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Abstract
Purpose—To investigate the utility of consistency metrics, such as inverse consistency, in contour
based deformable registration error analysis.

Methods—Four images were acquired of the same phantom that has experienced varying levels of
deformation. The deformations were simulated with deformable image registration. Using calculated
deformation maps the inconsistencies within the algorithm were investigated. This can be done for
example by calculating deformation maps both in forward and reverse directions and applying them
subsequently to an image. If the algorithm is not inverse-consistent then this final image will not be
the same as the original, as it should be. Other consistency tests were done for example by comparing
different algorithms or by applying the deformation maps to a circular set of multiple deformations
whereby the original and final images are in fact the same. The resulting composite deformation map
in this case contains a combination of the errors within in those maps, because if error-free the
resulting deformation map should be zero everywhere. We have termed this the generalized inverse
consistency error map (Σ⃗(x⃗)).

Results and Conclusions—The correlation between the consistency metrics and registration
error varied considerably depending on the registration algorithm and type of consistency metric.
There was also a trend for the actual registration error to be larger than the consistency metrics. A
disadvantage of these techniques is that good performance in these consistency checks is a necessary
but not sufficient condition for an accurate deformation method.
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Introduction
Deformable image registration has received a lot of attention recently for applications in
radiotherapy treatment planning. Specific applications include auto-segmentation (Isambert
et al., 2008) 4-D planning (Rietzel et al., 2005; Ehler and Tome, 2008), and adaptive planning
or dose accumulation (Yan et al., 1997; Yan, 2008; Kessler, 2006; Lu et al., 2006). In the case
of auto-segmentation, the only thing that matters is that the deformation is accurate for the
contours of interest; inaccuracies elsewhere are irrelevant since they will not influence the
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contours. Additionally, since contours generated automatically can easily be compared to
physician contours, end-to-end testing is relatively straightforward.

The full 3D accuracy of deformable registration is important however when considering dose-
volume histograms in treatment planning, and end-to-end testing becomes difficult. In terms
of the accuracy of dose distributions determined using deformable registration, distinctions
can be drawn between relatively homogeneously irradiated target volumes, and
inhomogeneously irradiated target volumes or organs at risk. As for a target, as long as one
delivers a uniform dose to the entire target volume, small inaccuracies in deformation within
the target volume do not matter since all voxels are supposed to receive the same dose. Note,
however that with IMRT, sequential highly inhomogeneous doses are delivered over a
sequence of time points in order to sum to a homogeneous dose. Thus, in 4D IMRT planning
the deformation within the target needs to be accurate even if there is a uniform dose
prescription. The situation in general is complicated further as soon as one ascribes biological
properties to voxels within the target volume, as is the case in selective boosting or risk adaptive
radiotherapy. This is because the dose a sub-region is to receive now depends on its biological
properties in terms of possible tumor recurrence or the harboring of high-risk disease (Tome
and Fowler, 2000; Kim and Tome, 2006).

The accuracy of deformable image registration is of importance for the development of 4D or
adaptive radiotherapy techniques that deliver differential doses to different parts of the target
volume and/or organs at risk, including IMRT where differential doses are supposed to sum
to a uniform dose. Yan recently described a clinical QA workflow for adaptive radiotherapy
and points to the need for quality assurance of deformable image registration (Yan, 2008).

The current algorithms used for dose deformation are based on physical models but few if any
have the ability to accurately simulate the insurmountable mechanical complexity of the human
body, with some recent reports representing significant progress towards more realistic
biomechanical models (Zhong et al., 2007). There are many quality assurance techniques
available today for deformable image registration. Some authors have used landmark points
within regions of interest (ROI), e.g. in the lung or in a phantom, and this represents a reasonable
attempt at quality assurance (Brock et al., 2005; Kaus et al., 2007; Lu et al., 2004). However,
landmark points are often sparse in real patients, and assessment of accuracy on a case-by-case
basis will be time consuming. Another popular method of evaluating the deformation is to
inspect difference images (Lu et al., 2004). This can be informative in regions where there is
sufficient contrast but for low contrast regions, which are prevalent in real patient images, using
a difference image will fail to identify inaccuracies. Using cross correlation between images
(e.g. (Castadot et al., 2008)) suffers the same problem in regions of low contrast. To make
matters worse, some algorithms are likely to perform best in regions where nearby organs have
sufficient contrast to be seen, and therefore a bias can easily be introduced; one evaluates the
algorithms at locations where it should be the easiest for the algorithm to get the deformation
correct. Others have attempted to mitigate such effects when using landmark points as a quality
assurance tool by digitally subtracting the landmarks before deformation (Kashani et al.,
2007).

The concept of inverse consistency is not a new one (Christensen and Johnson, 2001; Leow
et al., 2005; Yang et al., 2008), and it can be understood as follows. Two images, which we’ll
call image A and image B, are registered using deformable registration in two different ways:
Image A is deformed to match image B, and separately image B is deformed to match image
A. A perfect algorithm would arrive at deformation maps that were equivalent (more
specifically, inverses) for both of these deformation tasks. Many real algorithms however do
not. This may be surprising but feeding the algorithm two problems that are really inverses of
each other will not result in two deformation maps that are inverses. The degree to which an
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algorithm can or can not successfully arrive at equivalent deformation maps given a problem
and its inverse can be quantified with what we will refer to as an inverse consistency error map.

The inverse consistency error map can be thought of as follows. If one deforms image A to
match image B, then uses the deformation algorithm to deform that deformed image back to
image A again as described above, the result will be an image that actually does not match the
original image A if the algorithm is not inverse consistent. Because this image is not
successfully restored to its original state, a deformation map can be derived which maps the
original image A to it’s unsuccessfully restored state, and we call it the inverse consistency
error map. Note that in a recent study, Yang et al. have described a new algorithm designed to
be inherently inverse consistent (Yang et al., 2008). In our work here we will concentrate
however on the contour based deformation available in the Pinnacle3 treatment planning system
(Philips Medical Systems, Fitchburg, WI), which is not inherently inverse consistent.
Specifically, we will employ the elastic body splines (EBS) and thin plate splines (TPS)
algorithms, discussed below.

Additional consistency checks can be done in a case for example where one has no a priori
reason to believe that one of two possible algorithms will be better than the other. In our case
we suppose for the sake of illustrating the method that we have equal confidence in both the
TPS and EBS methods. Since these two methods give different results, their discrepancy is of
some value if we are interested in what the uncertainties are. One could argue from the
beginning that the EBS algorithm may be more appropriate for elastic materials. However,
although the physical model behind the EBS algorithm may make more intuitive sense for our
phantom (described below), it can only approximate the deformation of an elastic body. This
is because there is no unique solution to the physical problem without assumptions about the
nature of the forces that produce the deformations, and these assumptions may or may not be
appropriate. In this report we will illustrate the method and present results of quantitatively
comparing the TPS and EBS deformation methods.

Finally we will introduce an extension to the inverse consistency concept involving three
separate images (A, B, and C) and their associated deformation vector fields that connect them.
This gives rise to what we call the generalized inverse consistency error (gICE), written as Σ⃗
(x⃗).

Materials and Methods
To test the utility of the consistency checks (inverse consistency, inter-algorithm consistency,
and the generalized inverse consistency error Σ⃗(x⃗)), a gelatin phantom with a volume of
approximately 5 L was constructed and 140 glass beads of 8 mm diameter were suspended in
it at regular intervals. This was accomplished by suspending the glass beads on a thread before
the gelatin was poured, and removing the thread after it had solidified. Additionally a wooden
dowel approximately 2.9 cm in diameter was suspended in the phantom to act as a mobile but
rigid mechanical constraint. Upon completion this phantom was compressed with a hard plastic
ball and axial CT scans were performed after varying levels of compression had been applied
in 0.5 cm increments ranging from 1 cm to 2 cm vertically. For illustrative purposes, all images
in this report are associated with a central axial slice of this phantom. It is important however
to realize that all of the deformations are fully 3 dimensional.

Contour based deformable registration was performed in the Pinnacle3 treatment planning
system (Kaus et al., 2007). Both the thin plate splines (TPS) and elastic body splines (EBS)
algorithms were used. Briefly, these deformation algorithms are inspired by physical models
for either the bending of thin plates or the deformation of elastic bodies. For the TPS algorithm
generalizations are made to higher dimensions, as our 3 dimensional images cannot be thought
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about as thin plates. The TPS and EBS algorithms are contour based in that the driving ‘force’
in the algorithm is derived from a set of contours in the pre- and post-deformed images. The
vectors that point from vertices of a contour mesh in the deformed image to their corresponding
vertices in the undeformed image can be thought of as samples of a vector field that defines
the mapping between the images. Deformation of the entire image is then accomplished by
interpolating these samples of this vector field to the entire 3D volume of the image. The EBS
and TPS algorithms are simply two of a limitless number of possible choices of an interpolation
algorithm. More about the implementation of these algorithms in Treatment planning system
can be found elsewhere, cf. (Kaus et al., 2007). In order to produce various consistency maps,
the deformation maps produced by the Treatment Planning System were exported to MATLAB
for further processing. The appendix details some of the methods used for determining these
maps.

After the phantom used here was deformed virtually in the Treatment planning system the glass
beads were used as landmarks to access the accuracy of the deformation fields in 140 locations.
This allows us to test the consistency metrics in terms of whether or not they correlate with
registration error. The bead centroids were determined by an in-house algorithm which takes
advantage of the fact that the glass beads are much more dense than anything else in the
phantom. The Spearman’s rank-order correlation coefficient has been employed as a measure
of correlation between the actual known errors in the bead positions to the consistency errors.
Additionally, the percentage of the time that the consistency errors were larger than the actual
errors was also calculated. Finally, the wood grain in the dowel was used as an indicator of the
error in the deformation within this hard constraint, where there is no deformation, just
translations and rotations.

Moreover, one arrives at an extension of the inverse consistency concept by using three separate
images (A, B, and C) and their associated deformation vector fields that connect them, written
as Δ ⃗1 (x⃗), Δ ⃗2(x⃗), and Δ⃗3(x⃗). Specifically, Δ⃗1(x⃗) maps image maps image A to B, Δ⃗2(x⃗) maps
image B to C, and Δ⃗3(x⃗) maps image C back to A. These images could be for example three
different phases in a 4D-CT image or images of the same patient from three different treatment
fractions, although for our work here they are three images of our deformable phantom. If the
deformation fields Δ⃗1(x⃗), Δ ⃗2(x⃗), and Δ⃗3(x⃗)were all accurate then applying the three
deformations sequentially on image A will result in no change in that image. If this operation
is performed on a set of images with any real algorithm (which might not be accurate), and the
sequential action of Δ ⃗1(x⃗), Δ⃗2(x⃗), and Δ ⃗3(x⃗) results in a change in the image A, then there must
be errors in at least one of those deformation fields. The result of sequentially applying Δ ⃗1(x⃗),
Δ ⃗2(x⃗), and Δ⃗3(x⃗) this case, where the initial and final images are the same, can be combined
into its own composite deformation vector field that we call the gICE map, Σ ⃗(x⃗), where Σ ⃗(x⃗) =
Δ ⃗3(x⃗) ◦ Δ ⃗2(x⃗) ◦ Δ ⃗1(x⃗). Although we cannot access the individual errors present in the vector
deformation fields Δ⃗1(x⃗), Δ ⃗2(x⃗), and Δ⃗3(x⃗), the errors may accumulate in the Σ⃗(x⃗) map. Note
however, that it is possible that errors in one deformation field may cancel with errors in another
yielding a zero value at some points in the Σ⃗(x⃗) map. In other words, a zero value of Σ⃗(x⃗) is
necessary but not sufficient for an accurate algorithm. The same limitation also applies to the
other consistency checks we have tested.

Results and Discussion
The top row of Figure 1 shows representative axial slices of the CT phantom used for our
measurements, where the left, center, and right images correspond to images A, B, and C. The
image on the top left is the phantom before any deformation was applied, while the center and
right images show the phantom with compressions of 1 cm and 2 cm vertically (the 1.5 cm
deformation level is omitted for this figure but is qualitatively similar). For deformable image
registration, contours of the outside of the phantom and the wooden dowel were used as input
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to the algorithm. The center and bottom rows of Figure 1 show the resulting virtually deformed
images at the 1 cm and 2 cm deformation phases, using the TPS and EBS algorithms,
respectively.

A test of the inverse consistency for the TPS algorithm is shown in Figure 2. The left panel
shows an overlay of the physically and virtually deformed phantom after the 1 cm deformation
level (corresponding to the top two images in the central column of Figure 1). Note the
discrepancy in the position of the beads close to the ball used to compress the phantom. The
right panel shows a color plot of the magnitude of the inverse consistency error map with a
background of the undeformed phantom. The color scale spans from 0 mm in blue to 2.5 mm
and higher in red. It can be seen that there is a significant inverse consistency error, as inferred
by looking at the left panel, in the region where the deformation is not accurate. A more
quantitative evaluation of the correlation between inverse consistency error and actual
registration error is shown in Figure 3. For all of the 140 beads in the phantom it shows the
relationship between the actual registration error at that bead position and the inverse
consistency error for that same bead. The Spearman’s rank-order correlation coefficient for
this example is rS = 0.568 (two tailed p < 0.01) and the percentage of the time that the actual
registration error was larger than the inverse consistency error (i.e. the percentage of points
above the diagonal line in the figure) is 73.6%. A diagonal line is drawn in the graph with a
slope of 1 represents the line for which actual error is equal to the inverse consistency error
and has been added to aid in visualizing the number of beads for which the actual error was
larger than the inverse consistency error. These diagonal lines appear in all correlation plots
here and it is important to note that they do not represent a best linear fit line for the data, but
simply represent the line for which actual error equals the inverse consistency error.

Figure 4 shows another kind of consistency error map in that it compares the results of the TPS
and EBS deformations directly. The left panel shows an overlay of the virtually deformed
images, one deformed with the TPS algorithm and the other with EBS. The right panel is a
consistency map that relates the two deformed images. More specifically, applying the inter-
algorithm consistency error deformation map whose magnitude appears in the right panel of
Figure 4 to the TPS-deformed image will produce the EBS-deformed image. In other words,
it is a deformation map representing the discrepancy between the deformation maps arrived at
when using the TPS and EBS algorithm, respectively. (A more detailed description of how it
is defined and calculated appears in the appendix). A priori there is no reason to believe ahead
of time that EBS is more appropriate than TPS, so this discrepancy can be considered an
uncertainty in a similar way as the inverse consistency error map can. Note in this case that
Figure 4 illustrates the discrepancy between the deformation maps arrived at when employing
the TPS and EBS algorithm, and that the discrepancy in the bead positions apparent in the
figure is not illustrative of the actual error in the deformation. To quantitatively evaluate the
actual error in the EBS deformation as it relates to the inter-algorithm consistency error, Figure
5 shows the corresponding correlation plot. The Spearman’s rank-order correlation coefficient
rS = 0.301 (two tailed p < 0.01) and the actual error was larger than the inter-algorithm
consistency error 71.4% of the time. This moderate correlation was typical for what was seen
when using the inter-algorithm consistency error.

A test of the gICE, Σ ⃗(x⃗), is illustrated in Figure 6. The left panel shows an overlay of the
physically deformed phantom at the 2 cm deformation level (corresponding to the right column
of Figure 1) and the phantom deformed virtually with the TPS algorithm. The right panel shows
the Σ⃗(x⃗) map (computed using the undeformed image and those at the 1 cm and 2 cm levels)
in color on top of the undeformed phantom. The colormap spans from 0 mm (blue) to 2.5 mm
(red), the same as it is in Figure 2. Note in this case that the maximum value of this map exceeds
4 mm and is saturated here as to preserve the same color scale. As can be seen from Figure 6,
qualitatively the red and yellow regions (i.e. regions where the Σ ⃗(x⃗) map is relatively large) are
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associated with regions where deformations are inaccurate. A quantitative comparison is shown
in Figure 7. The Spearman’s rank-order correlation coefficient is rS = 0.702 (two tailed p<
0.01) and the actual error is larger than the gICE 87.1% of the time.

A further fact to note is that the Σ⃗(x⃗) map is associated with errors in the deformation map
within the dowel, which can be more clearly appreciated from Figure 8, which shows the
original dowel (left) and that after the first two of the three deformations have been applied
(Δ ⃗2 ◦ Δ ⃗1) (center). The right panel shows the Σ⃗(x⃗) map with a different color scale as the rest
of the figures, specifically 0 mm (blue) to 1 mm (red). Incidentally, this suggests that an
algorithm that uses rigidity penalties in structures known to be rigid may be advantageous
(Staring et al., 2007). However, in this particular case the error appears to be very small (less
than 1mm). Regardless of the magnitude of the error in this particular case, however, the utility
of the Σ ⃗(x⃗) method can be appreciated here because it would have identified this inaccuracy in
the shape of the wood grain, and hence deformation field, whether there was any contrast in
the wood grain or not; the presence of the wood grain allows us to confirm the inaccuracy here
but our method did not depend on this contrast to identify the error. Thus, this method along
with the other consistency checks may have the ability to identify some inaccuracies in areas
of low contrast or even zero contrast regions where landmark identification is impossible and
where a difference image would be zero.

Multiple correlation plots similar to the ones previously discussed were produced with a variety
of different deformation levels and the results are summarized in Table 1, which shows
Spearman’s rank-order correlation coefficient for the comparison of actual registration error
and the value of the consistency metric in question, the two tailed p-value, and the percentage
of the time that the actual registration error was larger than the consistency metric. The results
for all deformation levels combined are also shown as a meta-analysis. For the consistency
metrics that only require two images (inverse consistency and inter-algorithm consistency),
six deformations were considered as can be seen in the table, while three different combinations
of deformation levels were considered with the gICE.

Figure 9 shows correlation plots for the actual error vs. inverse consistency error for all
deformation levels combined. The left panel shows the results for the TPS algorithm while the
right panel shows that for the EBS algorithm. In general the correlation is stronger for the TPS
algorithm as compared to the EBS algorithm (Spearman’s rank-order correlation coefficient
rS = 0.661, p < 0.01, vs. rS = 0.342, p < 0.01 respectively.) However, both correlations are still
moderate in strength. The actual error is larger than the inverse consistency error for 89.3%
and 97.6% of the beads for the TPS and EBS algorithms, respectively. This shows that the
inverse consistency error may be useful as a lower bound of the actual registration error:
Although there is no guarantee that the actual error is larger than the inverse consistency error,
there appears to be a trend for it to be so. Additionally, despite the moderate correlation between
the inverse consistency error and actual error when the EBS algorithm was used, there was a
strong trend for the actual error to be larger than the inverse consistency error, so it still may
be useful.

A correlation plot for the inter-algorithm consistency error, for all deformation levels
combined, is shown in Figure 10, with the results for the TPS algorithm shown on the left and
the EBS algorithm on the right. (That is, the left panel shows the actual error in the TPS
deformation plotted against the TPS-EBS inter-algorithm consistency error, while the right
panel is the same for the actual error in the EBS deformation). The Spearman’s rank-order
correlation coefficients are rS = .550 (two tailed p< 0.01) and rS = .434 (two tailed p < 0.01)
for the TPS and EBS algorithms, respectively, while the actual error is larger than the inter-
algorithm consistency error 62.7% and 65.5% of the time, respectively. From these results it
appears that the inter-algorithm consistency error, although moderately correlated to actual
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registration error, is not as useful as the inverse consistency error to estimate a possible lower
bound for the actual registration error.

Finally, a correlation plot for gICE, for all deformation levels combined, is shown in Figure
11, again with the TPS algorithm to the left and the EBS algorithm to the right. The Spearman’s
rank-order correlation coefficients are rS = 0.684 (two tailed p< .01) and rS = 0.204 (two tailed
p < .01). The percentage of the time that the actual error is larger than the gICE is 87.4% and
78.8%, respectively.

Judging from Figures 9–11 and Table 1, it appears that the registration algorithm affects the
correlation coefficients more than the level of deformation, with the TPS algorithm often
having a substantially larger correlation as compared to the same deformation level with the
EBS algorithm. Also of interest is the fact that there is a bias for the actual registration error
to be larger than the consistency metrics. This is the most striking when considering inverse
consistency error with the EBS algorithm (cf. Figure 9). Based on the data in Figure 9, it appears
that the EBS algorithm has a tendency to be more inverse consistent than the TPS algorithm,
i.e. that the inverse consistency error seems to be smaller on average when EBS is used. This
could explain why the correlation between inverse consistency error and actual registration
error was relatively weak or non-existent for the EBS algorithm. Although when using the EBS
algorithm the inverse consistency error significantly underestimates the actual registration
error, this trend is not as apparent when gICE is used instead (cf. Figure 11). This demonstrates
a potential utility of the gICE concept; an algorithm that tends towards inverse consistency
may perform well with an inverse consistency test but the generalized inverse consistency test,
which involves 3 deformations, none of which are inverses of each other, may be able to
elucidate some of the errors present when employing a given deformation algorithm.

Conclusions
We have demonstrated the possible utility of consistency metrics (inverse consistency error,
inter-algorithm consistency error, and gICE) for contour based deformable image registration
error analysis. Weak to moderate correlations were found between actual registration error and
the consistency errors. There was variability in the strength of the correlations, with correlations
being strongest for the TPS algorithm. There was also a tendency, though not absolute, for the
actual registration error to be larger than the consistency metrics, with inverse consistency error
showing the strongest tendency in this regard. If no other error estimates are available for a
deformation task, it may therefore be prudent to use the inverse consistency error as an estimate
of the minimum uncertainty. The same consideration applies to the generalized inverse
consistency error Σ⃗(x⃗). The Σ⃗(x⃗) test may be better suited to algorithms that have a natural
tendency towards inverse consistency, and it may be interesting in the future to apply the Σ⃗
(x⃗) test to an inherently inverse consistent algorithm, which will pass the inverse consistency
check but perhaps may still fail the Σ⃗(x⃗) test. Determining whether these consistency metrics
have utility in other types of deformable registration, such as with image based algorithms, is
reserved for future work.
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Appendix
For many tasks in this report the necessity arises to determine the equivalent deformation map
resulting from two or more successive deformations. In the case where one is interested in
finding an equivalent deformation map such that Δequivalent (I) = Δ2 ◦ Δ1(I) acting on an arbitrary
image I, one may be tempted to simply add the vector fields. However, a problem arises because
Δ ⃗1 and Δ⃗2 do not act on the same images. This issue can be appreciated further in Figure 12
as discussed below.
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Although one would naturally think that a deformation vectors exist in the original image
coordinate system and point to where voxels go in the deformed image, for our work the original
deformation fields exist in the coordinate system of the deformed image, and point to the
corresponding voxels in the original image. This is how the treatment planning system defines
them and it is more convenient computationally. This is because the deformed image can be
calculated on a point-by-point basis for each voxel by simply sampling the vector field at each
point in the deformed image and using it to determine the image value at that point. If the vector
field were defined in the coordinate system of the original image then there will likely be ‘holes’
in the deformed image. Note therefore, that the actual deformation of the image proceeds in
the opposite direction as the arrows of the vectors; this is necessary to preserve the fact that
vectors are always defined at their starting point.

Looking now at Figure 12, one can see samples of the deformation vector fields at points a⃗ and
b⃗, Δ ⃗1(a⃗) and Δ⃗2 (b⃗). The equivalent deformation vector resulting from the subsequent action
of Δ⃗1(a⃗) and Δ⃗2 (b⃗) is written as Δ⃗2 (b⃗) ◦ Δ⃗1(a⃗). In a computational setting we need to add the
vector fields together but we can only accomplish this if the vectors Δ⃗1(a⃗) and Δ⃗2 (b⃗) exist at
the same point. This problem can be remedied by shifting the vector Δ⃗1(a⃗) by Δ⃗2 (b⃗), moving
it down to point b⃗ where the two fields can then be added directly. The result of this shift is
shown as a dashed vector. We write this shift operation as Ŝ2 (b⃗)Δ ⃗1(a⃗). Computationally, the
shift operator Ŝ2 (b⃗) behaves as if it was a deformation field but instead of acting on image
points it acts on other deformation fields. Therefore, the proper way to combine the deformation
vectors Δ⃗1(a⃗) and Δ⃗2 (b⃗) is Δ ⃗2 ◦ Δ ⃗1 = Δ ⃗2 + Ŝ2Δ ⃗1. This method of combining vector fields is
used extensively throughout this work.

There is one more fundamental operation that needs to be preformed on a regular basis and
that is inverting deformation fields. There is a similar pitfall here as with combining vector
fields: The inverse of a deformation field is not simply that same field with the signs reversed.
The reason for this complication is essentially the same as what was discussed earlier: The
forward and inverse deformation fields act on different images. Although it is computationally
expensive, deformation fields can be computationally inverted in MATLAB ®
(MathWorks ™) using the griddata3 function. This algorithm is similar conceptually to a 3D
interpolation except it is designed for data that is not on a regular grid. This is precisely the
problem that arises when trying to invert a deformation field: All of the vectors in the forward
deformation are defined on a regular grid but the points they refer back to (the tips of the
vectors) can be distributed in a very irregular pattern, certainly no longer on a grid. The
griddata3 function does a reasonably good job of “gridding” this data (hence the name). It is
important to note however that because of the inherent interpolation processes when applying
deformations and when inverting them with griddata3, small discrepancies are likely to be
introduced into the images and inverted deformation fields. These discrepancies result in a
slight blurring of the deformed images, and this can be appreciated by close examination of
the virtually deformed images of Figure 1.

Now that vector fields can be combined and inverted in a computational environment, all of
the consistency metrics used in this report can be constructed. Inverse consistency is the
simplest consistency metric to construct, being simply the composition of the forward and
reverse deformation fields. We use the term “reverse” to refer to the vector field determined
by the algorithm in the treatment planning system when the baseline and deformable images
have their roles reversed, i.e. the baseline image takes the place of the deformed image and the
deformed image takes the place of the baseline image. This is not to be confused with the
inverse of a deformation field as calculated directly in MATLAB ®. Thus, the inverse
consistency error map is calculated by Δ⃗2 ◦ Δ ⃗1 = Δ ⃗2 + Ŝ2Δ ⃗1 where in this instance Δ⃗1 is the
forward vector field and Δ ⃗2 is the reverse. Ŝ2 is the shift operator as discussed before associated
with the reverse deformation vector field. As an added complication, but one that is necessary
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for properly displaying the vector fields in the figures shown here, the inverse consistency error
map as calculated is inverted. This is because as calculated above, the inverse consistency error
map exists in the coordinate system of the deformed image, but we would prefer to view it on
the undeformed image, so it has to be inverted.

When looking at the consistency between different algorithms, as we did in this report with
the EBS and TPS deformation algorithms, a similar technique can be used. Figure 13 shows a
similar diagram as in Figure 12 but we have changed the meaning of the vectors for the current
discussion. The two algorithms yield two different deformation maps Δ⃗TPS and Δ⃗EBS, and we
are interested in a quantitative measure of the discrepancy between the two. This discrepancy
is defined as Δ⃗C such that Δ⃗C ◦ Δ ⃗TPS = Δ ⃗EBS. In a technique similar to those used before, Δ⃗C
can be found by first by shifting Δ ⃗TPS so that it’s starting point is at the correct location, yielding

the dotted vector shown in the figure . Vector subtraction then yields

. These consistency maps can be shown in the coordinate system of
the EBS-deformed image without having to do any inversions, and this is why the right panel
of Figure 4 is shown with a background of the EBS-deformed image.

Finally, for calculating Σ ⃗(x⃗) maps, a simple extension to the process of combining vector fields
can be performed. Using the shift operator Ŝ, one can show that Σ⃗(x⃗) = Δ ⃗3 + Ŝ3Δ ⃗2 + Ŝ3Ŝ2Δ ⃗1.
This Σ⃗(x⃗) map is inverted before being displayed in Figure 6 so that they can be displayed as
an overlay on the undeformed image. Without inversion, the proper way to display the Σ⃗(x⃗)
map would be on the image that has been deformed by Σ ⃗(x⃗), which is not as intuitive. In practice
deforming an image sequentially with all of the individual deformations should produce the
same result as applying the Σ ⃗(x⃗) map to the original image. This fact can be used to test whether
the Σ⃗(x⃗) map has been appropriately constructed. In fact, “reality checks” such as this one can
and have been done for all of the consistency metrics used in this report.
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Figure 1.
Top row: CT scans of the phantom before deformation (left) and after two levels of applied
deformation (center and right). Middle row: Simulated deformations using the TPS algorithm.
Bottom row: Simulated deformations using the EBS algorithm.
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Figure 2.
Left: Overlay of the physically deformed phantom and the one deformed virtually using the
TPS algorithm, at the 1 cm deformation level. Right: Magnitude of the inverse consistency
error map displayed as a colorwash on the original undeformed phantom. The colormap goes
from 0 mm (blue) to 2.5 mm (red).
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Figure 3.
Correlation plot for the comparison of actual registration error and inverse consistency error,
for the TPS algorithm at the 1 cm deformation level. A diagonal line is drawn with a slope of
1 for reference and does not represent a fit of the data.
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Figure 4.
Left: Overlay of the virtually deformed phantoms using both the TPS and EBS algorithms, at
the 1 cm deformation level. Right magnitude of the deformation map showing the consistency
between the EBS and TPS algorithms, as a color overlay on the phantom after virtual
deformation with the EBS algorithm. The colormap spans from 0 mm (blue) to 2.5 mm and
above (red).
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Figure 5.
Correlation plot for the comparison of actual registration error and inter-algorithm consistency
error, with the actual regitration error for the EBS algorithm at the 1 cm deformation level as
the vertical axis. A diagonal line is drawn with a slope of 1 for reference and does not represent
a fit of the data.
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Figure 6.
Left: Overlay of the physically deformed phantom (2 cm deformation level as in the top right
of figure 1) and the one deformed virtually using the TPS algorithm. Right: The magnitude of
the generalized inverse consistency error (gICE)as a color overlay on the undeformed phantom.
The colormap spans from 0 mm (blue) to 2.5 mm and above (red).
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Figure 7.
Correlation plot for the comparison of actual registration error and the generalized inverse
consistency error (gICE), for the TPS algorithm. The three images used were the undeformed,
1 cm level, and 2 cm level. A diagonal line is drawn with a slope of 1 for reference and does
not represent a fit of the data.
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Figure 8.
A closeup view of the dowels shown in figure 6, in the physically deformed phantom (left) and
virtually deformed phantom (center). The right shows the magnitude of the generalized inverse
consistency error (gICE) with a colormap spanning from 0 mm (blue) to 1 mm (red).
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Figure 9.
Correlation plots comparing the actual error in TPS deformations (left panel) and EBS
deformations (right panel) with the inverse consistency error. All deformation levels are
combined (see text). Diagonal lines are drawn with a slope of 1 for reference and do not
represent a fit of the data.
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Figure 10.
Correlation plots comparing the actual error in TPS deformations (left panel) and EBS
deformations (right panel) with the inter-algorithm consistency error. All deformation levels
are combined (see text). Diagonal lines are drawn with a slope of 1 for reference and do not
represent a fit of the data.
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Figure 11.
Correlation plots comparing the actual error in TPS deformations (left panel) and EBS
deformations (right panel) with the generalized inverse consistency error (gICE). All
deformation levels are combined (see text). Diagonal lines are drawn with a slope of 1 for
reference and do not represent a fit of the data.
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Figure 12.
Vector diagram showing the method used to combine two deformation fields
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Figure 13.
Vector diagram showing how the consistency between two different algorithms is defined and
calculated
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