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The effects of different structural features on the thermostability of Thermopolyspora flexuosa xylanase
XYN10A were investigated. A C-terminal carbohydrate binding module had only a slight effect, whereas a
polyhistidine tag increased the thermostability of XYN10A xylanase. In contrast, glycosylation at Asn26,
located in an exposed loop, decreased the thermostability of the xylanase. The presence of a substrate increased
stability mainly at low pH.

The thermophilic actinomycete Thermopolyspora flexuosa,
previously named Nonomuraea flexuosa and before that Acti-
nomadura flexuosa or Microtetraspora flexuosa (15), produces
family 11 and family 10 xylanases, which show high thermosta-
bility (16, 17, 22). T. flexuosa xylanase XYN10A has a C-
terminal family 13 carbohydrate binding module (CBM) (22).
Many xylanases have an additional CBM, which can be a cel-
lulose binding domain (CBD) or a xylan binding domain (XBD)
(1, 5, 7, 22, 25, 28). XBD typically increases activity against
insoluble xylan (1, 5, 24), although some XBDs also bind sol-
uble xylans (21, 25).

We studied the thermostability of T. flexuosa xylanase XYN10A
and how CBM and other additional groups affect its thermo-
stability. In addition to confirming the previously described
importance of terminal regions, our study identified a loop that
is important for the thermostability of T. flexuosa XYN10A. In
general, identification of sites important for protein stability is
necessary for targeted mutagenesis attempts to increase ther-
mostability.

The T. flexuosa xyn10A gene (GenBank accession no.
AJ508953) (22), which encodes the full-length XYN10A
xylanase (1-AAST . . . SYNA-448) containing the catalytic do-
main and CBM, and a truncated gene, which encodes the
catalytic domain only (1-AAST . . . DALN-301) were ex-
pressed in Trichoderma reesei as 3� fusions to a sequence that
encodes the Cel6A CBD (A�B) carrier polypeptide and a
Kex2 cleavage site (RDKR) (27). In this article, the catalytic
domain and the full-length enzyme are referred to as XYN10A
and XYN10A-CBM, respectively. The catalytic domain was
also produced in Escherichia coli. For production in E. coli, the
sequence encoding the catalytic domain was cloned into a

pKKtac vector (33) with and without an additional 3� sequence
encoding a 6�His tag at the protein C terminus (. . . DALNH
HHHHH).

The proteins were purified by hydrophobic interaction chro-
matography using a Phenyl Sepharose column and by ion-
exchange chromatography using a DEAE Sepharose FF col-
umn (Amersham Pharmacia Biotech). The 6�His-tagged
XYN10A xylanase produced in E. coli was purified by affinity
chromatography using Ni-nitrilotriacetic acid (Ni-NTA) aga-
rose beads (Qiagen).

Mass spectrometric (MS) analyses were performed on a
high-resolution 4.7-T hybrid quadrupole-Fourier transform ion
cyclotron resonance (FT-ICR) instrument (APEX-Qe; Bruker
Daltonics), which employs electrospray ionization (ESI) (see
supplemental material for details).

Xylanase activity was measured with a 3,5-dinitrosalicylic
acid assay by using 1% solubilized birchwood xylan as a sub-
strate (33). The optimum temperature, residual activity, and
half-life assays were performed as described earlier (36). SWISS-
MODEL (4) was used to automatically model T. flexuosa
XYN10A and XYN10A-CBM (PDB codes for the modeling
templates are 1v6w and 1e0w, respectively [12, 14]).

The results of sodium dodecyl sulfate-polyacrylamide gel elec-
trophoresis (SDS-PAGE) analysis indicated that the masses of
XYN10A xylanase and XYN10A-CBM produced in Trichoderma
reesei were �37 kDa and �50 kDa, respectively (Fig. 1A). MS
analysis of the 6�His-tagged XYN10A produced in E. coli
(SDS-PAGE not shown) indicated the presence of a single
protein form (Fig. 1B), with a measured mass of 34,943.25 Da.
This is consistent with the theoretical mass of 6�His-tagged
XYN10A (34,942.93 Da). In contrast, XYN10A produced in T.
reesei was heterogeneously modified, and six protein forms
(numbered 1 to 6) were detected (Fig. 1B). The mass of form
1 (34,120.76 Da) is in excellent agreement with the calculated
mass of XYN10A (34120.73 Da). The masses of forms 2 and 3,
with mass increments of �203 and �162 Da, respectively,
suggested protein glycosylation (�203 Da � GlcNAc; �162
Da � Man). There are two potential sites for N-glycosylation
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in XYN10A, Asn26 and Asn95. These six protein forms were
resolved only by the high-resolution FT-ICR MS technique,
not by SDS-PAGE (eluted as a single band [Fig. 1A]).

In order to locate the glycosylation site or sites, XYN10A
proteins produced in E. coli and T. reesei were subjected to
on-line pepsin digestion (see supplemental material for de-
tails). The sequence coverage for XYN10A xylanase produced
in E. coli was 62%. For XYN10A produced in T. reesei, a lower
sequence coverage was obtained, but three glycopeptides (res-
idues 20 to 44, 20 to 46, and 20 to 59), carrying one GlcNAc
residue, were detected (glycopeptides A to C in Fig. S1B in the
supplemental material). A triply charged glycopeptide A was
further analyzed by collision-induced dissociation (CID) mea-
surement (see inset in Fig. S1B in the supplemental material).
A ladder of b-type fragment ions further identified this peptide
and verified Asn26 as the N-glycosylation site in XYN10A,
carrying GlcNAc(Man) as a glycan core structure.

The additional sequences attached to the catalytic domain
affected the thermostability of XYN10A xylanase. The deletion

of the native C-terminal CBM domain (XYN10A produced in
T. reesei) slightly decreased (�2°C) the apparent temperature
optimum in the region of 70 to 75°C (Table 1 and Fig. 2A).
However, at 80°C, the deletion of the CBM domain increased
the activity (Fig. 2A). Furthermore, the half-life in the pres-

FIG. 1. (A) SDS-PAGE of purified XYN10A and XYN10A-CBM
produced in Trichoderma reesei. Lane 1, molecular weight markers;
lane 2, catalytic domain (XYN10A); lane 3, full-length enzyme
(XYN10A-CBM). (B) ESI FT-ICR mass spectra of XYN10A with a
6�His tag produced in E. coli (bottom) and XYN10A produced in T.
reesei (top). Only the expanded view at m/z 1260 to 1300, with the
signals representing the most abundant protein ion charge state z �
27�, is presented. For the measured and calculated masses of the
protein forms identified, see the supplemental material.

TABLE 1. Peaks of the optimum temperatures (30-min assay)a

Production
host Enzyme

Optimum temp (°C) at:

pH 5.5 pH 7 pH 8.5

T. reesei XYN10A 70 70 69
XYN10A-CBM 70 72 72

E. coli XYN10A 78 75 76
XYN10A-6�His 78 78 78

a One percent solubilized birchwood xylan was used as the substrate in the
assay.

FIG. 2. Enzyme activity and stability profiles. (A) Enzyme activity
as a function of temperature. The enzymes were incubated for 30 min
at each temperature at pH 7. (B) Enzyme inactivation as a function of
temperature. The enzyme samples were incubated without the sub-
strate for 30 min at each temperature (pH 7), and the residual activity
was measured at 70°C. Values are means � standard deviations (error
bars) for three experiments. Symbols: }, XYN10A xylanase produced
in T. reesei; �, XYN10A-CBM produced in T. reesei; f, XYN10A
produced in E. coli; �, XYN10A-6�His produced in E. coli.
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ence of the substrate at 80°C was lower when the CBM was
present (Table 2).

Surprisingly, the apparent temperature optimum of XYN10A
xylanase produced in E. coli was 4 to 8°C higher than that for
XYN10A produced in T. reesei (Fig. 2A and Table 1). In
addition, the C-terminal 6�His tag further increased the ap-
parent temperature optimum of XYN10A by �3°C at pH 7
and 8.5 (Fig. 2A). The higher stability of XYN10A produced in
E. coli was also seen in the residual activity profiles (Fig. 2B).
However, the 6�His tag did not elevate the temperature op-
timum at pH 5.5 (Table 1) and pH 4.0 (not shown).

We also measured the enzyme half-lives with and without
substrate (1% solubilized birchwood xylan) at different pH
values. Increases of about 5- to 10-fold in the half-lives of both
XYN10A xylanase and XYN10A-CBM (produced in T. reesei)
were measured at pH 4 in the presence of a substrate (Table
2). The substrate also slightly protected XYN10A in the pH
range from pH 5.5 to 8.5. However, no protection by the
substrate was detected for XYN10A-CBM at pH 5.5 to 8.5.

By comparing the structures of thermophilic and mesophilic
family 10 xylanases, it was suggested that efficient packing of
the hydrophobic core, favorable charge interactions with the
helix dipole moment, and the presence of prolines at the N
termini of alpha-helices are the most probable stabilizing fac-
tors (23). Cavity filling and stabilization of loops and N- and
C-terminal regions are also important factors (2, 35). By study-
ing chimeric xylanase created by the shuffling of Thermotoga
maritima xylanases A and B, it was observed that the N-termi-
nal and C-terminal regions of the xylanase structure formed
from the TIM barrel are important for high thermostability
(20). Our results also showed that the C-terminal region is
important for the thermostability of family 10 xylanases.

An increase in the thermostability of other proteins by a
polyhistidine tag has already been demonstrated (8, 9, 10, 19).
In T. flexuosa XYN10A xylanase, the 6�His tag had an effect
on thermostability only at a neutral or alkaline pH. Since
histidine is generally neutral in charge above pH 6.5 (average
pKa about 6.5) and positively charged at acidic pH, this sug-
gests that noncharged interactions are critical for the stabili-
zation effect.

The binding of the C-terminal 6�His tag to the surface of
XYN10A xylanase probably prevents unfolding from the C
terminus. The disulfide bridge between the N and C termini
(located close to each other) has previously been demonstrated
to increase the melting temperature (Tm) of a family 10 xyla-
nase by 4°C (2, 35). The thermostability increase achieved by
the 6�His tag and CBM in T. flexuosa XYN10A was at the
same level (in the range of 3°C in the activity assays). Other

stabilization mechanisms are also possible, but it seems prob-
able that the role of protein termini is dominant in stabilization
by the 6�His tag. The stability of alpha-helices near the C
terminus could also be increased by interaction with the 6�His
tag (Fig. 3).

Structural modeling was used to examine the regions poten-
tially binding the 6�His tag. In the crystal and nuclear mag-
netic resonance (NMR) structures 1ddf, 1jt3, and 1zu2, the
length of the 6�His tag varies between 12 and 20 Å, since the
conformation of the freely protruding 6�His tag may vary
significantly. Thus, the 6�His tag forms a rather large binding
surface with much variation in the conformation. Since the
stabilizing effect of the 6�His tag is pH dependent, it could be
that the nearby arginines, having positive charges, have a role
in breaking the interactions of the polyhistidine when it be-
comes positively charged at low pH (Fig. 3). Three nearby
arginines (Arg14, Arg219, and Arg252) and a histidine (His12)
in the 12-Å distance range from the first histidine in the 6�His
tag might cause charge repulsion, and Arg36 and Lys289 at a
distance of 17 to 20 Å in the opposite direction might also
cause similar repulsion (Fig. 3).

The glycosylation site (Asn26) is located in a well-exposed
loop (amino acids 21 to 28) between a beta-strand (amino acids
15 to 20) and alpha-helix (amino acids 29 to 37). Glycosylation
can increase the thermostability (6, 18, 29). It can also desta-
bilize, and, according to molecular dynamics simulations, in-
creased mobility correlates with the destabilization caused by
glycosylation (31). Glycosylation in a well-exposed loop in
XYN10A xylanase could increase local mobility or destabilize
the enzyme by affecting the local conformation.

The presence of a substrate increased the stability of both
the core and full-length XYN10A xylanase under stronger
acidic conditions of pH 4 (Table 2). At pH 5.5 to 8.5, the
relative effect was smaller for the XYN10A core and missing in
XYN10A-CBM. Protection by a substrate, especially at acidic
pH, was observed by Xiong et al. (36) for a family 11 xylanase
produced by Thermomyces lanuginosus. A possible explanation
for this is that the substrate changes the structure of the en-
zyme or is involved in hydrogen bonding in the active site in a
pH-dependent manner. At pH 4, in which the carboxylic acids
start to become on average protonated and the ion pair net-
works are therefore disturbed, the thermostability of the en-
zyme is lower than at higher pH. Thus, the substrate could
partially neutralize the lower thermostability at low pH by
providing new stabilizing interactions. These results suggest
that the active site canyon is also important for the stability of
xylanases.

The effect of the CBM on the thermostability of XYN10A

TABLE 2. pH-dependent half-life times of a catalytic domain (XYN10A) and a full-length enzyme (XYN10A-CBM) produced in T. reesei

Enzyme

Half-life (min) of enzyme under various conditions

With substratea Without substrate

pH 4 and
65°C

pH 5.5 and
80°C

pH 7 and
80°C

pH 8.5 and
80°C

pH 4 and
65°C

pH 5.5 and
80°C

pH 7 and
80°C

pH 8.5 and
80°C

XYN10A 18 37 37 33 3.1 19 23 23
XYN10A-CBM 15 17 17 14 1.3 33 22 26

a One percent solubilized birchwood xylan was used as the substrate in the assay.

358 ANBARASAN ET AL. APPL. ENVIRON. MICROBIOL.



xylanase was twofold; under some conditions, it increased the
thermostability, and under other conditions, it decreased the
thermostability. Thus, there is no strong thermostabilizing ef-
fect by the CBM on T. flexuosa XYN10A. It was observed
earlier that the additional domains may function as thermo-
stabilizing domains, because their deletion often decreased the
stability of xylanases (3, 30, 32). However, an increase in ther-
mostability has also been observed when a CBM has been
deleted (3, 22, 23a, 26). Thus, the effect of a CBM on thermo-
stability varies, and the reason could be that the primary func-
tion of a CBM is to bind polysaccharide fibers and not ther-
mostabilization. In general, the high thermostability of
xylanases is not dependent on CBMs, and in fact, they might
have diverse effects. The same holds true for protein glycosyl-
ations.

In conclusion, we identified several regions in T. flexuosa
XYN10A xylanase that affect the protein’s thermostability.
The effects of the additional groups were either stabilizing or
destabilizing. This information can be used in the design of
stabilizing mutations. Our study also showed that the produc-
tion system can considerably affect the properties of the en-
zymes produced, e.g., due to glycosylation, and that when add-
ing purification tags in recombinant proteins, their potential
effects should be considered.
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