated R4A Tg mice.
The percentages are shown in parenthesis. CY-treated mice showed a higher
frequency in both the transitional and mature subsets (*p,0.02).
doi:10.1371/journal.pone.0008418.t005

Figure 4. Elevation of serum BAFF during B cell reconstitution.
Serum BAFF levels in five mice were measured by ELISA following
administration of CY. BAFF was significantly elevated following 3 days
after CY treatment and remained elevated until day 28. *p,0.01 as
determined by Mann-Whitney test.
doi:10.1371/journal.pone.0008418.g004
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antibodies at 28 days than PBS-treated R4A Tg mice (Figure 5A).

Furthermore, both BAFF-R-Ig and active DNase, but not heat-

killed DNase, led to reduced serum titers of anti-DNA antibody

(Figure 5A & 5B). Moreover, glomerular Ig depostion was present

in CY-treated mice but not observed in CY-treated mice

administered BAFF-R-Ig or active DNase (Figure 5B). Thus,

serum DNA reactivity and glomerular Ig deposition confirmed the

findings of the repertoire analysis.

Discussion

The data reported here demonstrate that the eradication of a B

cell repertoire may result in the selective expansion of autoreactive

B cells and increased autoantibody production. In the WT host,

there was a specific expansion of DNA-reactive B cells during B

cell reconstitution. We believe this phenomenon might contribute

to clinical relapse in patients with SLE. Indeed, these data support

a recent clinical study which demonstrated that a subset of lupus

patients treated with CY developed anti-phospholipid antibodies

and anti-phospholipid syndrome following therapy [27]. They also

support a study which analyzed kappa and lambda light chain

usage during B cell reconstitution after treatment with rituximab, a

B cell depleting antibody, and demonstrated a shift in B cell

repertoire toward an increased kappa/lambda ratio [23]. It is

noteworthy that in WT non-autoimmune BALB/c mice, the B cell

reconstitution phase led to a mature B cell repertoire with a higher

frequency of potentially pathogenic DNA-reactive B cells, but no

frank serologic autoreactivity. In contrast, in the R4A Tg mouse,

predisposed to have enhanced survival of autoreactive B cells, B

cell reconstitution was accompanied by autoimmune features

including elevated serum titers of autoantibodies and glomerular

immunoglobulin deposition. We believe this mirrors the situation

in patients with SLE, who are predisposed to a decreased

stringency of negative selection, perhaps by virtue of expression

of the susceptibility allele of PTPN22 and/or Blk [28]. It is also

important to note that elevated BAFF has previously shown to

decrease the negative selection of DNA-reactive B cells in mice,

although in that study the enhanced BAFF levels were not induced

by lymphopenia, and there was no increase in autoantibody titers

[29]. We believe this may reflect a difference in fine specificity or

affinity of the transgene-encoded anti-DNA antibody such that

there was less positive selection.

It is possible that the rise in autoantibody titers that we observe

following B cell reconstitution in R4A Tg mice may be transient

and at a later time point, the high affinity DNA-reactive B cell

population might contract in size as the proportion of non-

autoreactive competitor B cells increases. While it is plausible that

these potentially pathogenic B cells have a limited time frame in

which they can undergo activation, our data indicate that mature

high affinity DNA-reactive B cells that are expanded during B cell

reconstitution remain part of the naı̈ve repertoire for at least 1

month and can be activated to secrete autoantibody. We believe

that once the titers of DNA-reactive antibodies rise, the immune

complexes they form activate toll-like receptor 9 (TLR 9) in

dendritic cells to increase production of BAFF and proinflamma-

tory cytokines and to transform the dendritic cells from a

tolerogenic to an immunogenic state. The same DNA containing

immune complexes may activate TLR 9 in DNA-reactive B cells

to promote their survival through tolerance checkpoints and to

help them class switch to production of the proinflammatory IgG

isotype.

The reduction in frequency of high affinity DNA-reactive B cells

by treatment with DNase supports a role for antigen in the

expansion of these cells after CY exposure. CY treatment increases

the concentration of extracellular DNA levels due to the large

amount of cell death, so it seems logical to surmise that DNAse

may reduce the local concentration of DNA in the spleen and thus,

impair the autoantigen-mediated expansion of high affinity DNA-

reactive B cells.

In light of the findings that BAFF is elevated in SLE and greatly

elevated following B cell depletion and the recent failure of anti-

CD20 antibody, a B cell depleting antibody to demonstrate clinical

efficacy in the treatment of SLE despite successful B cell depletion,

our data suggest that B cell depletion may only be effective if the

re-emergence of high affinity autoreactive B cells can be kept in

check. In fact, we are concerned that all B cell depleting therapies,

whether or not there is an accompanying T cell depletion, may

promote the expansion of high affinity autoreactive B cells during

B cell reconstitution. This is in keeping with several studies

suggesting that high affinity autoreactive B cells have a survival

advantage in the absence of a diverse repertoire of competitor B

cells [30,31]. Thus, agents that transiently reduce B cell number

may ultimately enhance the survival of potentially pathogenic B

cells. Furthermore, the increased BAFF may trigger heavy chain

class-switching independent of T cell help and so enhance the

pathogenicity of autoantibodies [32]. It is of interest to note that

BAFF blockade with an anti-BAFF antibody has just been

reported to reduce anti-DNA antibody levels and disease activity

in a Phase III study in lupus patients. This therapy causes a mild

reduction in B cells, but may limit the survival and maturation of

newly minted autoreactive B cells. It will be interesting to

determine if it indeed leads to a less autoreactive B cell repertoire.

We are aware that the expansion of high affinity DNA-reactive

B cells after CY treatment may not be a consequence of BAFF

levels and antigen availability only. There are studies suggesting

that the re-emergence of Tregs may be delayed following CY

treatment [33]. While our data do not exclude the possibility that a

diminished Treg compartment may contribute to the increased

maturation of autoreactive B cells, a role for Tregs during selection

of the naı̈ve repertoire has not been clearly established.

In conclusion, we demonstrate that expansion of autoreactive B

cells occurred following B cell depletion, and BAFF and

autoantigen both may play an important role in the enhanced

selection of high affinity autoreactive B cells during B cell

reconstitution. Our findings raise some critical issues about the

therapeutic use of B cell depleting agents and provide a rationale

for the use of BAFF blockade during B cell reconstitution to

diminish the survival of potentially pathogenic B cells.

Materials and Methods

Ethics Statement
Mice were housed in an Association for Assessment and

Accreditation of Laboratory Animal Care (AAALAC) approved

Table 7. Frequency of high affinity DNA-reactive B cells in
R4A Tg mice treated with CY and DNase.

PBS CY CY+DNase CY+HI-DNase

Transitional 7/65 (10%) 11/52 (21%)* 5/62 (8%) 13/65 (20%)*

Mature 4/70 (6%) 14/57 (25%)* 5/50 (10%) 16/70 (23%)*

Data are presented as the frequency of Transgene-positive B cells expressing
Vk1a/Jk1 or Jk4 out of the total number of B cells examined. The percentages
are shown in parenthesis. There was a significant increase in CY and CY+HI-
DNase vs PBS treated mice (*p,0.01), but not in CY+DNase treated mice.
doi:10.1371/journal.pone.0008418.t007
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facility and all experiments were performed under Institutional

Animal Care and Use Committee (IACUC) approved protocols.

Mice and Therapeutic Regimens
BALB/c mice were purchased from Jackson Laboratory (Bar

Harbor, ME). R4A BALB/c mice have been described previously

[14]. Eight to 12 week-old mice were used for all studies. Mice

were housed in a specific pathogen-free facility and animal studies

were approved by the Institutional Animal Care and Use

Committee at the Feinstein Institute for Medical Research. CY

(Cytoxan, Bristol-Meyers Squibb) was dissolved in sterile pyrogen-

free PBS and 200 mg/kg body weight was given i.p. Control mice

received PBS. Recombinant murine BAFF-receptor-Fc fusion

protein (BAFF-R-Ig) was generated as previously described [23].

Beginning 3 days after administration of CY, R4A Tg mice were

given 300 mg of BAFF-R-Ig twice a week for 2 or 5 weeks. DNase

(450 mg in 200 ml saline) or heat-inactivated DNase (68uC for

15 minutes) (Sigma) was given ip every day for 2 or 5 weeks

beginning on day 4 following CY treatment.

Flow Cytometry
Splenocytes isolated from PBS- and CY-treated mice were

stained with fluorochrome-labeled antibodies specific for CD21/

CD35, CD23, CD3, CD4, CD8, B220, IgG2b (BD Pharmingen),

Figure 5. Increase in serum anti-dsDNA antibodies following CY exposure. (A) Serum anti-dsDNA antibodies levels in R4A Tg mice
following exposure to CY, CY+BAFF-R-Ig, CY+DNase or CY+heat-inactivated DNase (n = 5 mice in each group). A significant increase in dsDNA-reactive
antibodies was observed in the serum of CY-treated R4A Tg mice (p,0.003) that was decreased upon treatment wth BAFF-R-Ig (p,0.02) or with
active DNase (p,0.01) but not with heat-inactivated DNase. The statistical significance between the groups was determined by paired t test. (B)
Glomerular Ig deposition in R4A Tg mice following administration of CY, CY+BAFF-R-Ig or CY+DNase. Ig depostion was observed in CY-treated R4A
mice and was diminished upon additional treatment with BAFF-R-Ig or with active DNase. Five mice in each group was used for these studies.
doi:10.1371/journal.pone.0008418.g005
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AA4.1 (eBioscience) and biotinylated mouse IgG2b (Southern

Biotech) at 4uC for 30 minutes. Biotinylated mouse IgG2b was

detected using streptavidin-conjugated fluorochrome (BD Phar-

mingen). The cells were then washed with PBS and analyzed by

flow cytometry using an LSRII instrument (BD Biosciences) and

the data were analyzed using Flowjo software (Tree star).

Single Cell RT-PCR and Repertoire Analysis
Splenocytes from PBS- or CY-treated R4A mice (3 per

condition) were stained with antibodies specific for B220, IgG2b

and AA4.1 and B220+/Tg+/AA4.12 cells were individually sorted

into 96-well plates using a FACSAria (BD Biosciences). Single-cell

RT-PCR was performed as described previously [4], using the

following primers: universal Vk: 59GGCTGCAGSTTCAGTGG-

CAGTGGRTCWGGRAC39+constant region primer (Ck) (1st

round): 59TGGATGGGTGGGAAGATG39 and Ck (2nd round);

59AAGATGGATACAGTTGGT39. PCR products were subject-

ed to exo-SAP treatment (USB Biochemicals) and automated

sequencing was performed using the 2nd round Ck primer

(Genewiz Inc., NJ). To confirm heavy chain allelic exclusion in

transgene-expressing B cells, PCR of m constant region was also

performed with the following primers: R4A VH primer

CTGCAACCGGTGAGGTGAAGCTGGTGGA ATCTG and

the m constant region primers CAGGGGGCTCTCGCAGGA-

GACGAGG (1st round) and GGGATCCTGGGAAGGACT

GACTCTC (2nd round).

Measurement of Serum BAFF
The concentration of soluble BAFF was determined by ELISA.

96-well plates were coated with 5 mg/ml of anti-mouse BAFF mAb

(clone 5A8; Apotech). After blocking with 5% BSA, serial dilutions

of mouse serum or mouse recombinant BAFF (Apotech) were

added to the wells, followed by 10 mg/ml of biotinylated

monoclonal anti-mouse BAFF antibody (clone 1C9; Apotech)

and HRP-labeled streptavidin. Optical density was measured at

450 nm.

Anti-dsDNA ELISA
Sera from PBS- or CY-treated BALB/C mice and from R4A

mice treated with PBS, CY, CY+BAFF-R-Ig, CY+DNase or

CY+heat inactivated DNase (n = 5 in each group) were diluted

1:100 and assayed for IgG2b anti-dsDNA antibodies as previously

described [2].

ELISpot Assay
Five BALB/c mice were treated with CY and five with PBS.

Splenocytes isolated from these mice were added in serial dilution

to DNA-coated plates and incubated for 12 hours at 37uC. Biotin-

conjugated goat anti-mouse IgG (Southern Biotechnology) diluted

1:600 was added, followed by alkaline phosphatase-conjugated

streptavidin (Southern Biotechnology) at 1:1000 dilution. The

plates were developed with 5-bromo-4-chloro-3 indolyl phosphate

substrate (Sigma-Aldrich). DNA-reactive spots were counted

under a dissecting microscope.

Renal Pathology
Kidneys from R4A Tg mice treated with PBS, CY, CY+BAFF-

R-Ig and CY+DNase were fixed in formalin. The fixed tissues

were paraffin-embedded, sectioned (10 micron thickness) and

stained with biotinylated anti-mouse IgG and developed with

alkaline phosphatase ABC detection kit (Vector Laboratories).

Glomerular IgG deposition in the kidney sections was visualized

under a Zeiss microscope using the Axiovision software. Five mice

in each group were used for these studies.

Statistical Analysis
Statistical analysis was performed using Fishers’s exact test,

Student’s t test and Mann-Whitney Test as indicated in the text. A

p value of ,0.05 was considered to be statistically significant.
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