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tional r
What currently is known about 

alcohol’s effects on the brain 
has benefited from transla-

esearch—the parallel study of 
humans with alcohol dependence and 
of animal models that mimic targeted 
aspects of this complex disease. Human 
studies provide a full depiction of the 
consequences of chronic alcohol expo-
sure, but they are limited by ethical 
considerations for experimentation of 
rigorous controls of relevant variables. 
Animal models, on the other hand, can 
distinguish components of the addiction 
processes but cannot fully represent the 
human condition. 

In humans, 40 to 60 percent of 
the risk for alcoholism can be attributed 
to genetic factors. These genetic factors 
interact with environmental factors 
(e.g., early-life stress, family structure, 
peer pressure, or the social environ-
ment; McKenzie et al. 2005) to influ-
ence an individual’s vulnerability to 
alcohol problems (Prescott and Kendler 
1999). The genetic component has 

been modeled by breeding animal 
strains (predominantly rats and mice) 
with a high preference for alcohol 
(e.g., the alcohol preferring [P] and 
nonpreferring [NP] rats, high-alcohol– 
drinking [HAD] and low-alcohol– 
drinking [LAD] rats, the high-alcohol– 
preferring [HAP] mouse, and C57 
black mice). The environment also 
has been modeled, for example, by 
separating young monkeys from their 
mothers, which reproduces early-life 
stress (Barr et al. 2004). 

The last quarter century has seen 
a plethora of technologies capable of 
exploring the human animal in vivo, 
and many have been applied to alcohol-
related research. Currently available 
noninvasive human technologies 
(reviewed elsewhere in this two-part 
series) include electroencephalogram 
(EEG) (Rangaswamy and Porjesz, pp. 
238–242), functional magnetic reso-
nance imaging (fMRI) (Nagel and 
Kroenke, pp. 243–246; Rosenbloom 
and Pfefferbaum, Part 2), magnetic 

resonance spectroscopy (MR spec­
troscopy) (Nagel and Kroenke, pp. 
243–246), single- photon emission 
computed tomography (SPECT) 
(e.g., Abi-Dargham et al. 1998), and 
positron emission tomography (PET) 
(Thanos et al., pp. 233–237). Further 
investigation of alcohol’s effects at the 
cellular (e.g., He and Crews 2008; 
Tupala and Tiihonen 2004), molecu­
lar (e.g., Alexander-Kaufman et al. 
2007), and genetic (e.g., Dodd et al. 
2006; Saba et al., pp. 272–274) levels 
is made possible by carefully screened 
human postmortem brain tissue 
(Harper et al. 2003a). 

Even with these new technologies, 
animal models continue to have a vital 
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role, enabling researchers to better inter­
pret the implications of new findings. 
Moreover, the wide variation (or het­
erogeneity) of alcoholic populations 
examined with respect to genetic pre­
disposition, age of onset, pattern of 
drinking, frequency of withdrawals, 
length of sobriety, nutritional, and 
hepatic status has hampered researchers’ 
attempts to isolate only those specific 
brain regions affected by alcohol per se. 
This heterogeneity, and the complexi­
ty that it introduces, makes it difficult 
to thoroughly characterize the disorder 
(see Oscar-Berman 2000). Animal 
models, in contrast to the indefinite 
natural course of alcohol use in humans, 
allow researchers to determine alcohol 
toxicity in a way that allows them to 
control for multiple genetic, environmen­
tal, and alcohol consumption factors. 

Alcohol dependence is defined in 
the Diagnostic and Statistical Manual, 
Fourth Edition (DSM–IV) as the pres­
ence of three of a total of seven possi­
ble criteria within a 12-month period 

(figure 1A; American Psychiatric 
Association 1994). The diagnosis of 
alcohol abuse with DSM–IV criteria 
has helped standardize the classification 
of alcoholics, both across national 
and international research facilities 
and time (Harper et al. 2003b). 

In modeling alcoholism, a series 
of conditions that attempt to parallel 
DSM–IV criteria have been estab­
lished (figure 1B; Cicero et al. 1971). 
Of the currently available animal 
models, the monkey (e.g., Macaca fas­
cicularis) and the P rat best fulfill these 
criteria. The nonhuman primate is par­
ticularly suitable, as it has genetic, neu­
roanatomical, behavioral, and social 
similarities with humans (Premack 
2007). Furthermore, in contrast to other 
species (notably the wild-type rat), mon­
keys will self-administer alcohol (Grant et 
al. 2008). The P rat was developed from 
a Wistar foundational stock in Indiana 
and is in its 65th generation for selection 
of alcohol preference. The P rat is well-
characterized behaviorally and neurobio­

logically (Li et al. 1993; McBride and 
Li 1998) and satisfies the criteria pro­
posed as essential for an animal model 
of alcoholism (Cicero et al. 1971). 

The goal of this review is to iden­
tify key findings in humans, high­
lighting current theories regarding the 
brain systems involved in alcoholism, 
and to examine the currently available 
animal models of alcoholism within 
the context of those theories. What 
should emerge is that (1) human 
studies are necessary to identify and 
classify the brain systems predisposing 
individuals to develop alcohol use dis­
orders and those modified by alcohol; 
(2) animal models of alcoholism are 
essential for a mechanistic under­
standing of how chronic voluntary 
alcohol consumption becomes com­
pulsive, how brain systems become 
damaged, and how damage resolves; 
and (3) human studies then must 
create methods for testing target 
mechanisms of alcohol dependency 
identified in rigorous animal studies. 

A DSM–IV Criteria for Alcohol Dependence 

1) Tolerance, as defined by either of the following: 
a) need for markedly increased amounts of alcohol to 
achieve intoxication or desired effect 
b) markedly diminished effect with continued use of the 
same amount of alcohol 

2) Withdrawal, as manifested by either of the following: 
a) characteristic withdrawal (e.g., insomnia, psychomotor 
agitations, anxiety, nausea, or vomiting) 
b) alcohol is taken to relieve or avoid withdrawal symptoms 

3) Alcohol often is taken in larger amounts or over a
 
longer period than was intended 

4) There is a persistent desire or unsuccessful effort to 
cut down or control alcohol use/reduce use (i.e., inability 
to control use)
 

5) A great deal of time is spent in activities necessary to 
obtain alcohol, use alcohol, or recover from its effects
 

6) Important social, occupational, or recreational activities
 
are given up or reduced because of alcohol use
 

7) Alcohol use is continued despite knowledge of having 

a persistent or recurrent physical or psychological
 
problem that is likely to have been caused or exacer­
bated by alcohol (e.g., continued drinking despite
 
recognition that an ulcer was made worse by alcohol
 
consumption)
 

B Criteria for an Animal Model of Alcoholism 

1) The animal should orally self-administer alcohol 

2) The amount of alcohol consumed should result in 


pharmacologically relevant blood alcohol levels
 
3) Alcohol should be consumed for its postingestive 

pharmacological effects and not strictly for its caloric 
value or taste 

4) Alcohol should be positively reinforcing, or in other 
words, the animals must be willing to work for alcohol 

5) Chronic alcohol consumption should lead to the
 
expression of metabolic and functional tolerance 

6) Chronic consumption of alcohol should lead to depen­
dence, as indicated by withdrawal symptoms after 
access to alcohol is terminated
 

7) The animal should display characteristics associated 
with relapse 


Figure 1 A) DSM–IV criteria for alcohol dependence. B) Criteria for an animal model of alcoholism. 
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Theories of Alcoholism 
Derived from Human and 
Animal Studies 

Neurobiological theories of alcoholism 
offer a framework from which to develop, 
design, and test hypothesis-driven 
experiments in human alcoholics and 
animal models of alcoholism. Here, we 
present exemplary theories derived from 
these studies. These theories involve 
mechanisms of disinhibition, reward, 
habit formation, stress, and inflamma­
tion and have implications for recovery. 
Findings from animal models that have 
either helped in the development or 
aided in the support of these theories 
as they inform our understanding of 
the mechanisms of human alcoholism 
are highlighted (see chapter 9; Koob 
and Le Moal 2006). 

Dorsolateral

Orbitofrontal

Prefrontal
Cortex

Figure 2 Sagittal human brain with cortical regions delineated. 

Disinhibition 
About one-half to two-thirds of alcohol-
dependent individuals develop mild-to­
moderate deficits in complex cognitive 
and motor processes. The skills typically 
affected are related to executive func­
tioning, a multicomponent, higher-order 
cognitive construct involved in the self-
regulation of goal-directed behavior. 
Deficits in executive functioning are 
associated with tasks related to working 
memory, problem solving, temporal 
ordering, and response inhibition (see 

Fein et al. 1990; Oscar-Berman and 
Marinkovic 2007 for reviews of behaviors 
modified by alcoholism; Sullivan et al. 
2000b). 

The class of behaviors associated 
with executive dysfunction has a 
common psychological mechanism— 
disinhibition, which describes the 
behavior of individuals who exhibit 
a limited capacity to edit or manage 
their immediate impulsive response 
to a situation or are poorly motivated 
to do so (e.g., DSM–IV criteria 3, 
inability to control alcohol use, Fein 
et al. 1990; Finn et al. 1992; Oscar-
Berman and Hunter 1993; Parsons 
1993; Sinha et al. 1989; Sullivan et 
al. 2003). Alcoholics lacking impulse 
control also tend to exhibit novelty-
seeking, aggressive, and antisocial 
behaviors and are sometimes referred 
to as type II alcoholics (Cloninger et 
al. 1985). When monkeys are separated 
from their mothers at birth for 6 
months, they demonstrate behaviors 
such as infrequent social interactions, 
less competent social behaviors, and 
higher alcohol consumption rates 
compared with their mother-reared 
peers (Higley et al. 1996). These 
behaviors generally are consistent 
with the type II alcoholic personality. 
In rodents, disinhibition has been 
quantified using the plus-maze test, 
which draws on the animals’ aversion 
to open areas and their desire to explore 

novel environments. Mice adminis­
tered alcohol spend more time in open 
areas than mice not exposed (Durcan 
and Lister 1988). Heightened explo­
ration of novel environments is evi­
dence of disinhibition. 

Executive dysfunction is associated 
with damage to the dorsolateral pre­
frontal cortex and its subcortical 
connections, whereas disinhibited 
behavior is linked to the orbitofrontal 
cortex and its circuitry (Cummings 
1995) (figure 2). 

Postmortem examination of 
brain tissue of human alcoholics 
without co-occurring complications 
that could alter results demonstrates 
a decreased number of neurons in 
the superior frontal cortex compared 
with control subjects (Kril et al. 
1997). Furthermore, deficits in 
regional tissue volume, especially 
prevalent in the prefrontal cortex 
of similar alcoholics (Pfefferbaum 
et al. 1992), have been quantified 
using various anatomical MRI meth­
ods (reviewed by Adalsteinsson et al. 
2002; Sullivan and Pfefferbaum 
2008). However, little evidence exists 
that shows frontal tissue damage in 
animal models of alcoholism. For 
example, postmortem evaluation of 
the canine brain after 1 year of alcohol 
exposure did not reveal statistically 
significant differences in frontal corti­
cal thickness or neuron population 
compared with unexposed animals 
(Hansen et al. 1991). In the rat, 
neuronal damage has been observed 
in several cortical regions (e.g., entorhi­
nal, insular, piriform, and perirhinal 
cortices) after administration of 
alcohol in a pattern reflective of binge 
drinking (i.e., delivery of alcohol 
three times daily for 4 days; Collins 
et al. 1996), but neuronal loss in 
the frontal association cortex has 
been reported only when the alcohol 
exposure protocol included bouts 
of thiamine deficiency (Kril and 
Homewood 1993). 

In summary, alcoholics appear to 
have either innate or acquired behav­
iors characterized psychologically as 
disinhibition, and this characteristic 
is shared by monkeys and rodents 
exposed to alcohol. However, only 
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humans show evidence of tissue 
shrinkage as well as atrophy in pre­
frontal cortical regions as a conse­
quence of chronic alcohol exposure. 
Despite the absence of evidence for 
prefrontal damage in animal models 
of alcoholism, they have been indis­
pensable in helping to distinguish the 
mechanisms underlying alcohol’s 
effects on these prefrontal regions. 

The prefrontal cortex is funda­
mentally composed of functional 
modules of excitatory pyramidal 
projection neurons and inhibitory 
(γ-aminobutyric acid [GABA]) interneu­
rons. The processing of information 
within these local circuits is critically 
dependent on GABA acting on GABAA 
receptors (Krimer and Goldman-
Rakic 2001; Ticku and Mehta 1990); 
(figure 3). A feline model was the 
first to provide evidence that alcohol 
modifies GABAA receptor function. 
Using extracellular single-unit record­
ings in the precruciate cortex of 
anesthetized cats, it was found that 
alcohol (given at doses associated 
with human intoxication) rapidly and 
reversibly enhanced GABAA and its 
receptor activity, thus creating an overall 
inhibitory effect. This enhancement 
was specific to GABA, as the effect was 
not observed with glycine, dopamine, 
or serotonin (Nestoros 1980). 

Human electrophysiology research 
also contributed to discerning the role 
GABA plays in response to alcohol 
exposure. The β wave, typically observed 
in normal waking consciousness, 
describes brain activity greater than 
12 Hz that arises from frontal brain 
regions and is generated by inhibitory 
interneurons (Whittington et al. 
2000). The β wave is accentuated 
and rhythmic in the resting EEG of 
alcoholics and children of alcoholics 
(Porjesz and Rangaswamy 2007). 
Collaborative Studies on the Genetics 
of Alcoholism (COGA) researchers 
recently identified a significant linkage 
between the β wave and a GABAA 
receptor gene in alcoholic individuals 
(Porjesz et al. 2002). Taken together, 
these findings have led to the hypoth­
esis that subtle alterations in the 
structure or function of GABAA 
receptors may disrupt local cortical 

processing and information the cortex 
relays to other brain regions, thereby 
contributing to the deficits in executive 
function seen in alcoholism (Agrawal 
et al. 2006). More research is needed 
to determine whether altered GABAA 
receptors in the prefrontal cortex 
underlie the deficits in executive control 
of behavior observed in alcoholics. 
Nevertheless, the associations between 
a GABAA receptor variant, the β wave, 
and disinhibited behavior in alco­
holics clearly demonstrates the unique 
relationship between the brain’s struc­
ture and function, and animal models 
have been vital in helping to better 
understand this relationship. 

Limitations of Animal Models of 
Disinhibition. The nonhuman pri­
mate is an especially appropriate 
model for studying disinhibition at 
the behavioral and frontal brain level 
because the size of the monkey’s cere­
bral cortex is similar to that seen in 
humans (Grant and Bennett 2003). 
Other animal models, however, do 
not correspond as well. 

For example, postmortem studies 
in rats suggest that the distributions 
of GABAA receptors differs from that 
of humans (Richards et al. 1987). 
This could have significant implications. 
A distinct distribution of receptors or 
differing subunit expression across 
species could lead to variations in 
the brain’s function at the molecular, 
cellular, and electrophysiological levels. 
For example, the P300, the most 
robust feature of event-related potentials 
(i.e., electrophysiological responses 
to stimuli with characteristic wave­
forms) (see Rangaswamy and Porjesz, 
pp. 238–242), manifested in response 
to unpredictable stimuli (Kaufmann 
et al. 1982) and emanating partially 
from the frontal cortex, is reduced 
in alcoholics (Begleiter et al. 1984; 
Johnson et al. 1984; Polich et al. 
1994). Yet, in a recently developed 
mouse model of high alcohol con­
sumption, the high-alcohol–preferring 
animals had an increased P3 latency 
when compared with the low­
alcohol–preferring mice (Slawecki 
et al. 2003). 

P

PFC

To basal ganglia and cerebellum 

P

G

Figure 3 Simplified schematic of 
excitatory (other pyramidal [P] neurons) 
and inhibitory (GABAergic interneu­
rons [G]) input to a pyramidal neuron 
in the prefrontal cortex (PFC). 

Frontocerebellar Circuitry 
Despite evidence for compromised 
executive function and volume deficits 
in the frontal lobes of alcoholics, few 
instances have shown that frontal 
abnormalities predict impaired executive 
function (Adams et al. 1995; Cardenas 
et al. 2007; Dao-Castellana et al. 1998; 
Rosse et al. 1997). This has spawned 
theories that there must be alternative 
or additional areas of brain disruption 
associated with alcoholism. 

In one study, dogs that were 
given alcohol at levels which mim­
icked intoxication in humans (i.e., 
the dogs achieved a blood alcohol 
level [BAL] of 231 ± 18 mg/dl) 
showed a general decline in brain 
blood flow measured with tracer 
microspheres. The decline was most 
marked and persistent in the cerebel­
lum (Friedman et al. 1984), an area 
of the brain that is particularly vul-
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nerable to damage from excessive 
alcohol exposure. Indeed, post­
mortem studies support this finding, 
showing neuronal loss (Baker et al. 
1999; Harper 1998; Phillips et al. 
1987; Torvik and Torp 1986) and 
cellular dysmorphology (Andersen 
2004; Victor et al. 1959) in the cere­
bellum of alcoholics. MRI also reveals 
significant volume deficits of the 
cerebellum of alcoholics that are espe­
cially profound in the anterior superi­
or vermis (Andersen 2004; Sullivan 
et al. 2000a). These findings also are 
evident in animal models. Lower 
neuronal counts (Tavares and Paula-
Barbosa 1982) and cellular dysmor­
phology (Dlugos and Pentney 1997; 
Pentney et al. 1989) have been 
observed in the cerebellum of the rat 
brain chronically exposed to alcohol. 
MRI of the P rat with moderate 
BALs of 125 mg/dl also demonstrat­
ed modifications in the cerebellum 
(Pfefferbaum et al. 2006a). 

The importance of these findings 
is far-reaching. The cerebellum now 
is recognized to contribute signifi­
cantly to functions classically associ­
ated with the frontal lobes, including 
verbal associative learning, word pro­
duction, problem solving, cognitive 
planning, attentional set shifting, and 
working memory (Courchesne et al. 

1994; Schmahmann 2000). Our 
updated understanding of cerebellar 
function has been supported by 
anatomical evidence in the monkey 
(Cebus apella) that cerebellar projec­
tions extend as far as area 46 (roughly 
corresponding with the dorsolateral 
prefrontal cortex, Kelly and Strick 
2003; figure 4), suggesting the pres­
ence of a pathway whereby the cere­
bellum may access executive functions. 

In alcoholics, certain regions of 
cerebellar volume shrinkage are better 
predictors of executive impairment 
than frontal lobe volumes (Sullivan et 
al. 2003). Still, the relationship between 
the degree of cerebellar damage and 
cognitive functioning in alcoholics 
has not been unequivocally established 
(Davila et al. 1994; Johnson-Greene 
et al. 1997), and the theory that fron­
tocerebellar degradation contributes 
to the cognitive sequelae of alcoholism 
warrants further investigation 
(Fitzpatrick et al. 2008). 

Limitations of Animal Models of 
Frontocerebellar Circuitry. As with 
other brain structures, the cerebellum 
as a whole is disproportionately 
enlarged in humans and nonhuman 
primates compared with lower species 
(Semendeferi and Damasio 2000; 
Sultan and Braitenberg 1993), and its 

volume of white matter is exponen­
tially greater in more (phylogenetical­
ly) recent species (Bush and Allman 
2003). The organization of cerebellar 
inputs from the cortex via the pons 
(i.e., mossy fibers) is significantly 
different in humans than in rats 
(Paula-Barbosa and Sobrinho-Simoes 
1976). Cerebellar activation of corti­
cal regions also has been shown to 
differ among the rat, cat, and monkey 
(Tolbert et al. 1978; Yamamoto et 
al. 2004). In addition, the GABAA 
receptor distribution in the cerebel­
lum has been found to be different 
between humans and rats (Kume and 
Albin 1994). The distribution of 
dopamine receptors in the cerebellum 
also differs between the mouse, rat, 
guinea pig, cat, and monkey (Camps 
et al. 1990). Finally, the pattern of 
cerebellar pathology in response to 
alcohol in rodents is markedly differ­
ent from that observed in humans 
(Tavares et al. 1987). Such ubiquitous 
evidence for structural differences 
in the cerebellum among various 
species has implications for function 
and suggests that the study of fronto­
cerebellar circuitry disruption in 
alcoholism may be difficult in animal 
models. 

Prefrontal 
Cortex 

Pons 

Cerebellar 
Cortex 

Dn 

DM 

Figure 4 Simplified schematic of frontocerebellar circuitry. 

NOTES: DM = dorsomedial nucleus of the thalamus; Dn = dentate nucleus. 

Reward 
One of the original theories of alcohol 
abuse was that alcohol is consumed for 
its rewarding (e.g., antianxiety) proper­
ties. A reward reinforces behavior; posi­
tive reinforcement describes a situation 
in which a rewarding stimulus (i.e., 
alcohol) increases the probability of (and 
motivation for) an appetitive instrumen­
tal response (i.e., alcohol seeking; dis­
cussed in this issue and in Part 2). 

A large body of research on alcohol 
addiction has focused on the mesolim­
bic dopaminergic system (e.g., Brodie 
et al. 1990), with dopamine neurons 
in the ventral tegmental area (VTA) 
and their targets in the ventral striatum 
(i.e., nucleus accumbens) playing a key 
role in this circuitry inextricably linked 
to the concept of reward (figure 5, left 
panel). 

An increase in dopamine release 
in the nucleus accumbens is associated 
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with the presence of a rewarding 
stimulus such as food (Blum et al. 
2000), but release may be three- to 
fivefold higher in response to alcohol, 
at least in acute stages (Di Chiara 
and Imperato 1988; Wise 2002). In 
humans, various methods have con­
firmed that key elements of the reward 
circuit are activated during initial 
alcohol use and the early binge/ 
intoxication stage. Long-term alcohol 
exposure reduces the volume of key 
basal ganglia structures, including the 
dorsolateral prefrontal cortex, insula, 
nucleus accumbens, and amygdala 
(Makris et al. 2008) (figure 5, right 
panel). In the P rat, 8 weeks of expo­
sure to free-choice alcohol resulted 
in changes in basal ganglia structures 
(i.e., caudate, putamen, nucleus 

accumbens, globus pallidus, substan­
tia nigra, and ventral tegmental area) 
(Sable et al. 2005). 

Classically, a major impediment 
to the reward theory of alcoholism 
has been that unlike cocaine or 
amphetamine, agents that act directly 
on the dopamine transporter to 
increase dopamine release, no direct 
effect of alcohol on dopamine neurons 
could be demonstrated. Now, various 
results from animal studies have con­
verged to provide a potential mecha­
nism for alcohol-induced dopamine 
release. When µ-opioid receptors 
in the VTA of wild-type Sprague-
Dawley rats are activated, there is an 
increase in dopamine release (mea­
sured with in vivo microdialysis) in 
the nucleus accumbens (Spanagel et al. 

1992). Indeed, µ-opioid receptor acti­
vation hyperpolarizes (i.e., suppresses 
or inactivates) GABAergic interneu­
rons in the VTA, thereby releasing 
dopaminergic neurons from sponta­
neous inhibition (Johnson and North 
1992) and facilitating dopamine 
release (Di Chiara and North 1992; 
Margolis et al. 2003). 

Increased dopamine release also 
has been measured using an electro­
physiological technique known as 
patch-clamp recording. Studies using 
midbrain slices from the rat showed 
that alcohol, by activating µ-opioid 
receptors localized on GABAergic 
interneurons of the VTA, inhibits 
GABAergic transmission, thereby 
facilitating dopamine cell firing and 
enhancing dopamine release in the 

Prefrontal 

Cortex &

Cingulate Cortex

Limbic

Brainstem

Amygdala &

Hippocampus

Thalamus &

Hypothalamus

Nucleus Accumbens

(NAc), SLEA, Insula

Ventral 

Tegmental Area

(VTA)
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Figure 5 Left panel) Extended reward and oversight system. Right panel) Cortical and subcortical regions in the “reward network” 
in which alcoholics have smaller volumes (covaried for age and total cerebral volume). Smaller volumes are circled. 

NOTE: Amyg = amygdala; CGa, CGp = cingulate (anterior, posterior); dlPFC = dorsolateral prefrontal cortex; FOC = orbitofrontal cortex; Hipp = hippocampus; Hypo = 
hypothalamus; INS = insula; MB = mammillary bodies; NAC = nucleus accmbens; PHa, PHp = parahippocampal gyrus (ant, post); SC = subcallosal cortex; SLEA = sublentic­
ular extended amygdala; TP = temporal pole; VntDC = ventral diencephalon. 

SOURCE: Reprinted from Biological Psychiatry, Vol. 64, No. 3, Makris, N.; Oscar-Berman, M; Jaffin, S.K.; Hodge, S.M.; et al. Decreased volume of the brain reward system 
in alcoholism. Copyright 2008, with permission from Elsevier. 
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nucleus accumbens (Xiao et al. 2007). 
This mechanism of action was fur­
ther substantiated by evidence that 
alcohol- stimulated dopamine release is 
decreased in mice in which the µ-opioid 
receptor is genetically altered (or 
knocked out) (Job et al. 2007). This 
is particularly relevant to the human 
condition because researchers speculate 
that innate differences in dopamine 
neurotransmission may predispose indi­
viduals to excessive alcohol consump­
tion (see Cowen and Lawrence 1999). 

Limitations of Animal Models of 
Reward. Humans and rodents react 
differently to pharmacological agents 
that target dopamine receptors locat­
ed both locally in the VTA and distal­
ly in the striatum and prefrontal cor­
tex (Wood et al. 2006). Even within 
a species, strains may have different 
dopamine receptor binding properties 
and distributions (Yaroslavsky et al. 
2006; Zamudio et al. 2005); more 
“effective” receptors may be associat­
ed with innate deficits in dopamine 
levels. The subregional topography of 
the dopamine transporter, responsible 
for dopamine uptake after its release, 
also has been shown to be inconsis­
tent across species (e.g., rodent, mon­
key, and human) (Smith and Porrino 
2008), a finding that also may have 
a significant impact on extracellular 
dopamine levels and innate responses 
to rewarding stimuli.  

Habit Formation 
At some point between initial exposure 
and dependence, the consumption of 
alcohol seems to proceed automatically, 
as a habitual response to antecedent 
stimuli. This transition may be the result 
of a complex interchange between exec­
utive and habit systems (Redish et al. 
2008). Habitual drinking behavior 
becomes difficult to break using cognitive 
mechanisms because of an underper­
formance of executive systems (Jentsch 
and Taylor 1999), an overperformance 
of habit systems (Robbins and Everitt 
1999), or because of an imbalance 
between the two systems (Bechara 2005). 

Although not explored compre­
hensively, brain systems potentially 

contributing to habit formation include 
the striatum, cerebellum, amygdala, 
and, in limited conditions (e.g., trace 
conditioning; see below for more infor­
mation), the hippocampus. Indeed, 
any system involved in “automatic” 
or implicit learning (i.e., learning with­
out awareness) is fundamental for the 
establishment of habits (for reviews, 
Eichenbaum and Cohen 2001). Recent 
work in rodents has focused on the 
contribution of the corticostriatal net­
work to habit formation. This work 
suggests that a switch occurs in the 
control of instrumental behavior so 
that the associative or medial striatum, 
important in the early, goal-directed 
stage of action, is overridden by the 
sensorimotor or lateral striatum at the 
later, more habitual stage (reviewed by 
Yin, Part 2). Furthermore, several types 
of classical conditioning/implicit learn­
ing paradigms, including eye-blink 
conditioning (McGlinchy-Berroth et al. 
1994), visual discrimination learning 
(Rogers et al. 2000), and contextual 
cue discrimination learning (Greene et 
al. 2007), have been shown in both 
animal and human studies to be critical­
ly dependent on selective cerebellar sites. 

The amygdala is another brain 
structure implicated in habit forma­
tion. It plays a role in emotional reg­
ulation and behavioral control (for 
review, see McBride 2002). It has 
been connected to a specific type of 
conditioned learning—Pavlovian fear 
conditioning (Volkow et al. 2002)— 
in which a neutral conditioned stim­
ulus is paired with a fear-inducing 
unconditioned stimulus, so that ani­
mals come to exhibit a conditioned 
fear response to the conditioned stimu­
lus. Extensive evidence indicates that 
the basolateral amgydala is critical for 
experimental extinction of this acquired 
fear (Akirav and Maroun 2007). 

Although there is support for 
(Alvarez et al. 1989) and against (Kril 
et al. 1997) neuronal loss in the amg­
dala of chronic alcoholics, several in 
vivo MRI studies provide evidence 
for volume deficits in the amygdala of 
abstinent, long-term chronic alcoholics 
(Fein et al. 2006; Makris et al. 2008). 
Furthermore, modifications of the 
GABAA receptor in the basolateral 

amygdala have been reported in 
Cynomolgus macaques exposed to 
alcohol for 18 months (Anderson et 
al. 2007). How altered GABA receptor 
function, loss of neurons, or volume 
reductions in the amygdala contribute 
to the formation of an alcohol habit 
remains to be seen. 

In another specific form of classi­
cal conditioning—termed trace con­
ditioning—a silent period elapses 
between the occurrence of the condi­
tioned stimulus and the delivery of 
the unconditioned stimulus (i.e., the 
conditioned stimulus and uncondi­
tioned stimulus are not paired at pre­
cisely the same moment, but rather, 
there is a silent period between the 
presentation of the conditioned stim­
ulus and unconditioned stimulus). 

Evidence from animal (Weible et 
al. 2006) and human (Cheng et al. 
2008) research suggests that the hip­
pocampus plays a critical role during 
trace eye-blink conditioning. MRI 
provides in vivo evidence for volume 
deficits in the anterior hippocampus 
of chronic alcoholic individuals 
(Agartz et al. 1999; Sullivan et al. 
1995). However, other than its effect 
on volume shrinkage, alcohol does 
not appear to have an effect on the 
number of hippocampal neurons, 
per se, as shown in studies using 
postmortem human hippocampal 
tissue (Harding et al. 1997; Kril et al. 
1997). In contrast to the human con­
dition, chronic exposure to alcohol 
in rodents induces a decrease in neu­
ronal counts in CA1 to CA4 regions 
of the hippocampus in female Sprague-
Dawley (Bengoechea and Gonzalo 
1991) and male Long-Evans (Walker 
et al. 1980) rats and a decrease in 
the number of pyramidal neurons 
in CA1 and CA2 regions of the hip­
pocampus of mice (Pawlak et al. 2002). 
Compared with humans, rodents have 
a disproportionately larger hippocam­
pal volume, which may account for the 
notable differences in neuronal loss 
observed between humans and rodents. 
Nonetheless, modified hippocampal 
anatomy may contribute to impaired 
trace eye-blink conditioning in rats 
exposed to a binge-like patterns of alco­
hol in the early postnatal period (Tran 
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et al. 2007) and in nonamnesic alcoholic 
individuals (McGlinchey et al. 2005). 

In humans, both the striatum 
and the cerebellum have been shown 
to participate in the automatization 
process during the late learning stage 
of a repeated visuomotor sequence 
(Doyon et al. 1997) and of a sequence 
of finger movements (Doyon et al. 
1998). Yet the collaborative contribu­
tions of the striatum, cerebellum, 
amygdala, and hippocampus to the 
formation of an alcohol consumption 
habit have yet to be demonstrated. 

Stress 
The hypothalamus, which controls 
consummatory behavior and basic 
drives related to food, water, sex, and 
temperature (Miller 1958), is a complex 
brain region with reciprocal connections 
to numerous structures, including the 
cortex, striatum, hippocampus, amyg­
dala, cerebellum, and thalamus (Afifi 
and Bergman 1998). The paraventricu­
lar nucleus is located in the anterior 
division of the hypothalamus and 
includes magnocellular and parvocellular 
cells. Parvocellular cells are responsible 
for the release of the stress-associated 
hormone, cortiocotropin-releasing fac­
tor (CRF), which regulates the secretion 
of the pituitary hormone, adrenocorti­
cotropin. Adrenocorticotropin (also 
known as ACTH or corticoptropin), 
in turn, stimulates the adrenal gland to 
boost the synthesis of corticosteroid 
hormones (e.g., glucocorticoids such as 
cortisol and mineralocorticoids such as 
aldosterone) (Heimer 1995) (figure 6A). 

Both acute and chronic alcohol 
consumption activate the hypothalamic– 
pituitary–adrenal (HPA) axis, and 
chronic alcoholism is associated with 
low basal cortisol and blunted ACTH 
and cortisol responses to CRF (Adinoff 
et al. 1990). Disruption of the HPA 
axis following exposure to alcohol 
has been demonstrated in rodents 
(Rasmussen et al. 2000). In the 
Rhesus Macaque, a single-nucleotide 
polymorphism in the CRF gene 
(-2232 C>G) conferred a decreased 
sensitivity of the CRF promoter to 
corticosteroid regulation in vitro and 
was associated with lower levels of 

CRF in cerebrospinal fluid. Monkeys 
with this polymorphism tended to 
be more exploratory and exhibited 
increased alcohol consumption com­
pared with the monkeys in which this 
single nucleotide was unmodified 
(Barr et al. 2008). 

The link between the body’s 
response to stress and alcohol is com­
plex. One theory—the negative rein­
forcement theory—states that people 
continue to self-administer alcohol 
even after the rewarding effects of 
alcohol are blunted and when alcohol 
use causes adverse effects on lifestyle 
(DSM–IV criteria 6) or exacerbates 
psychological and physiological prob­
lems (DSM–IV criteria 7) in order to 
avoid the negative emotional states 
(e.g., stress) associated with withdrawal 
(see the article by Gilpin and Koob, 
pp. 185–195). The mechanisms behind 
this negative reinforcement are believed 
to involve an extensive extrahypothala­
mic CRF system centered on the 
extended amygdala (figure 6B). 

Evidence for increased CRF 
activity in the extended amygdala, 
which may contribute to excessive 
alcohol consumption, has come from 
alcohol-dependent rats (i.e., rats exposed 
to alcohol vapor for 4 weeks, during 
which BALs reached ~200 mg/dl). 
Dependent animals display a signifi­
cant increase in self-administration of 
alcohol compared with baseline self-
administration (Valdez et al. 2002). 
Injections of the CRF antagonist D­
phe-CRF12-41 into the central nucleus 
of the amygdala, but not the lateral 
bed nucleus of the stria terminalis or 
nucleus accumbens shell (figure 6C) 
in alcohol-dependent animals, reduced 
alcohol self-administration (Funk et 
al. 2006). Because blocking CRF 
receptors reduced alcohol consump­
tion, these results support the view 
that CRF in the central nucleus of 
the amygdala plays a role in mediating 
excessive alcohol consumption in 
dependent animals. 

Although no studies to date have 
used dogs to explore the stress theory 
of alcohol abuse, the nervous pointer 
dog is a candidate for future research. 
Not all pointer dogs are nervous, but 
in those animals in which anxious 

behavior is noted, catecholamine 
alterations occur (Gurguis et al. 1990). 
Recent evidence has found that 
brainstem catecholamines, some of 
which are activated by stressors, may 
mediate HPA axis hyperactivity in 
alcoholism (Choi et al. 2008). 

Limitations of Animal Models 
of Stress. CRF initializes the synthe­
sis of corticosteroid hormones, which, 
in turn, act on glucocorticoid recep­
tors in the brain. Glucocorticoid 
receptors act as nuclear transcription 
factors and contribute to the regula­
tion of brain cell properties by modi­
fying the transcription of responsive 
genes, and therefore, protein synthe­
sis (de Kloet et al. 2005). 

In adulthood there is high con­
sistency across animal species in terms 
of the brain regions that express glu­
cocorticoid receptors, although the 
levels of expression can differ (e.g., 
rodents exhibit relatively high gluco­
corticoid receptor expression in the 
CA1-2 subfields of the hippocampus 
and primates exhibit relatively high 
glucocorticoid receptor expression 
in the neocortex) (Pryce 2008). 
Significantly, the relative densities 
of these receptors differ considerably 
during postnatal development, creat­
ing species-specific periods of critical 
vulnerability.  For example, early life 
stress in a species that exhibits low 
glucocorticoid receptor expression in 
infancy could be less harmful than 
early life stress in a species that exhibits 
high glucocorticoid receptor expres­
sion, because there are fewer receptors 
to mediate the effects of elevated cor­
tisol (Fuchs and Flugge 2002). These 
findings are relevant when modeling 
alcoholism in animals, especially in 
light of evidence that the onset of 
stress-related disorders is age dependent. 

Inflammation 
Inflammatory responses to alcohol may 
contribute to alcohol-related brain 
damage. Systemic cytokines (i.e., sig­
nalling proteins used extensively in 
cellular communication), particularly 
tumor necrosis factor-α (TNFα), may 
enter the brain to initiate inflammatory 
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Figure 6 A) Human hypothalamic–pituitary–adrenal brain stress system. B) Human extrahypothalamic cortiocotropin–releasing 
factor (CRF) brain stress system. C) Rodent extrahypothalamic CRF brain stress system. 

SOURCE: A and B from Koob, G.F., and Le Moal, M. Drug Addiction, Dysregulation of Reward, and Allostasis. Neuropsychopharmacology 24:97–129, 2001.; C from Koob 
G.F., Alcoholism: Allostasis and Beyond. Alcoholism: Clinical and Experimental Research 27(2):232–243, 2003. 

NOTES: ACTH = adrenocorticotrophin; AMYG = amygdala; BNST = bed nucleus of the stria terminalis; CRF = corticotropin-releasing factor; HPC = hippocampus; NE = nore­
pinephine; PFC, prefrontal cortex; PIT = pituitary gland; PVN = paraventricular nucleus. 



 
  

  

  

  

 

processes (Qin et al. 2007). The brain’s 
immune defense cells (i.e., microglia) 
respond by activating central proinflam­
matory cytokines (e.g., interleukin 1β 
[IL1β] and TNFα), which, in turn, can 
stimulate microglia to produce mono­
cyte chemoattractant protein 1 (MCP-1, 
Qin et al. 2007). MCP-1 directly induces 
programmed cell death (i.e., neuronal 
apoptosis) (Kalehua et al. 2004). Thus, 
increased MCP-1 observed in brain tissue 
(VTA, substantia nigra, hippocampus, 
and amygdala) from alcoholics relative 
to control subjects (He and Crews 2008) 
could directly cause neuronal damage 
and thus could be one of the mecha­
nisms contributing to alcohol-related 
neuronal loss and brain atrophy. 

Various lines of evidence now 
support the contention that white 
matter in the brain is particularly 
sensitive to the damaging effects of 
alcohol. MR diffusion tensor imaging 
(DTI) in humans reveals abnormali­
ties in the white matter subadjacent 
to frontal cortical regions (i.e., cen­
trum semiovale) and the corpus callo­
sum (Nagel and Kroenke, pp. 242–246; 
see also the article by Rosenbloom 
and Pfefferbaum, Part 2) and impli­
cates deficits in both myelination 
and axonal integrity (Pfefferbaum 
et al. 2000, 2006b,c; Pfefferbaum 
and Sullivan 2002, 2005). Postmortem 
studies of brains of human alcoholics 
support the finding that white matter 
is especially affected (Badsberg-Jensen 
and Pakkenberg 1993; De la Monte 
1988; Harper and Kril 1991, 1994), 
and volume reductions, demyelination, 
loss of myelinated fibers, and axonal 
deletions also have been observed (Alling 
and Bostrom 1980; Harper et al. 1988; 
Harper and Kril 1989; Kril et al. 1997). 

Consistent with these results are 
molecular studies of human brains 
which show that the expression of genes 
encoding myelin proteins (Lewohl et al. 
2000; Mayfield et al. 2002) and the 
actual levels of myelin-associated 
proteins are decreased in people with 
alcoholic relatives compared with 
control cases without a family history 
of alcoholism (Hasin et al. 2006; 
Lewohl et al. 2005). 

In dogs exposed to alcohol for 1 
year, fewer glial cells were found in the 

temporal and frontal cortices com­
pared with control animals (Hansen 
et al. 1991), suggesting a reduced 
capacity for myelin generation. In 
rats longitudinally exposed to alcohol, 
in vivo MRI revealed that alcohol 
significantly slowed corpus callosum 
growth compared with control ani­
mals (Pfefferbaum et al. 2006a), and 
postmortem analysis suggests that the 
corpus callosum is significantly thinner 
in the alcohol-exposed group compared 
with the control group (He et al. 2007). 

In light of the evidence indicating 
that brain white matter is especially 
vulnerable to the damaging effects of 
alcohol, neuroinflammation appears 
to be a likely mechanism of harm to 
this constituent of the brain. MCP-1 
is associated with demyelination in a 
variety of experimental animal models 
(Kim and Perlman 2005), and microglia 
can cause white matter damage via 
excitotoxicity (i.e., they can impair 
glutamate uptake by reducing the 
expression of glutamate transporters) 
(Matute et al. 2006, 2007). 

Inflammation in the adult hip­
pocampus may interfere with memory 
by inhibiting neurogenesis (Das and 
Basu 2008). In rats, binge-like exposure 
to alcohol is marked by local neuroin­
flammation, which inhibits hippocam­
pal neurogenesis (Nixon and Crews 
2002). Increases in TNFα and MCP­
1 mRNA levels were observed in male 
C57BL/6J mice given alcohol intra­
gastrically for 1 day. Ten daily doses 
of alcohol significantly elevated both 
mRNA and protein levels of TNFα 
and MCP-1; however, neither a single 
dose nor 10 daily doses of alcohol 
inhibited neurogenesis in the hip­
pocampus of these mice (Qin et al. 
2008). Thus, a causal relationship 
between alcohol-induced neuroin­
flammation and alcohol-induced 
suppression of neurogenesis has yet 
to be established, and further work 
is required to demonstrate how pro­
longed elevations in brain cytokines 
may contribute to neuropathology. 

Limitations of Animal Models 
of Inflammation. The neuroinflam­
mation theory of alcohol-related 
neuronal loss and brain atrophy is 

relatively new. As a result, there have 
been few studies designed to specifi­
cally test the hypothesis. With respect 
to the effects of neuroinflammation 
on neurogenesis, major differences 
exist between the rat and mouse stem/ 
progenitor cells that are involved in 
neurogenesis (Ray and Gage 2006), 
which warrants caution when draw­
ing inferences from one species to 
another.  

Evidence for Recovery with 
Abstinence 
From the earliest computed tomography 
(CT) studies to current MRI studies 
aimed at tracking evidence for brain 
structural recovery, there has been 
positive support for at least partial 
reversal of brain tissue shrinkage with 
abstinence from alcohol (CT studies: 
Cala et al. 1983; Carlen et al. 1984, 
1986) (MRI studies: Cardenas et al. 
2007; Pfefferbaum et al. 1995, 1998). 

Indeed, alcoholic brain pathology 
can be subsumed under Carlen’s two-
component hypothesis (Carlen et al. 
1984), one reflecting permanent change 
(i.e., irreversible neuronal cell death), 
notably in the superior frontal associ­
ation cortex, and one reflecting a 
transient change, such as shrinkage 
without cell death, thereby permit­
ting volume to change (up or down) 
without long-term damage. Indeed, 
the majority of shrinkage with drink­
ing does not necessarily reflect “neu­
ronal loss.” Rather, the controlled 
longitudinal imaging studies demon­
strating volume reductions likely 
reflect nonneuronal loss and neuronal 
cell body and process shrinkage. That 
brain volume can increase and that 
this increase predicts improvement in 
neuropsychological test performance 
(Cardenas et al. 2007; Rosenbloom et 
al. 2007; Sullivan et al. 2000b) sup­
ports the contention that little neu­
ronal death occurs with alcoholism. 

Animal Models of Recovery 
In aged Fisher 344 rats, recovery after 
long-term treatment with alcohol was 
associated with a restoration of the 
total number of synapses on Purkinje 
neurons of the cerebellum lost during 
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exposure (Dlugos and Pentney 1997). 
Furthermore, abstinence for 5 weeks 
indicated a twofold increase in new neu­
rons formed in neurogenetic zones of 
abstinent animals compared with alco­
hol-naive animals (Nixon and Crews 
2004). This increase in neurogenesis 
during abstinence from chronic alcohol 
exposure may be related to the recovery 
of brain volume deficits (Pfefferbaum et 
al. 1995) and cognitive deficits in absti­
nent alcoholics (Sullivan et al. 2000c). 
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Figure 7 Schematic diagram representing the brain systems modified by alcohol. 

Conclusion 

Together, studies in humans and ani­
mal models provide support for the 
involvement of specific brain structures 
over the course of alcohol addiction. 
Researchers have identified genetic 
variants of key inhibitory receptors in 
the prefrontal cortex that may produce 
a heritable vulnerability to alcohol, 
perhaps accounting for the disinhibited 
personality type observed in certain 
alcoholics and which leads to a predis­
position to develop alcoholism. 

The prefrontal cortex and its 
complex circuitry with the basal gan­
glia also is likely involved in the acute 
reinforcing (or rewarding) effects of 
alcohol. Furthermore, modified pre­
frontal inhibitory receptors may 
contribute to dysregulation in other 
brain regions targeted by the pre­
frontal cortex, such as the cerebellum. 
The basal ganglia, cerebellum, amyg­
dala, and hippocampus may collec­
tively contribute to the formation 
of an alcohol habit. The HPA axis 
additionally has a role in the develop­
ment of dependence, as well as the 
vulnerability to stress-induced relapse. 
Inflammatory cascades initiated by 
chronic alcohol consumption are a 
factor that may contribute to alcohol-
induced neuropathology. 

Each theory, linked to specific 
brain structures, has helped to describe 
the mechanisms associated with the 
transition from controlled drinking 
to compulsive consumption or 
dependence. The development of 
each theory depended critically on 
information acquired from animal 

models, whether they met all the cri­
teria necessary for an animal model 
of alcoholism or not. Figure 7 is a 
simplified schematic of the brain 
structures modified by alcohol and 
illustrates reciprocal connections 
between basal ganglia, limbic structures 
(i.e., hippocampus and amygdala), 
and cerebellum, each driven by inputs 
from the cortex, with reciprocal 
connections to the cortex via the 
thalamus. Also illustrated are the 
reciprocal connections between basal 
ganglia, limbic structures, and cere­
bellum with the hypothalamus. Not 
illustrated but germane to the course 
of alcohol addiction are modifying 
aminergic (dopamine and nore­
pinephrine), cholinergic, serotoner­
gic, peptidergic, and hormonal influ­
ences on the various structures. 

In moving forward, a challenge 
will be to develop a theory that 
accounts for the brain structures 
uniquely targeted by alcohol. Perhaps 
different neural circuits are important 
at different stages across the time course 
from first drink to dependence. 
Alternatively, differential involvement 
of these circuits across alcoholics 
could contribute to heterogeneity in 
brain regions affected. A theory that 
unifies the brain circuitries modified 
by alcohol may very well have a 
major impact on our understanding 
of brain function in general. ■ 
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