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After a short time interval of length �t during microbial growth, an individual cell can be found to be divided
with probability Pd(t)�t, dead with probability Pm(t)�t, or alive but undivided with the probability 1 � [Pd(t) �
Pm(t)]�t, where t is time, Pd(t) expresses the probability of division for an individual cell per unit of time, and
Pm(t) expresses the probability of mortality per unit of time. These probabilities may change with the state of
the population and the habitat’s properties and are therefore functions of time. This scenario translates into
a model that is presented in stochastic and deterministic versions. The first, a stochastic process model,
monitors the fates of individual cells and determines cell numbers. It is particularly suitable for small
populations such as those that may exist in the case of casual contamination of a food by a pathogen. The
second, which can be regarded as a large-population limit of the stochastic model, is a continuous mathemat-
ical expression that describes the population’s size as a function of time. It is suitable for large microbial
populations such as those present in unprocessed foods. Exponential or logistic growth with or without lag,
inactivation with or without a “shoulder,” and transitions between growth and inactivation are all manifes-
tations of the underlying probability structure of the model. With temperature-dependent parameters, the
model can be used to simulate nonisothermal growth and inactivation patterns. The same concept applies to
other factors that promote or inhibit microorganisms, such as pH and the presence of antimicrobials, etc. With
Pd(t) and Pm(t) in the form of logistic functions, the model can simulate all commonly observed growth/
mortality patterns. Estimates of the changing probability parameters can be obtained with both the stochastic
and deterministic versions of the model, as demonstrated with simulated data.

Continuous growth models. Most traditional microbial iso-
thermal growth models are based on the assumption that the
growth curve has three regions: a lag time, an exponential
growth phase, and a stationary phase during which the number
of cells remains unchanged (19, 20). The corresponding math-
ematical models are generally of two types: empirical ana-
lytical expressions and rate equations. Among the first type,
the most widely known is the Gompertz model (19), one
form of which is

ln N�t� � A � C exp�exp��B�t � ���� (1)

where N(t) is the number of cells in a given volume or mass at
time t and A, B, C, and � are adjustable, temperature-depen-
dent growth parameters.

The second type of isothermal growth model consists of
various modified versions of the continuous logistic equation,
Verhulst’s model (31):

dN
dt � rN�t��1 �

N�t�
Nasympt

� (2)

where r is a temperature-dependent rate constant and Nasympt,
commonly but erroneously dubbed Nmax, is the asymptotic
growth level, representing the carrying capacity of the habitat.

The model is based on the assumption that the instantaneous
growth rate, dN(t)/dt, of an organism introduced into a closed
habitat is proportional to the current population size, N(t), and
the fraction of resources still unutilized, 1 � N(t)/Nasympt.

According to equation 2, when t is 	0 and N(0) is 

Nasympt,
dN(t)/dt is 	rN(t), i.e., the initial growth is approximately ex-
ponential. Therefore, Verhulst’s model in its original form is
unsuitable for growth curves that exhibit a long lag time, unless
the initial growth rate is extremely low. A growth model widely
used in food microbiology is a modified version of the logistic
equation proposed by Baranyi and Roberts (5):

dN�t�
dt �

q�t�
1 � q�t�N�t��1 � �N�t�

Nmax
�m� (3)

where dq(t)/dt equals �maxq(t), q(t) being the concentration of
limiting substrate and �max being the maximum specific growth
rate, and m is a constant frequently assumed to have the value
of 1.

The term q(t)/[1 � q(t)], which is the same as q0exp(�maxt)/
[1� q0exp(�maxt)], is supposed to account for the physiological
state of the population at the time of its introduction into a
new habitat. Therefore, the Baranyi-Roberts model implies
that there is a universal relationship between the lag time and
the maximum growth rate (�max), a highly questionable prop-
osition (9, 22, 23). A lag time (tlag) can, of course, be incorpo-
rated into any model by replacing the original term N(t) by
Nlag(t), equal to N([t � tlag]�), where (t � tlag)� is 0 for t of

tlag and is (t � tlag) for t of �tlag. Then Nlag(t) equals N(0) for
t of 
tlag, after which Nlag(t) develops according to the original
model, with the time origin shifted to tlag, for t of �tlag. Other
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modifications of the logistic equation, such as that by Fujikawa
et al. (15), were intended only to improve the logistic model’s
fit to experimental growth data. Consequently, the authors
made no attempt to assign a mechanistic meaning to the added
parameters.

None of the above-mentioned models and their variants can
describe situations where cell mortality plays a significant role.
This is not a serious handicap in modeling food spoilage, for
example, where N(t) is defined as the net number of viable
organisms. Thus, even if some cells die out during the expo-
nential phase, their departure will hardly have any practical
consequences. This is because most untreated or contaminated
foods become inedible or unsafe to eat long before the sta-
tionary phase is reached and, therefore, what might happen
when the bacterial population starts to die off is of little inter-
est. The situation may be different, however, when pathogens
rather than spoilage organisms are involved. In such a case, the
pathogen’s ability merely to survive in the food may determine
the associated health risk.

Both types of traditional models can describe only the sig-
moid part of the growth curve. If extended for long periods,
they would imply the existence of a stationary phase that lasts
indefinitely. This would be a totally unrealistic scenario be-
cause a crowded and polluted habitat, depleted of its material
resources, cannot support a large population indefinitely. Con-
sequently, mortality must take over at a certain point and
reduce the population (19, 20). Under less than favorable con-
ditions, mortality can become predominant even before a sta-
tionary phase is reached, resulting in a clearly discernible
growth peak (9, 23). The onset of mortality can be incorpo-
rated into continuous isothermal growth models in different
ways (30). In the first group of models, this can be achieved by
multiplying the expression for the population size by a decay
term having a characteristic time constant (11, 26), but this is
an ad hoc approach to the problem of modeling mortality.

Inactivation models. Kinetic inactivation models have been
developed primarily to account for or predict microbial sur-
vival patterns when the organism is exposed to lethal agents
such as heat, extreme cold, chemical preservatives and disin-
fectants, and ultrahigh hydrostatic pressure, etc., alone or in
combination. The literature on the subject is rich and describes
several types of models. The most widely known and used
primary model is based on the assumption of first-order mor-
tality kinetics (16, 17). With few exceptions, microbial survival
and growth have been treated as separate phenomena and
described by different kinetic models. There have been at-
tempts to treat bacterial inactivation patterns as if they were
inverted analogs of sigmoid growth curves. We consider the
merit of this approach questionable because at the cellular
level, growth, division, and inactivation are processes governed
by very different molecular or biophysical mechanisms, which
frequently have very different time scales, too.

Population dynamics models of growth and/or inactivation.
A unique approach to modeling bacterial growth and/or inac-
tivation has been described by Taub et al., Doona et al., and
Ross et al. (12, 28, 29). Their publications also provide an
extensive literature survey of previous works on the subject.
These researchers, affiliated with the U.S. Army Natick Soldier
Research, Development and Engineering Center, produced a
dynamics model of growth and death, which they termed a

quasichemical model. Their basic assumption is that the in-
crease (or decrease) in a microbial population is regulated by
several rates: the physical growth rates of the individual cells
prior to division, the rate of division once cells reach the
appropriate size, and the rate of cell death via different mech-
anistic pathways, as shown schematically in Fig. 1. Since each
rate has it own characteristic temperature dependence, the
model allows for scenarios in which inactivation commences
before there is any measurable growth. In other words, heat
inactivation is just a special case in which the rate of cell death
dominates over the rates of the other processes and conse-
quently determines the treatment’s time scale. The quasichemical
model captures the essence of the growth-mortality duality,
which plays a decisive role in the fate of microbial populations
exposed to favorable, unfavorable, or lethal conditions. The
above-described approach is not limited to temperature. The
promoting or inhibitory factor can be the pH, the sugar con-
centration, high hydrostatic pressure, the presence of a chem-
ical antimicrobial, or oxygen tension, etc. With its parameters
adjusted, the quasichemical model can also be used to quantify
the relative influences of the biological processes that control
a population’s growth or inactivation and how the population
is affected by external conditions (12, 28, 29).

Because the mechanisms that operate at the cellular level
are rarely if ever known in sufficient detail, description of their
dynamics may require a probabilistic approach. In contrast
with traditional kinetic models, a probabilistic population
model develops from the starting point that crucial informa-
tion about the underlying processes is or may be missing. This
is because the molecular events within the cells that determine
the history of a microbial population, including its interaction
with the habitat, are or can be too numerous and/or complex to
be monitored and accounted for individually. The objectives of
the present work are to explore the merits of the probabilistic
approach to modeling microbial populations based on cell di-
vision and mortality, to develop a prototype of a general mi-
crobial growth and inactivation model, and to assess its poten-
tial applications.

METHODS

Simplified stochastic model of growth and mortality. Consider a population
of bacterial cells suspended in a medium of finite volume under conditions that
favor growth, at least for some time. For the sake of simplicity, we will assume
that an individual cell can be either viable or dead, deliberately ignoring the
possibility that it can be injured and then recover or die at a later time. Microbial
injury has been amply discussed in the literature (7, 8, 14). Its quantitative
implications for food preservation processes have been recently addressed else-

FIG. 1. Cellular events from which the quasichemical model of
microbial growth and mortality has been derived. Data are from
Doona et al. (12).
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where (10) and will not concern us here. Similarly, when dealing with mortality,
we will ignore the possibility of adaptation at sublethal temperatures or in the
presence of a low chemical agent concentration, for example.

In principle, one can continuously monitor each cell, determine its size, assess
its physiological state, and establish whether it is about to divide or die. Studies
of this kind have actually been performed (1–4, 27), but there is little doubt that
monitoring individual cells on a routine basis is impractical. The same can be said
about counting the growing and dividing cells over short time intervals, on the
order of minutes. Although a video camera and image-processing techniques can
be used for the purpose, this approach would also be judged unfeasible under
most circumstances. Without knowing the states of individual cells, all we can say
is that, within a given time interval, every living cell has a certain probability that
it will divide, a probability that it will expire, and a probability that it will remain
alive but undivided, as shown in Fig. 2. Of course, these three probabilities must
add up to 1, and in general they will be time dependent, as will be explained
below. The development of a group of cells is shown schematically in Fig. 3. We
will give a rigorous model for this situation in the next section, but for now we
describe a simplified model that can be grasped more intuitively. We make the

following two assumptions for this model. These can be checked by statistical
techniques and are implicit in all the usual deterministic kinetic models.

(i) The fate of an individual cell can be treated mathematically as if it were
independent of those of other cells.

(ii) The behavior of a cell alive at time t can be described mathematically as if
it were independent of the past behavior of the whole population.

In other words, any actual interaction, current or previous, will be manifested
in the division and mortality probability functions Pd(t) and Pm(t) but not in the
structure of the model itself, again a testable hypothesis at least in principle. The
same can be said about chemical changes in the habitat that growth may induce,
like a drop in the pH or depletion of the dissolved oxygen. These possibilities too
will be manifested in the probability functions Pd(t) and Pm(t) but not in the
model’s framework.

Consider a sequence of time points, 0 � t0 
 t1 
 t2 
 …, which for simplicity
we assume to be equally spaced, so that (ti � 1 � ti) equals �t for all values of i
� 0. For each individual cell alive at time ti, the probability of dividing during the
next �t units of time is Pd(ti)�t, where Pd(t) is a specified function of time which
gives the probability of division for an individual cell per unit of time (we refer
to this as a transition rate function). Similarly, the probability of dying during the
next �t units of time is Pm(ti)�t, where Pm(t) is the specified transition rate for
individual cell death. Finally, the probability of the cell’s remaining alive but
undivided is expressed as follows: 1 � [Pd(ti) � Pm(ti)]�t. We observe that the
transition rates Pd(t) and Pm(t) need not themselves be probabilities, i.e., they
need not be less than 1 (they are �0, however). They become probabilities when
multiplied by �t. Notice that the probabilities of division and of death are
proportional to �t, consistent with the idea that these actions are less and less
likely to occur over very short time intervals, i.e., as �t approaches 0. Moreover,
in view of assumption i, the probability that two or more cells will commence
division or death during the same time interval will be proportional to (�t)2 and
hence will become negligible for very short intervals. Notice that the transition
rate Pd(t) is the limit, as �t approaches 0, of the ratio Pr[cell divides during the
time interval from t to (t � �t)]/�t, where Pr stands for probability. Conse-
quently, Pd(t) may be construed as the instantaneous transition rate at time t.
Similarly, Pm(t) is construed as the instantaneous transition rate for individual
cell death at time t.

There is plenty of evidence that cells introduced into a new habitat, even a
resource-rich habitat, may undergo a period of adjustment before they start to
divide, hence the lag phase. Inevitably, substantial cell growth and division will
deplete the nutrients and other resources in the habitat and will alter its chemical
composition through the release of metabolites. Consequently, the individual
transition rates Pd(t) and Pm(t) will not remain constant during the entire evo-
lution of the population. Under most circumstances, one would expect the
mortality transition rate, Pm(t), to be very low at the beginning, when the pop-
ulation density is low and resources are plentiful, and to increase when the
population ages, resources are in short supply, the habitat becomes polluted, and
there is fierce competition for space and nutrients. The cell division transition
rate, Pd(t), may also be relatively low initially but will rise as the adjustment
period comes to an end. However, as the cell density increases, conditions
become less favorable for division. Consequently, the increase of Pd(t) will cease
and the rate will eventually stabilize or decline. (Since at this stage mortality can
take over, the whole division issue may become moot [see below].) Thus, both
transition rates Pd(t) and Pm(t) must be functions of the population density and
hence of time. In terms of the model, the continuously changing relation between
these two functions will determine the observed growth/inactivation pattern of
the population in question.

Let N(0)  N0 be a given initial cell count, and let N(ti) denote the population
count (the number of live cells) at time t  ti. These counts constitute a sequence
of random variables that develop as follows: given that N(ti)  n, the next count,
N(ti � 1), will be equal to (n � Di � Mi), where Di is the number of current cells
that divide and Mi is the number that die. If we let Li denote the number of cells
that neither divide nor die, then Li equals [n � (Di � Mi)], and the joint
distribution of the random variables (Di, Mi, Li) will be multinomial with corre-
sponding probabilities {Pd(ti)�t, Pm(ti)�t, 1 � [Pd(ti) � Pm(ti)]�t}. This, together
with assumptions i and ii listed above, completely determines the probability
structure of the stochastic process N(ti), where i  0, 1, 2, …. In particular,
standard probability calculations show that, if N(ti)  n, the probability of exactly
one division and no deaths among the n cells currently alive is as follows:
nPd(ti)�t{1 � [Pd(ti) � Pm(ti)]�t}n � 1 	 nPd(ti)�t as �t3 0. The probability of
exactly one death and no divisions is obtained by interchanging the roles of d and
m in these expressions. For the current population n, the limit, as �t approaches
0, of the ratio Pr[exactly one cell divides during the time interval from t to (t �
�t)]/�t is nPd(t), which is the instantaneous transition rate for a cell division in

FIG. 2. Cellular events from which the probabilistic model of mi-
crobial growth and mortality has been derived.

FIG. 3. Microbial population dynamics at the cellular level.
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the population. And similarly, the instantaneous transition rate for a death in the
population is nPm(t).

From this model, it is easy to calculate the expected population size at each
time ti. Given that N(ti)  n and N(ti � 1)  (n � Di � Mi), the (conditional)
expected value of N(ti � 1) will be n{1 � [Pd(ti) � Pm(ti)]�t}, and thus E[N(ti �

1)] equals E[N(ti)]{1 � [Pd(ti) � Pm(ti)]�t}, where E[…] indicates the expected
value. A simple argument now shows that

E�N�ti � 1�� � N0�
i  1

k

�1 � �Pd�ti� � Pm�ti���t� (4)

where k is the number of steps.
Let us examine two extreme cases of the model, namely, those in which there

are (essentially) (i) no deaths and (ii) no divisions. If during a given experimental
period, Pd(t) �� Pm(t), then one should expect an exponential growth curve with
the slope depending on the magnitude of Pd(t). In this case, the model gives

E�N�ti � 1�� � N0�
i  1

k

�1 � Pd�ti��t� (5)

Likewise, if Pm(t) �� Pd(t), the result will be an inactivation curve

E�N�ti � 1�� � N0�
i  1

k

�1 � Pm�ti��t� (6)

It can be shown analytically that, when �t approaches 0, the expected value of the
population size becomes, in the limit,

E�N�t�� � N0 exp��
0

t

�Pd�s� � Pm�s��ds� (7)

where s is a dummy variable.
In the two extreme cases described above, this gives exponential growth and

decay, respectively, and the slope varies with time. The expected population size
can itself provide a continuous, deterministic model. We discuss this in more
detail below.

Stochastic process model of growth and mortality. The models specified in
equations 4 to 7 are fully deterministic. Given the values of the parameters, they
allow for no uncertainty in the development of the microbial population, and
they describe the population evolution as a smooth curve. Such a description may
be appropriate for a large population of small units, such as microbes, and it may
be possible in that situation to fit data with a continuous model. Such a descrip-
tion, however, will generally be unrealistic for small populations of cells. First of
all, the number N(t) of live cells will not be a smooth function of time but rather
a step function that changes values at the time of a cell division [N(t)3 N(t) �
1] or death [N(t)3 N(t) � 1], and as noted above, the probability of more than
one division or death in a very short time interval will be negligible. Figure 3
illustrates that certain cells’ lineages can proliferate while those of others remain
stationary or die out. Also, a lineage that is relatively prolific at the beginning can
become extinct for some reason while one that initially struggles may become
invigorated after a few inactive generations. One can think of many other pos-
sible scenarios in which the trend for certain progeny changes or even reverses
direction. Thus, regardless of the details, the emergence of a smooth growth
curve for a very small microbial population is very unlikely. The same can be said
about the inactivation of a small number of cells. Differences in resistance and/or
ability to adapt or recover from injury among individual cells may be expressed
in their deaths at irregular times. To account for the actual pattern of growth and

FIG. 4. Simulated isothermal microbial growth curves generated with the same deterministic continuous model (equation 14) and their
corresponding division and mortality probability functions, Pd(t) and Pm(t), respectively. (Left) Growth curve with noticeable lag; (middle) growth
without lag; (right) noticeable lag followed by a growth peak and intensive mortality. Notice that these very distinct growth patterns are all a
manifestation of different relationships between underlying probability functions.
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mortality in small populations, let us monitor the fates of individual cells. Al-
though the transition rates of division and mortality are fixed smooth functions,
the fates of individual cells can vary dramatically. As illustrated in Fig. 3, a live
cell at time zero can be found dead, still alive (but not divided), or already
divided at time �t.

The full stochastic model starts from the same assumptions, i and ii, given
above but is developed in continuous time from the outset. To emphasize this, we
write �t rather than �t in what follows. By analogy to the simplified model, an
individual cell alive at time t may divide with a probability of approximately
Pd(t)�t during the time interval from t to t � �t, die with a probability of
approximately Pm(t)�t, or remain alive but undivided with a probability of ap-
proximately 1 � [Pd(t) � Pm(t)]�t. (The reason for saying “approximately” is
that, unlike the corresponding value in the simplified model, �t can vary. In fact,
we will consider the limit as �t approaches 0. The final model will, of course,
contain no such approximations.) The individual cell transition rates Pd(t) and
Pm(t) have the same meaning as before: the (instantaneous) probabilities of
division and mortality, respectively, per unit of time. As in the simplified model,
the probability of two transitions (i.e., divisions or deaths) during very short time
intervals is negligible. Let N(0)  N0 be the initial population size, meaning the

number of live cells, and let N(t) be the population size at time t of �0. The
possible transitions of the stochastic process N(t) can be described as follows.
Given that the population size at time t is N(t)  n, at time t � �t the population
size can be N(t � �t)  n � 1, corresponding to a single cell division, N(t � �t) 
n � 1, corresponding to a single death, or N(t � �t)  n, corresponding to no
divisions or deaths, with (approximate) probabilities nPd(t)�t, nPm(t)�t, and 1 �
n[Pd(t) � Pm(t)]�t, respectively; other values of N(t � �t) are possible, but with
negligible probabilities. Of course, if the population becomes extinct at a certain
time t, i.e., N(t)  0, then no further divisions or deaths are allowed in the model.

The stochastic model is now characterized by saying that N(t) is a continuous-
time, nonhomogeneous Markov chain, taking values in the nonnegative integers,
with allowable transitions n 3 (n � 1) and n 3 (n � 1) (except that no
transitions away from n  0 are allowed). Such a Markov chain, whose only
possible transitions are jumps with sizes of �1, is called a birth and death
process, and so we shall refer to this as the birth and death (BD) model. In this
context, of course, birth corresponds to cell division. To complete the model, it
suffices to specify the rates for each possible transition, and these are given by
analogy to the simplified model, i.e., the transition rate at time t for the transition
n 3 (n � 1) is nPd(t), and for n3 (n � 1), the rate is nPm(t). In the case of the

FIG. 5. Simulated isothermal microbial survival (inactivation) curves generated with the deterministic continuous model (equation 14) plotted
on linear and semilogarithmic coordinates. Also shown are the corresponding division and mortality probability functions, Pd(t) and Pm(t),
respectively. (Left) Log-linear survival curve; (middle) curve with a flat shoulder; (right) inactivation followed by resumed growth. Notice that the
different patterns were all produced with the same model (equation 14), which produced the growth curves shown in Fig. 4.
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transition n3 (n � 1), this means that the ratio P(N(t � �t)  n � 1�N(t)  n)/�t
converges toward nPd(t) as �t approaches 0. The intuitive meaning of this state-
ment is that P(N(t � �t)  n � 1�N(t)  n) is �nPd(t)�t when �t is very small, as
indicated above, but notice that the limit of the ratio is exact. No approximation
is involved. The discussion for the transition n 3 (n � 1) is similar, but with d
replaced by m. (Nonhomogeneity refers to the time dependence of the transition
rates.) The full mathematical development of Markov chains in general and of
birth and death processes in particular is rather involved; Parzen (21) gives an
accessible account of how this can be done.

According to our model, N(t) starts at N0 when t  0, remains there for a
random period of time, and then makes a transition either to N0 � 1 or N0 � 1,
corresponding to a cell division or a death. At later times, N(t) stays at its current
value n for a random period of time and then makes the transition n3 (n � 1)
or n 3 (n � 1) (the latter cannot occur if n  0) and continues on in the same
fashion. No other transitions are possible.

The complete probabilistic description of a Markov chain typically involves
solving an infinite system of differential equations (the Kolmogorov equations)
for the transition probabilities of the chain. It is usually not feasible to solve these
equations explicitly even in the special case of birth and death processes. None-
theless, it is possible to obtain useful information about N(t) directly from the
division and death rates. For example, the expected population size at time t and
the probability that a microbial population will become extinct by time t are
important quantities to know in the context of food safety; these can be deter-
mined explicitly (21). Let

g�t� ��
0

t

�Pd�s� � Pm�s��ds (8)

where g(t) is the probability function limit.
The expected population size at time t in the BD model is the same as the

expected population size as �t approaches 0 in the simplified model, as follows:

E�N�t�� � N0 exp�g�t�� (9)

The probability of extinction at time t, given an initial population of size N0, is

Pr�population extinct at time t� � P�N�t� � 0	N�0� � N0�

� 
 �
0

t

Pm�s�e�g�s�ds

1 ��
0

t

Pm�s�e�g�s�ds�
N0

(10)

The integral in this formula is generally difficult to evaluate in closed form but
can be calculated numerically. Note that the probability of eventual extinction is
obtained by letting t approach � in the formula; in particular, Pr(population
eventually extinct) equals 1 if and only if the integral (with upper limit t  �) is
infinite. Observe also that the probability of extinction will be �0 except for a
pure birth process, in which case Pm(t) is identically zero.

In addition, using a standard result in probability theory (Markov’s inequality),
we can at least give a bound on the probability that the population size exceeds
a given threshold at time t. Let M be a given threshold; then Markov’s inequality
yields

P�N�t� � M� � E�N�t��/M � �N0/M�exp�g�t�� (11)

Whether this bound is useful or not depends on the relative sizes of N0 and M
and on the particulars of the rate functions Pd(t) and Pm(t).

Continuous, large-population-limit model. The discrete equation 4 can be
converted into a continuous function by making the time intervals infinitesimally
small, i.e., �t 3 0, and the number of steps infinitely large in the simplified
model. In this case, the expected population size is given by the formula

E�N�t�� � N0 exp��
0

t

�Pd�u� � Pm�u��du� (12)

where Pd(u) and Pm(u) are the individual cell division and mortality transition
rates. As we have seen, this expression also represents the expected population
size in the BD model. It is also possible to show that, if the population size is very
large and the jumps of N(t) (with sizes of �1) are scaled by the inverse of the

population size, then the BD model will approach a deterministic, continuous
curve, namely, f(t)  E[N(t)]. This is a form of the strong law of large numbers
from probability theory and is related to so-called fluid limit models in queuing
theory. Moreover, a form of the central limit theorem yields the conclusion that
the error in approximating the BD model with the continuous large-population
model will be a Gaussian stochastic process; this will be important for parameter
estimation. Thus, the continuous curve f(t) may be justified as yet another
continuous model for a large microbial population but one that is based on a
simple, biologically motivated picture rather than the assumption of any partic-
ular type of kinetics. We refer to f(t) as the large-population (LP) model.

The integral in equation 12 can be integrated symbolically or numerically with
a program like Mathematica (Wolfram Research, Champaign, IL), the program
used in this work. For convenience, we will examine only the case in which the
transition rates Pd(t) and Pm(t) are both logistic expressions that can be inte-
grated in closed form. This facilitates the mathematical treatment of the model
and shortens the calculation time considerably, especially when it comes to
estimating the parameters of the model from simulated or actual growth/inacti-
vation data (see below). The transition rates are as follows:

Pd�t� �
pd

1 � exp�kd�td � t��
(13)

Pm�t� �
pm

1 � exp�km�tm � t��
(14)

Consequently, the general version of the model has six parameters, pd, kd, td, pm,
km, and tm. The function g(t) (the integral in equation 11) can be written explicitly
in this case:

FIG. 6. Simulated growth curves generated with the discrete (sto-
chastic) version of the model with the same underlying division and
mortality probability functions but different �t’s. Notice the curves’
increased smoothness as �t decreases and N(t) increases.
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g�t� � �pd � pm�t � �pd/kd�log�1 � exp�kd�td � t��� � �pm/km�log�1 � exp�km�tm

� t��� (15)

and then the function f(t)  N0 exp[g(t)] becomes

f�t� � N0e�pd�pm�t
�1 � exp�kd�td � t���pd/kd

�1 � exp�km�tm � t���pm/km
(16)

Notice that the model’s six parameters can be reduced to five or even four for special
cases. Examples are cases in which Pd equals Pm, as when the population size is
stable for a sufficiently long time, and/or in which kd can be assumed to equal km as
a first approximation. The flexibility of the LP model is demonstrated in Fig. 4 and
5. Collectively, the two figures show very distinct population histories, from expo-
nential or sigmoid growth, with and without a lag phase, to full inactivation, with and
without a “shoulder,” as well as a continuous transition between growth and inac-
tivation or vice versa. Yet all of the population histories were generated with a single
general population model (equation 12) based on two underlying transition rate
functions of the same kind (equations 13 and 14). As can be seen in these two figures,
the different patterns were due to the temporal changes in the division and mortality
rates, which in turn were controlled by the six parameters of the underlying proba-
bility rate functions. Similar growth and inactivation patterns can be generated with
Pd(t) and Pm(t) defined by other expressions. The advantage of the logistic functions,
apart from their mathematical convenience and the intuitive meaning of their pa-
rameters, is that when a growth curve has a plateau as in the stationary phase, then
Pd(t) and Pm(t) in this region have the same value by definition. This greatly facili-
tates the model’s construction by reducing the number of parameters and simplifying
the estimation of its parameters from simulated or experimental data (see below).
(For the total population size to remain unchanged, the number of cells added by
division must be balanced by the number of dying cells or, which is less likely, not a
single cell divides and none dies.)

Nonisothermal growth and inactivation patterns. The temperature effects on
the fate of a microbial population are well known. Refrigeration in most cases
slows down the growth or even decimates the cells. Elevating the temperature
will have the opposite effect until it is raised to well above that optimal for
growth, when it will cause mortality. Extreme cold can have a similar effect, albeit
usually not at the same intensity and rate. In the lethal high-temperature regime,
raising the temperature accelerates the inactivation dramatically. But there may
be situations where premature cooling may allow the survivors to resume growth.
A similar situation can also be observed in the case of disinfection with a volatile

chemical agent, for example, where the treatment’s survivors resume growth. The
opposite may also occur. Raw foods are sometimes kept at a temperature that
allows for microbial growth, but the population so created is destroyed by
adequate cooking. Such growth/inactivation and inactivation/growth scenarios
entail influences of temperature on the division and mortality rates and the
manner in which these rates change with time. In the model outlined above, this
implies that the coefficients of Pd(t) and Pm(t), defined by equations 13 and 14,
are temperature dependent. Thus, when the temperature (T) varies with time [T
 T(t)], the parameters pd, pm, km, kd, td, and tm will become functions of time
and should be written as pd[T(t)] and kd[T(t)], etc., and equation 12 will then
become a model of nonisothermal growth and inactivation. For almost all real-
istic nonisothermal temperature histories or profiles, especially when both heat-
ing and cooling are involved, the integral in equation 12 cannot be solved
analytically. However, the integral can be solved numerically to produce the
corresponding growth/inactivation curve. This applies to scenarios in which the
temperature’s rise or fall causes a transition from growth to inactivation or vice
versa. The resulting patterns are similar in appearance to those shown in Fig. 4
and 5. The same can be said about scenarios involving oscillating temperatures.
And as already stated, the growth-promoting or lethal agent need not be only
temperature for the model to work. It can just as well be the oxygen tension, pH
level, or hydrostatic pressure, etc., and combinations of these conditions. In such
a case, Pd(t) will become Pd[T(t), pH(t)] instead of Pd[T(t)], say, and likewise for
the other model parameters.

Simulations. We give two simulation algorithms, one for tracking the devel-
opment of individual cells and another for simulation at the population level,
described in terms of the simplified model, of which the BD model is a contin-
uous-time limit. We assume that the time interval over which the simulation is to
take place is from t  0 to t  tf, 0 
 tf 
 �.

(i) Individual level. (a) Choose the initial number, N0, of live cells at time zero
and the “time horizon,” tf.

(b) Choose �t small enough so that [Pm(t)�Pd(t)]�t 
 1 for 0 � t � tf. [This
is always possible as long as Pm(t) and Pd(t) are continuous functions of t.]

(c) At any time t  ti  i�t for which N(t) has been determined, draw a random
number, Rn, with a uniform distribution between 0 and 1 (0 � Rn �1), separately
for each of the N(t) cells currently alive.

(d) For a particular cell, if Rn � Pm(t)�t, the cell dies; it will not be counted
and will have no progeny. If Pm(t)�t 
 Rn � [Pm(t) � Pd(t)]�t, the cell divides
and now counts as two. If Rn � [Pm(t) � Pd(t)]�t, the cell remains alive but
undivided.

FIG. 7. Simulated growth curves started from a single cell generated with the discrete (stochastic) version of the model (equation 4), with
different underlying division and mortality probability functions (top), and life histories of 50 such cells (bottom). (A) Growth with lag; (B) growth
with no lag; (C) peaked growth with lag. Notice the jagged appearance of the curves.
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(e) Let N(ti � 1) be the new number of living cells.
(f) Repeat steps c to e with i � 1 instead of i until the desired number of steps

is reached.
Notice that since a new random number is drawn for each live cell and at each

step, the growth/mortality curves generated with this algorithm will be irrepro-
ducible, unless the random number generator “seed” is fixed. After even a small
number of iterations, the number of live cells can be very large, so the calculation
can become overly burdensome very quickly. This imposes a practical limit on the

FIG. 8. Simulated growth curves started from a single group of 10 cells generated with the discrete (stochastic) version of the model (equation 4), with
different underlying division and mortality probability functions (top), and life histories of 50 such groups of 10 (bottom). (A) Growth with lag; (B) growth with
no lag; (C) peaked growth with lag. Notice that all the growth curves appear less jagged than those for the individual cells shown in Fig. 7.

FIG. 9. Simulated growth curves started from a single group of 100 cells generated with the discrete (stochastic) version of the model (equation
4), with different underlying division and mortality probability functions (top), and life histories of 50 such groups of 100 (bottom). (A) Growth
with lag; (B) growth with no lag; (C) peaked growth with lag. Notice that all the growth curves are smooth in comparison with those for the
individual cells and smaller groups shown in Fig. 7 and 8, respectively.
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number of initial cells that can be monitored and the number of steps in the
growth/mortality curve construction. The following algorithm avoids this prob-
lem to an extent but can have numerical problems when the population size is
large.

(ii) Population level. (a�) Choose the initial number, N0, of live cells at time
zero and at the time horizon, tf.

(b�) Choose �t so that [Pm(t) � Pd(t)]�t 
 1 for 0 � t � tf.
(c�) At any time t  ti  i�t for which N(t)  n has been determined, draw a

(single) random number, Rn, with a uniform distribution between 0 and 1 (0 �

Rn � 1).
(d�) If Rn � nPm(t)�t{1 � [Pd(ti) � Pm(t)]�t}(n � 1), let N(ti � 1)  n � 1;

if nPm(t)�t{1 � [Pd(ti) � Pm(t)]�t}(n � 1) 
 Rn � nPm(t)�t{1 � [Pd(ti) �
Pm(t)]�t}(n � 1) � nPd(t)�t{1 � [Pd(ti) � Pm(t)]�t}(n � 1), let N(ti � 1)  n
� 1, and if Rn � nPm(t)�t{1 � [Pd(ti) � Pm(t)]�t}(n � 1) � nPd(t)�t{1 � [Pd(ti)
� Pm(t)]�t}(n � 1), let N(ti � 1)  n.

(e�) Repeat steps c� to d� with i � 1 instead of i until the desired number of
steps is reached.

The effect of the choice �t on the curves produced by the individual-level
algorithm is illustrated in Fig. 6. As �t becomes smaller, the generated growth
curve becomes smoother and gets progressively closer to the continuous curve
produced by the LP model based on the same underlying transition rates. As
noted above, for computational reasons, the numbers generated by the stochastic
(simplified) version of the model were too small to approach the LP-limit model.
In some cases, the continuous LP model may not be a good approximation of the
simulated model because a significant fraction of the cells can occasionally avoid
mortality and exhibit extensive proliferation, resulting in a population size that
will surpass that predicted by the LP model. Also, as shown above, except in the
case of a “pure birth” process, there is a nonzero probability that the population
becomes extinct, resulting in a growth curve that does not resemble the one
predicted by the deterministic LP model.

Examples of life histories of individual cells and their assemblies produced
with the algorithm are shown in Fig. 7, 8, and 9. The figures show, from left to
right, model-generated growth curves of three types: those with a noticeable lag,
those with no lag, and those with a lag and peak growth followed by mortality.
The top graphs are the growth curves, and the ones at the bottom are three-
dimensional displays of the life histories of the individual cells (Fig. 7) or groups
of 10 and 100 cells (Fig. 8 and 9, respectively). As in Fig. 4, the different growth
patterns were created by adjusting the underlying transition rates. Figures 7 to 9
demonstrate that when the initial number of cells is very small, the fluctuations
in the population size during its initial growth stage can be substantial. But if the
population is initially large (or has reached a large size through successive
divisions [Fig. 6]), its growth curve becomes progressively smoother. This result
should not come as a surprise. When many cells divide or die according to the
same rule, the averaging effect suppresses the fluctuations, which could be de-
tected had the fate of each individual cell been monitored. This is the same effect
that gives a smooth appearance to the growth curves of large populations of the
kind reported in the literature and is a manifestation of the large population limit
alluded to earlier.

The stochastic BD model provides a single conceptual framework for comparing
the distinct growth and inactivation patterns of small and large microbial pop-
ulations. It is an excellent tool for simulations, especially for a small initial
number of cells and a limited number of generations. For larger population sizes,
the LP model provides a biologically motivated, continuous, deterministic model.

Estimating the growth and mortality parameters from data. If the functions
Pd(t) and Pm(t) are known, except for the parameters pd, kd, and td, etc., then the
parameters can be estimated from experimental (or simulated) isothermal
growth and/or inactivation data by nonlinear regression or other methods of
inference.

To demonstrate how the model parameters can be estimated from growth or
inactivation data, we assume that the isothermal growth/inactivation of a hypo-
thetical organism follows the LP model, equation 12, with transition (probability)
rates Pd(t) and Pm(t) given by equations 13 and 14. To implement these assump-
tions, we wrote a program in Mathematica that generates growth/inactivation
data using these models. The program, which has been posted as freeware on the
Internet (http://www-unix.oit.umass.edu/	aew2000/probabilistic_growth_and
_mortality_model/ProbGrowthMortModel.html), comes in three versions based on
equation 12, having four to six adjustable growth/mortality parameters. The pro-
gram’s three versions allow the user to generate data with specified parameter
values, with either smooth patterns or added Gaussian random noise; to mimic
experimental scatter in the counts; or to paste in experimental data instead of
simulated data. The growth/inactivation data are then fitted with equation 12 by
using Mathematica’s nonlinear regression program, Nonlinear Model Fit. The esti-
mated regression parameters are recorded, together with their statistical analysis and
confidence intervals, and subsequently used to plot the fitted curve superimposed
onto the data. On a separate graph, the corresponding estimated division and
mortality transition rates Pd(t) and Pm(t) are also plotted.

As pointed out earlier, the continuous LP model differs from the BD model
by a Gaussian stochastic process. In general, this error process will be cor-
related, though it can be expected that the correlations will be short range

FIG. 10. Extraction of the division and mortality probability functions
from simulated sigmoid growth data with small scatter. (Top) Fit of the
four- and five-parameter versions of equation 16; (middle and bottom)
corresponding probability functions calculated with the regression param-
eters (solid lines) and those used to create the data (dashed lines). Notice
the similarity between the division and mortality probability functions
estimated by the four- and five-parameter deterministic models (equa-
tions 15 and 16, respectively). The parameters for the shown data points’
generation and the retrieved parameters are listed in Table 1.
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and hence will die out for widely separated times. Thus, it is reasonable in
simulations to use Gaussian random (i.e., uncorrelated) noise for the error
process. In analyzing real data, correlated errors will mean that parameter
estimates are less efficient (in the technical statistical sense), but this should
have little effect in practice.

An example of a simulated realistic-looking sigmoid growth curve is shown in
Fig. 10. The data were generated by the program with a small amount of random
noise equivalent to 5% of the smooth N(t) level. Since at the plateau region
(stationary phase) according to our model, Pd(t)  Pm(t) and pd  pm  p, we
are left with four or five adjustable parameters depending on whether kd and km

are assumed to be equal or not. As can be seen in the figure (top plot), the data
can be fitted with both the four- and five-parameter versions of the model. The
two versions of the model yielded similar division and mortality transition rates,
as shown in the middle and bottom plots, as well as similar growth/mortality
parameters, as shown in Table 1; we could, of course, perform a formal statistical
test to determine which of these two models is more appropriate. We note that
agreement of the kind shown in Fig. 10 can be achieved only with a relatively
large number of data points and/or small scatter. A more complicated example,
with growth followed by mortality, is shown in Fig. 11. In this case, however, since
Pm is �Pd, only a model with at least five parameters was required to retrieve the
functions Pd(t) and Pm(t), which are also shown in the figures. Although the
general features of the underlying mobility were recovered, as shown in the figure
and Table 1, this was possible because of the relatively small scatter of the
generated data.

RESULTS AND DISCUSSION

Analysis of published growth curves. Published sigmoid
growth data on Escherichia coli O157:H7, Salmonella spp., and
Yersinia enterocolitica (18) (see ComBase record numbers
B124_39 and B002_146 at http://combase.arserrc.gov/), to-
gether with the fit of equation 16 as the model, are shown in
Fig. 12. Also shown in the figure are the corresponding prob-
ability rate functions Pd(t) and Pm(t) calculated with the four-
and five-parameter versions of the model. In the cases of E.
coli and Yersinia, the calculated values were almost identical.
In the case of Salmonella spp., they had a considerable gap but
showed the same general trend nevertheless.

Figure 13 shows published growth/mortality data on Lacto-
coccus lactis, Y. enterocolitica, and Salmonella spp. (13) (see
ComBase record numbers B092_4 and B002_92 at http:
//combase.arserrc.gov/), together with the fit of equation 16 as
a model. The corresponding transition rates Pd(t) and Pm(t),
calculated with the five-parameter version of the model, are
shown at the bottom of the figure. Because all the curves have
a clear peak, the parameters pd and pm have different values,
thus requiring the five-parameter model version for their cal-
culation. The figure demonstrates again that it is possible to
estimate the cell division and death transition rates from ex-
perimental growth/mortality data.

Admittedly, we have deliberately chosen data that are suf-
ficiently dense and have a relatively small visible scatter. The

method may not have yielded meaningful results had a data set
with a smaller number of points and/or larger scatter been
used. At this point, the functions Pd(t) and Pm(t) in the above-
described example are hypothetical at best. It is, of course,
possible to pursue formal statistical tests of these or other
plausible models, but the purpose of the examples was to

FIG. 11. Extraction of the division and mortality probability func-
tions from a simulated peaked growth curve. (Top) Fit of the five-
parameter version of equation 16; (bottom) corresponding probability
functions calculated with the regression parameters (solid lines) and
those used to create the data (dashed lines). The parameters for the
shown data points’ generation and the retrieved parameters are listed
in Table 1.

TABLE 1. Parameters for growth data generation and retrieved parameters using equation 16 as a model with equations 13 and 14 as the
probability rate functions

Parameter type
Sigmoid growth curvea Peaked growth/mortality curveb

Pd  Pm kd km tcd tcm Pd Pm k tcd tcm

Parameters for data generation 0.5 0.3 0.2 10 20 0.4 0.55 0.75 9 22.5
Retrieved parameters
Parameters for four-parameter version 0.47 0.21 0.21 10.1 21.2
Parameters for five-parameter version 0.49 0.23 0.21 10.1 20.7 0.43 0.58 0.88 10.1 22.3

a Examples are shown in Fig. 10.
b Examples are shown in Fig. 11.
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present a feasible methodology, not to investigate the partic-
ular organisms. Thus, we have illustrated parameter estimation
using the LP model, which can be analyzed using standard
nonlinear regression software, rather than the BD model. Sta-
tistical analysis of nonhomogeneous Markov chain data, as in
the case of the BD model, by maximum likelihood, for exam-
ple, would require explicit determination of the transition
probability functions of the Markov chain, generally a daunting
task. Other approaches, such as the method of moments, could
also be used. But here again, our primary goal was to establish
a unified view of microbial growth and mortality via stochastic
modeling, rather than engage in statistical analysis of particular
data sets.

Concluding remarks. Most microbial kinetic models for
foods have been developed in order to quantify and predict
growth and inactivation patterns at the population level. Only
a few modelers, notably Baranyi (2, 4), Brul et al. (6), Pin and
Baranyi (27), and the Natick group (Taub et al. [29], Doona et
al. [12], and Ross et al. [28]), have tried to link observed growth
and inactivation kinetics to processes or events at the cellular
level directly. The model described in this work is not intended
to replace existing kinetic models of either kind. The main
reason for its introduction is to provide a general complemen-
tary tool to interpret population evolution patterns of cell
division and mortality. The approach has already been success-

fully implemented in the interpretation of pure inactivation
patterns, such as those encountered in heat treatments at le-
thal temperatures. Since, with few exceptions, growth and di-
vision do not occur during such treatments, the survival curve
is by definition a manifestation of the mortality events’ tem-
poral distribution, akin to (but not the same as) Pm(t) in the
growth/mortality model. In that case, therefore, the distribu-
tion of the cells’ death times can be estimated directly from the
experimental survival data (24, 25). In contrast, the present
work is concerned with the whole process of cell division, as
well as mortality. Although the stochastic BD model may not
be simple enough for everyday use, it does give a unified
conceptual explanation of why different growth and inactiva-
tion patterns emerge. On the other hand, explicit formulas are
also given for the expected population size, the probability of
extinction, and a bound for the probability that the population
size will exceed a given threshold, all in terms of the transition
(probability) rates. These quantities, which can be estimated
from original or published experimental data for large popu-
lations obtained by standard methods of the field, may be
useful to the food, pharmaceutical, and fermentation indus-
tries as well as public health authorities. Stochastic modeling
provides a tool with which to simulate microbial population
processes and investigate their characteristics and eliminates

FIG. 12. Experimental sigmoid growth curves for E. coli O157:H7, Salmonella spp., and Y. enterocolitica fitted with the four- and five-parameter
versions of equation 16 as a model (top) and the corresponding estimated underlying division and mortality probability functions (bottom). The
experimental data are from Koseki and Isobe (18) and the Food Standard Agency (http://combase.arserrc.gov/; record numbers B124_39 and
B002_146), respectively.
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the need to make kinetic assumptions that are usually hard and
sometimes impossible to confirm.

The starting point of the probabilistic approach is the ad-
mission either that we do not know what happens at the cel-
lular level or that our knowledge is insufficient to derive a
plausible mechanistic model. Nevertheless, this work shows
that it is possible to translate the probabilities of important
events in the life cycle of individual cells into commonly ob-
served growth and inactivation patterns and transitions be-
tween them. The work also shows that it is possible to estimate
an organism’s division and mortality transition rates from ex-
perimental data, at least if they are specified in parametric
form. The quality of the estimates will depend on the complex-
ity of the model and the amount and scatter of the data.
Techniques to monitor the states of individual cells, through
image processing, for example, already exist and may eventu-
ally be used to validate and improve the modeling approach.
For now, experimental evidence can be used to test any spec-
ified structure of the transition rates Pd(t) and Pm(t), whether
logistic or other, or to suggest alternative mathematical expres-
sions to describe them.

Although much of the discussion in this article focuses on
temperature as a promoter of growth or cause of inactivation,
the general concept is just as applicable to other factors that
make a habitat and conditions favorable or hostile to microbial

growth or survival. Possible examples are chemical disinfec-
tants and preservatives, biological antimicrobials, water activ-
ity, pH, oxygen tension, and CO2 pressure, etc.

The stochastic BD model may be particularly useful to sim-
ulate and investigate the growth and mortality patterns of very
small microbial populations, for which most if not all the tra-
ditional deterministic continuous models may not be suitable.
Microbial infection or accidental contamination of a food need
not always start with massive invasion by the pathogen or
spoilage organism. The former, especially, can start with the
ingestion of or contact with a small number of cells. According
to the described model, this means that some groups of cells
will die off while others may proliferate to various degrees. It
also means that both the initial inoculum size and the vigor of
the pathogen cells, expressed as Pd(t) vis-à-vis Pm(t) in terms of
the model, will affect the fraction of exposed persons that will
eventually become sick. In the case of a spoilage organism,
both factors will determine the number of food units that will
actually be spoiled and to what extent. As the simulations in
Fig. 7 to 9 demonstrate, not all exposed persons or contami-
nated units will be equally affected, even if they have received
the same dose. These are qualitative predictions that are con-
sistent with observation. The concept described above also applies
to scenarios in which the microbial population size progres-
sively decreases rather than increases. But one has to distin-

FIG. 13. Experimental peaked growth/mortality curves for Y. enterocolitica, Salmonella spp., and L. lactis fitted with the five-parameter version
of equation 16 as a model (top) and the corresponding estimated underlying division and mortality probability functions (bottom). The
experimental data are from the Food Standard Agency (http://combase.arserrc.gov/; record numbers B092_4 and B002_92) and Dougherty et al.
(13), respectively.
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guish between growth suppression caused by refrigeration or
an antimicrobial at a low concentration, say, and massive rapid
mortality as in the case of heat sterilization or pasteurization.
In thermal preservation, the treatment is almost always much
shorter than the cells’ division time, resulting in a practically
zero and irrelevant division probability rate, Pd(t). The stochas-
tic version of the model can be useful in simulating the poten-
tial fates of a small number of individual cells or groups of
cells, especially if they are present in a relatively protected
locale, such as the surface of an air bubble. The probabilistic
modeling approach can be extended to bacterial spores’ ger-
mination. This, however, will require revision of the model to
account for the probability of germination and, in the case of
certain bacillus spores, that of activation as well.
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