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to 0 can be either positive or negative depending on the al-
lele frequency.  Conclusion:  Deviations from HWE in parental 
and unaffected sibling genotype data could be due to an as-
sociation with the functional locus. However these devia-
tions for genotypic relative risk  ̂  2.0 are not large and there-
fore the power to detect them is usually low. Testing for 
deviations from HWE in parental and unaffected sibling gen-
otype data is still beneficial for quality control even though 
functional loci, in parental and unaffected sibling genotype 
data, can produce an association signal. 

 Copyright © 2008 S. Karger AG, Basel 

 Introduction 

 In the past few years the emphasis in gene mapping has 
shifted to association studies to map complex traits. As-
sociation studies are carried out using either population- 
or family-based data. Genotyping error can be detrimen-
tal for both of these study designs. For population-based 
studies (e.g. case-control), random genotyping error can 
increase type II error and thereby decrease power  [1–4] . 
For family-based data (e.g. trio data), genotyping error 
can increase both type I and II errors  [3, 5] . Therefore it 
is important to be able to assess SNP marker loci for ge-
notyping error so that problematic markers can either be 
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 Abstract 

  Background:  Genotyping error can increase both type I and 
II errors. In order to elucidate potential genotyping errors, 
data quality control often includes testing genotype data for 
deviations from Hardy-Weinberg Equilibrium (HWE).  Meth-
ods:  The Hardy-Weinberg Disequilibrium (HWD) coefficient 
and the ability to reject the null hypothesis of HWE were cal-
culated analytically for genotype data from parents and un-
affected siblings of affected probands.  Results:  Genotype 
data from parents and unaffected siblings display deviations 
from HWE when functional or markers in LD with functional 
locus are tested.  For the parental genotype data all devia-
tions from HWE are negative, indicating an excess of hetero-
zygous genotypes with the strongest deviations from HWE 
observed for the multiplicative model. In contrast, for affect-
ed proband genotype data, there is no deviation from HWE 
under the multiplicative model and the deviations from HWE 
for the recessive model are positive.  For the unaffected sib-
ling data, patterns of deviation from HWE are similar to those 
observed in the proband data with the exception of the mul-
tiplicative model where the HWD coefficient although close 
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removed or genotype calls corrected. For population- 
and family-based data, duplicate samples can be geno-
typed to determine the rates of genotyping error; how-
ever, if a systematic genotyping error has occurred it will 
not be detected and genotyping error rates will be under-
estimated. For family data genotyping errors can some-
times be detected by observation of Mendelian inconsis-
tencies. However, a substantial portion of genotyping er-
rors cannot be detected since many errors are compatible 
with Mendelian inheritance laws  [5–7] . The ability to de-
tect errors via Mendelian inconsistency depends on the 
error model (e.g. random, heterozygous to homozygous 
genotype) and the marker allele frequency. Errors are es-
pecially difficult to detect for diallelic markers, with the 
lowest detection rates for markers with alleles of equal 
frequency  [5, 6] . Although it is easier to identify genotyp-
ing errors for markers with multiple alleles, the ability to 
uncover them can still be low  [6, 8] . Families with mul-
tiple offspring not only increase the ability to detect Men-
delian errors  [6, 9] , but also aid in uncovering of genotyp-
ing errors through the detection of double recombination 
events over short genetic distances  [8, 10–13] .

  In addition to checking pedigrees for Mendelian in-
consistencies, often genotype data from parents or unaf-
fected siblings of affected probands are tested for devia-
tions from Hardy-Weinberg Equilibrium (HWE) in or-
der to detect potential genotyping error. For population 
based studies, genotype data from all individuals for 
quantitative trait studies and controls from cases-control 
studies are analyzed to determine whether there are de-
viations from HWE  [14–16] . Genotyping errors can cre-
ate positive, negative or no deviation from HWE, de-
pending on how the genotyping error occurred. In gen-
eral testing for deviations from HWE is not a powerful 
approach to detect genotyping errors  [17] .

  Deviations from HWE are not necessarily due to ge-
notyping error and may be due to chance or genetic fac-
tors which include a heterozygous advantage, population 
admixture/substructure, inbreeding or copy number 
variants  [18–22] . For example, population substructure 
creates an excess of homozygote genotypes and therefore 
a positive HWD coefficient. Deviations from HWE which 
are only observed in genotype data from cases can be due 
to an association between the trait and either a function-
al locus or a SNP marker which is in linkage disequilib-
rium (LD) with a functional locus. The ability to detect 
deviations from HWE depends on the magnitude of the 
deviation, sample size and  �  level. When tests for HWE 
are performed for genotype quality control there is no 
consensus on which  �  level should be used, and the p 

value criterion used to reject the null hypothesis of HWE 
varies greatly within the literature. Some studies use a 
criterion for tests of HWE which is as stringent as those 
used for genome-wide significance for association stud-
ies which is a p value of 1  !  10 –7  or lower  [23] .

  In this article it is demonstrated that deviations from 
HWE observed in the genotype data from parents or un-
affected siblings of affected probands can also be due to 
an association where the tested SNP is either in LD with 
or is the functional locus. For comparison purposes the 
deviation from HWE is also examined for affected pro-
bands and unrelated controls that are disease free. De-
pending on the genetic model the pattern, strength and 
direction of deviations from HWE are different in the 
parental, unaffected sibling, affected proband and con-
trol genotype data. Additionally it is shown that incom-
plete LD, genotyping error and population admixture/
substructure play a role in attenuating or amplifying the 
deviations from HWE, thus affecting the power to detect 
a deviation from HWE.

  Methods 

 Testing Proband and Unrelated Control Genotype Data for 
Deviations from HWE 
 Calculations are performed for a SNP marker locus with two 

alleles which is in LD with a functional locus. The two alleles at 
the functional locus are represented by  A  1  which has a population 
allele frequency of  p  and  A  2  which has a frequency of  q  = 1 –  p . 
The two alleles at the SNP marker are  B  1  and  B  2  with allele fre-
quency of  p  m  and  q  m  = 1 –  p  m . Let  P  11 ,  P  12  and  P  22  denote the fre-
quencies of genotypes  G  11 ,  G  12  and  G  22  at the functional locus and 
 Q  11 ,  Q  12  and  Q  22  denote the frequencies of genotypes  M  11 ,  M  12  and 
 M  22  at the SNP marker. Under HWE,  P  11 ,  P  12  and  P  22  are equal to 
 p  2 , 2 pq , and  q  2  respectively. Let  f  11 ,  f  12  and  f  22  denote the pene-
trances of genotypes  G  11 ,  G  12  and  G  22 , respectively. The genotypic 
relative risks (RRs) are defined as  �  1  =  f  12 / f  11  and  �  2  =  f  22 / f  11 . The 
genotypic RRs satisfy  �  2  =  �  2  1  for the multiplicative model,  �  2  = 
2 �  1  – 1 for the additive model,  �  2  =  �  1  for the dominant model 
and  �  1  = 1 for the recessive model. Given genotype penetrances 
and allele frequencies, the disease prevalence,  P  D , can be calcu-
lated as  P  D  =  p  2  f  11  + 2 pqf  12  +  q  2  f  22 . If a sample of N trios is ascer-
tained based on the child’s phenotype, using Bayes rule the ex-
pected genotype proportions for the probands are  P  D  G  11  =  f  11  P  11 / P  D , 
 P  D  G   12  =  f  12  P  12 / P  D  and  P  D  G  22  =  f  22  P  22 / P  D . For a given strength of LD 
(e.g. r 2 ) between the functional locus and the SNP marker, the 
expected genotype frequencies at the maker locus in probands, 
denoted as  P  d ( M  11 ),  P  d ( M  12 ) and  P  d ( M  22 ), can be calculated assum-
ing allele  A  1  is positively associated with allele  B  1  (Appendix). Let 
 p  d  be the expected allele frequency of  B  1  at the marker locus, then 
 p  d  =  P  d ( M  11 ) +  P  d ( M  12 )/2 and the expected HWD coefficient,  D  d  
at the SNP marker is defined as

   D  d  =  P  d ( M  11 ) –  p  2  d .
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   D  d  can range from –0.25 to 0.25 for a locus with two alleles. Under 
the alternative hypothesis, HWE is false, the power of rejecting 
HWE is determined by the noncentrality parameter (ncp) of non-
central  �  2  1  distribution  [24] , which is given by  

2

22 1
d

d
d d

Dv N
p p

  The power of rejecting HWE in proband genotype data is  �  d  = 
Pr( �  2  1    ( v  d )  6  �  2  1  ,1– �  ). 

 In the unrelated unaffected controls the expected genotype 
proportions at the functional locus are  P  c ( G  11 ) = (1 –  f  11 ) P  11 /
(1 –  P  D ),  P  c ( G  12 ) = (1 –  f  12 ) P  12 /(1 –  P  D ) and  P  c ( G  22 ) = (1 –  f  22 ) P  22 /
(1 –  P  D ). For a given r 2  between the marker and the functional lo-
cus, the genotype frequencies  P  c ( M  11 ),  P  c ( M  12 ) and  P  c ( M  22 ) at the 
marker locus are calculated (Appendix) and the frequency of al-
lele  B  1  in unaffected control genotype data is  p  c  =  P  c ( M  11 ) + 
 P  c ( M  12 )/2. The HWD coefficient is  D  c  =  P  c ( M  11 ) –    p  2  c  and the ncp 
of noncentral  �  2  1    distribution is 

2
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 where  N  c  is the number of unaffected controls. The power to reject 
HWE in unaffected control genotype data is  �  c  = Pr(  �  2  1    ( v  c )  6  
  �  2  1   ,1– �  ). 

 Testing Parental Genotype Data for Deviations from HWE 
 The expected genotype frequencies within the parental geno-

type data are calculated based upon the proband genotype fre-
quencies. There are 3 possible genotypes for each parent and 9 
possible mating types for each trio. Each of the 9 mating types has 
a specific probability of producing an offspring with  G  11 ,  G  12  or 
 G  22  genotypes, according to Mendelian law. For example, a father 
with genotype  G  11  and a mother with genotype  G  12  have probabil-
ity of 0.5, 0.5 and 0 respectively to have a child with genotypes  G  11 , 
 G  12  or  G  22 . Given a child’s genotype, the expected proportion of 
each mating type denoted by T is calculated using Bayes rule as 

,j i i
i j

j

P G |T P T
P T | G

P G

 where  G  j ,  j  = 1, 2, 3 denotes proband’s genotype  G  11 ,  G  12  and  G  22 , 
and  P ( T  i ) and  P ( G  j ) denote population proportions of mating 
types and children genotypes, respectively. Then the expected 
proportion of each mating type in the sample is  

3

1
,
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D D
T i j G

j
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  where summation is over the 3 genotypes. Parental genotype pro-
portions, denoted as  P  p ( G  j ),  j  = 0, 1, 2, are calculated as   

9
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 where I f  { G  i } and I m  { G  i } are indicator functions with value 1 if the 
father’s ( I  f ) or mother’s ( I  m ) genotype is  G  i  and 0 otherwise. For a 
given LD between the marker and the functional locus, the geno-
type frequencies at the marker locus, denoted as  P  p ( M  11 ),  P  p ( M  12 ) 
and  P  p ( M  22 ), are calculated similarly as in proband genotype data. 
The allele frequency of  B  1  is  p  p  =  P  p ( M  11 ) +  P  p ( M  12 )/2 and the 
HWD coefficient in parental data is defined as  D  p  =  P  p ( M  11 ) –  p  2  p . 
The ncp of the noncentral  �  2  1    distribution is   
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 and the power to detect the deviation from HWE in parental gen-
otype data is  �  p  = Pr( �  2  1   ( v  p )  6    �  2  1   ,1– �  ). 

 Testing Unaffected Sibling Genotype Data for Deviations
from HWE 
 The expected genotype frequencies of unaffected siblings of 

the probands can also be calculated based on the frequencies of 
each mating type in the ascertained sample. Let  P ( G  j  �  T  i ) be the 
probability of producing a child with genotype  G  j  when the par-
ents are of mating type  T  i  under random transmission. The pro-
portion of children’s genotype  G  j , denoted as  P  s ( G  j ), is given by 

9
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 The proportion of genotype  G  j  in the unaffected siblings is given 
by 

 1
,

1
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  where  f  G j   is the penetrance of genotype  G  j . Similar to the case 
for the parents, for a given r 2  the expected genotype frequencies 
 P  u ( M  11 ),  P  u ( M  12 ) and  P  u ( M  22 ) at the SNP marker in unaffected 
sibling genotype data can also be calculated assuming  A  1  is 
positively associated with  B  1  (Appendix). The expected allele fre-
quency of  B  1  is  p  u  =  P  u ( M  11 ) +  P  u ( M  12 )/2 and the expected HWD 
coefficient is  D  u  =  P  u ( M  11 ) –    p  2  u  . The ncp of the noncentral  �  2  1    is  
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u
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  and the power of rejecting HWE in unaffected sibling genotype 
data is given by  �  u  = Pr(  �  2  1     ( v  u )  6   �  2  1  ,1– �  ). 

 Genotyping Errors 
 For genotyping errors, let  e  be the genotyping error rate. For 

random genotyping error model, genotyping errors are intro-
duced to either allele of the marker locus independently. The gen-
otype frequencies in parental data with random genotyping er-
rors are  Pp  E   1   ( M  11 ) =  P  p ( M  11 )(1 –  e ) 2  +  P  p ( M  12 ) e (1 –  e ) +  P  p ( M  22 ) e  2 , 
    Pp  E  1   ( M  22 ) =  P  p ( M  11 ) e  2  +  P  p ( M  12 ) e (1 –  e ) +  P  p ( M  22 )(1 –  e ) 2  and 
 Pp  E  1  ( M  12 ) = 1 –  Pp  E  1  ( M  11 ) –   Pp  E  1   ( M  22 ). For homozygote to heterozy-
gote error model, the genotype frequencies with genotyping er-
rors are     Pp  E      2   ( M  11 ) =  P  p ( M  11 )(1 –  e ),      Pp  E     2   ( M  22 ) =  P  p ( M  22 )(1 –  e ) and 
     Pp  E     2   ( M  12 ) = 1 –      Pp  E     2   ( M  11 ) –     Pp  E     2  ( M  22 ). For heterozygote to homozy-
gote error model the genotype frequencies are     Pp  E     3  ( M  11 ) =  P  p ( M  11 ) 
+  P  p ( M  12 ) e /2,   Pp  E    3     ( M  22 ) =  P  p ( M  22 ) +  P  p ( M  12 ) e /2 and   Pp  E    3     ( M  12 ) =
1 –  Pp  E    3    ( M  11 ) –   Pp  E    3     ( M  22 ). For unaffected siblings genotype data the 
genotype frequencies are calculated similarly.

  Populations Substructure 
 For population substructure, assume there are 2 subpopula-

tions and let c denote the proportion of population 1 in the sam-
pled families. Given population-specific allele frequencies and ge-
netic models in population 1 and 2, the genotype frequencies at the 
marker locus in parental data in population 1, denoted as   P pS  1   ( M  ij ), 
and in population 2, denoted as  P pS   2   ( M  ij ), can be calculated as de-
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scribed in the section on  Testing Parental Genotype Data for Devi-
ations from HWE.  The genotype frequencies in the combined pop-
ulations are  P  pS   ( M  ij ) =  c P pS    1   ( M  ij ) + (1 –  c )  P pS    2   ( M  ij ). For unaffected 
siblings data the genotype frequencies are calculated in the same 
manner.

  Parameters Used for the Calculations 
 Deviations from HWE at a SNP marker in LD of r 2  = 1, r 2  = 0.8 

and r 2  = 0.5 with the functional locus in parental, unaffected sib-
ling, affected proband and unrelated control genotype data were 
investigated under multiplicative, additive, dominant and reces-
sive genetic models. A sample size of 5,000 pedigrees (i.e. 10,000 
parents, 5,000 unaffected siblings and 5,000 probands) and 5,000 
unrelated controls were used to calculate the power of rejecting 
the null hypothesis of HWE at the stringent  �  level of 1  !  10 –7  
(    �  2  1     = 28.37). Genotypic RRs of  �  1  = 1.5 and  �  1  = 2.0 were em-
ployed and the population allele frequencies were varied from 
0.05 to 0.95. The phenocopy rate,  f  0  was set to 0.01 and thus the 
disease prevalence ranged from 0.01 to 0.03. In order to study the 
effects of genotyping error and population substructure, a geno-
typic RR  �  1  = 1.5 was used with the marker in perfect LD (r 2  = 1) 

with the functional locus. The genotyping error rate was set to 
0.01 for all error models. To study the effects of population sub-
structure the sample consisted of two populations with propor-
tion of 0.2 for population 1 and 0.8 for population 2. Three ex-
amples were used where the ratio of the allele frequency in the two 
populations was set to 0.9, 0.8 and 0.6 while keeping all other pa-
rameters equal in the two populations.

  Results 

 Parental Genotype Data 
 The strength and power of detecting a deviation from 

HWE at the marker locus which is in perfect LD (r 2  = 1) 
with the functional locus in the parental genotype data 
are illustrated in  figure 1 . For the parental data for all ge-
netic models the HWD coefficient  D  p  is negative, indicat-
ing an excess of heterozygous genotypes. As the geno-
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  Fig. 1.  For parental genotype data for pop-
ulation allele frequencies ranging from 
0.05 to 0.95; the HWD coefficient for a ge-
notypic RR of  �  1  = 1.5 ( a ) and  �  1  = 2.0 ( b ) 
and the power of rejecting the null hypoth-
esis of HWE for  �  = 1  !  10 –7  for genotyp-
ic RR of  �  1  = 1.5 ( c ) and  �  1  = 2.0 ( d ). 
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typic RR increases not only does the deviation from HWE 
increase, but also the population allele frequency at which 
the maximum deviation occurs declines ( fig. 1 a, b;  ta-
ble 1 ). Of the four genetic models, the multiplicative mod-
el displays the greatest deviation from HWE, with the 
additive model presenting with second strongest devia-
tion from HWE. For example, maximum deviations from 
HWE of –0.00736 and –0.00449 are observed for  �  1  = 2.0 
under the multiplicative and additive model, respectively 
( fig. 1 b;  table 1 ). For both of these genetic models the de-
viations are approximately symmetric. The deviations 
from HWE for the dominant and recessive models are 
approximately mirror images with the largest HWD co-

efficient being roughly –0.0009 for  �  1  = 1.5 at the popula-
tion allele frequency of 0.29 for the dominant model and 
0.63 for the recessive model ( fig. 1 a;  table 1 ).

  Under HWE, the power of detecting a deviation from 
HWE is  � . When  D  p   0  0 the power of detecting a devia-
tion from HWE increases with increasing sample size. 
The power of rejecting HWE is greatest for multiplicative 
model followed by additive model while dominant and 
recessive models have much lower power ( fig. 1 c, d). For 
example for  �  1  = 1.5, the maximum power of rejecting 
HWE is 8.3  !  10 –6  for multiplicative model and it is even 
lower for other models ( table 2 ). For  �  1  = 2.0 the power of 
rejecting HWE increased to 8.58  !  10 –3  for multiplica-

Table 1. Maximum deviation from HWE (D) and the population allele frequency (freq) at which it occurs for a 
genotypic RR of � 1 = 1.5 and � 1 = 2.0 for parental, unaffected sibling and proband genotype data under an ad-
ditive, multiplicative, dominant and recessive model

Models Parents Unaffected siblings Probands

Dp freq Du freq D freq

Genotypic RR of �1 = 1.5
Additive –0.00184 0.41 –0.00175 0.4 –0.00736 0.41
Multiplicative –0.00255 0.45 0.00023 0.8 0 any
Dominant –0.00086 0.29 –0.00596 0.45 –0.02526 0.45
Recessive –0.00094 0.63 0.00603 0.45 0.02526 0.45

Genotypic RR of �1 = 2.0
Additive –0.00449 0.37 –0.00423 0.35 –0.01795 0.37
Multiplicative –0.00736 0.41 0.00101 0.78 0 any
Dominant –0.00240 0.27 –0.00996 0.41 –0.04289 0.41
Recessive –0.00280 0.60 0.01019 0.42 0.04289 0.41

Table 2. Maximum power of rejecting HWE and the population allele frequency (freq) at which it occurs for a 
genotypic RR of �1 = 1.5 and �1 = 2.0 for parental, unaffected sibling and proband genotype data under an ad-
ditive, multiplicative, dominant and recessive model

Models Parents Unaffected siblings Probands

power freq power freq power freq

Genotypic RR of �1 = 1.5
Additive 2.32E–06 0.37 7.21E–07 0.36 5.86E–04 0.41
Multiplicative 8.30E–06 0.45 1.55E–07 0.95 1.0E–07 any
Dominant 4.67E–07 0.21 1.41E–04 0.42 0.97 0.45
Recessive 5.22E–07 0.71 1.51E–04 0.43 0.97 0.45

Genotypic RR of �1 = 2.0
Additive 2.611E–04 0.31 2.35E–05 0.29 0.40 0.37
Multiplicative 8.58E–03 0.41 3.54E–06 0.95 1.0E–07 any
Dominant 1.77E–05 0.19 6.94E–03 0.36 >0.99 0.41
Recessive 2.83E–05 0.68 8.07E–03 0.38 >0.99 0.41
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tive model ( table 2 ). When the analyzed marker is not in 
perfect LD (r 2  = 1) with the functional locus, the magni-
tude of HWD coefficients and power of rejecting HWE 
are reduced (suppl. figure 1; suppl. table 1, 2 (suppl. mate-
rial see www.karger.com/doi/10.1159/000179558            )). For 
example, the maximum HWD coefficient for the additive 
model is decreased from –0.00184 to –0.00147 at r 2  = 0.8 
and to –0.00092 at r 2  = 0.5 (suppl. figure 1; suppl. table 1). 
Corresponding to the attenuation of HWD coefficients, 
the power of rejecting HWE is also lessened  (suppl. figure 
1; suppl. table 2).

  Unaffected Sibling Genotype Data 
 The power of rejecting the null hypothesis and the pat-

tern of deviation from HWE are very different for the 
parental and the unaffected sibling genotype data ( fig. 1 , 
 2 ;  table 1 ,  2 ). For the genotype data for the unaffected sib-

lings the HWD coefficient  D  u  is positive for the recessive 
model indicating an excess of homozygous genotypes, 
while similar to the parental genotype data the deviation 
from HWE is negative for the additive and dominant 
model. For the multiplicative model  D  u  is sigmoidly 
shaped with negative values for low and positive values 
for high population allele frequencies, with the position 
at which  D  u  passes from negative to positive dependent 
on the genotypic RR (data not shown). Additionally there 
is a greater departure from  D  u  = 0 for the dominant and 
recessive model for unaffected sibling genotype data 
compared to the deviation from HWE observed in the 
parental genotype data when the genotype RR  ̂  2.0 
( fig. 1 a, b;  fig. 2 a, b;  table 1 ).

  In the unaffected sibling genotype data, the power of 
rejecting HWE also shows dramatic differences from the 
parental data ( fig. 2 c, d;  table 2 ). Dominant and recessive 
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  Fig. 2.  For unaffected sibling genotype 
data for population allele frequencies 
ranging from 0.05 to 0.95; the HWD coef-
ficient for a genotypic RR of  �  1  = 1.5 ( a ) 
and  �  1  = 2.0 ( b ) and the power of rejecting 
the null hypothesis of HWE for  �  = 1  !  
10 –7  for genotypic RR of  �  1  = 1.5 ( c ) and
 �  1  = 2.0 ( d ). 
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models have the highest power of detecting deviations 
from HWE while the additive and multiplicative model 
show much lower power of rejecting HWE ( fig. 1 c, d). 
However the power to detect deviations from HWE is not 
high due to the small magnitude of the deviation. For ex-
ample, for the dominant model for  �  1  = 1.5 the maximum 
power of rejecting HWE is 1.41  !  10 –4 , at population al-
lele frequency of  � 0.42, and increases to 6.94  !  10 –3  for 
 �  1  = 2.0, at population allele frequency of  � 0.36. The re-
cessive model has similar power of rejecting HWE to the 
dominant model. For the additive and multiplicative 
model the maximum power of rejecting HWE is only 
slightly elevated over the value of  �  ( fig. 2 c, d;  table 2 ). 
When the r 2  value between the marker and the function-
al locus is not equal 1, the HWD coefficients and corre-
sponding power to detect deviations from HWE are both 
reduced (suppl. figure 1; suppl. table 1, 2).

  Proband Genotype Data 
 Deviation from HWE in genotype data from affected 

individuals was observed and proposed for use in detect-
ing associations in case only studies  [25]  and various sce-
narios were more extensively explored by Wittke-Thomp-
son et al.  [26] . The strength of deviation for HWE, D is 
shown in  figure 3 a, b and  table 1  and the power of reject-
ing the null hypothesis of HWE is displayed in  figure 3 c, 
d and  table 2 .  Similar to the genotype data for unaffected 
siblings deviations from HWE are negative for the addi-
tive and dominant model and positive for the recessive 
model. However the strength of deviations from HWE is 
greater in the genotype data from probands compared to 
the unaffected siblings. For  �  1  = 1.5 the deviation from 
HWE is about four times greater in the proband genotype 
data than in the genotype data from unaffected siblings 
for the additive, dominant and recessive models. For the 
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  Fig. 3.  For proband genotype data for pop-
ulation allele frequencies ranging from 
0.05 to 0.95; the HWD coefficient for a ge-
notypic RR of  �  1  = 1.5 ( a ) and  �  1  = 2.0 ( b ) 
and the power of rejecting the null hypoth-
esis of HWE for  �  = 1  !  10 –7  for a geno-
typic RR of  �  1  = 1.5 ( c ) and  �  1  = 2.0 ( d ). 
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multiplicative model there are no deviations from HWE, 
regardless of the population allele frequency ( fig. 3 a, b; 
 table 1 ). 

  For a fixed genotypic RR and population allele fre-
quency, the power to detect a deviation from HWE is al-
ways greater in the proband data compared to the power 
to detect a deviation from HWE in either the parental or 
unaffected sibling genotype data with the exception of 
the multiplicative model, where for the proband geno-
type data there is no deviation for HWE and the power 
to detect a deviation from HWE is  � . For example for
 �  1  = 1.5 the maximum power to reject the null hypothesis 
of HWE is 0.97 for both the dominant and the recessive 
genetic model in the proband genotype data compared to 
4.67  !  10 –5  (dominant model) and 5.22  !  10 –6  (recessive 
model) in the parental genotype data and 1.41  !  10 –4  
(dominant model) and 1.51  !  10 –4  (recessive model) in 
the unaffected sibling genotype data ( fig. 3 ;  table 1 ). 
When the genotypic RR is increased to 2.0, the maximum 
power to reject HWE for both the dominant and recessive 
models is close to 1 for the proband genotype data ( fig. 3 ; 
 table 1 ). It should be noted that while the comparison is 
made for equal number of probands and unaffected sib-
lings, since each proband has two parents the evaluation 
is made for 5,000 probands vs. 10,000 parents. For the ad-
ditive model although the power to reject the null hy-
pothesis of HWE is greater in the genotype data from 
probands compared to both the parental and unaffected 
sibling genotype data the disparity is not as great as ob-
served for the dominant and recessive models. For ex-
ample, the maximum power to reject HWE in the geno-
type data from probands is 5.86  !  10 –4  for  �  1  = 1.5 and 
0.4 for  �  1  = 2.0 for the additive model, while for the pa-
rental genotype data the maximum power of rejecting 
HWE is 2.32  !  10 –6  for  �  1  = 1.5 and 2.61  !  10 –4  for
 �  1  = 2.0, and for unaffected sibling data the correspond-
ing power is 7.21  !  10 –6  for  �  1  = 1.5 and 2.35  !  10 –5  for 
 �  1  = 2.0 ( table 1 ).

  Genotype Data in Unrelated Unaffected and Cohort 
Controls 
 The magnitude of HWD coefficients in the unrelated 

unaffected individuals are marginally greater than zero 
and the power to detect deviations from HWE is ex-
tremely low. For example, for genotype data from 5,000 
unrelated unaffected controls the maximum HWD coef-
ficient is –0.00016 for the multiplicative model at  �  1  = 1.5 
and the corresponding power is 1.03  !  10 –7 . When geno-
typic RR is increased to  �  1  = 2.0, the maximum HWD 
coefficient and power to detect a deviation from HWE 

increases to –0.00065 and 1.54  !  10 –7  respectively for the 
multiplicative model. For other genetic models the HWD 
coefficients and power to detect a deviation from HWE 
are even smaller (data not shown).

  Genotyping Errors 
 Random error model always decreases the magnitude 

of the HWD coefficients; however, the reduction is not 
dramatic (suppl. fig. 2; suppl. table 3). For example, in pa-
rental genotype data the largest effect is observed for the 
multiplicative model where the maximum HWD coeffi-
cient is reduced from –0.00255 to –0.00245 (suppl. ta-
ble 3). For the unaffected sibling genotype data the largest 
effect is seen for the recessive model where the maximum 
HWD coefficient is reduced to 0.00579 from 0.00603 
(suppl. table 3). For other genetic models the reduction in 
the HWD coefficient is even more marginal (suppl. ta-
ble 3). Correspondingly the power of rejecting HWE is 
also reduced for all genetic models in both parental and 
unaffected sibling genotype data (suppl. table 4).

  The error model which converts homozygote to het-
erozygote genotypes causes an excess of heterozygotes 
which pulls the HWD coefficient in a negative direction. 
For example, the HWD coefficient became more nega-
tive and changed from –0.00184 to –0.00431 for the ad-
ditive model in parental genotype data (suppl. fig. 2; 
 suppl. table 3) and has similar effects for other genetic 
models (suppl. table 3). This type of genotyping error ex-
acerbates HWD and increases the power of rejecting 
HWE in parental genotype data (suppl. table 4). On the 
other hand, the effects of this error model on the geno-
type data in unaffected siblings is dependent on the ge-
netic model; for the dominant and additive model the 
HWD coefficient is more negative, for the recessive mod-
el the HWD coefficient is less positive and for the multi-
plicative model the HWD coefficient can either decrease 
or increase depending upon its original value (suppl. ta-
ble 3). Genotyping error which converts heterozygote to 
homozygote genotypes creates an excess of homozygote 
genotypes and pushes the deviation from HWE in a pos-
itive direction. The effects of this error model on both 
parental and unaffected sibling genotype data are in the 
opposite direction compared to the homozygote to het-
erozygote genotyping error model (suppl. fig. 2; suppl. 
table 3, 4).

  Population Substructure 
 For all genetic models in both parental and unaffected 

sibling genotype data population substructure pushes 
the HWD coefficients in the positive direction. When 
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the allele frequency ratio between the two populations is 
0.9 the effect is not dramatic (suppl. fig. 3; suppl. table 5, 
6). However, when the ratio is decreased to 0.8, the sub-
structure effect subjugated the genetic effect and the 
maximum deviation for the HWD coefficient went from 
negative to positive values, with the exception of the re-
cessive model for the unaffected sibling genotype data 
where the HWD coefficient was already positive (suppl. 
fig. 3; suppl. table 5, 6). For example, for a dominant 
model in the parental genotype data the maximum de-
viation from HWE changed from –0.00086 to 0.00535 
for an allele frequency ratio of 0.8 and the maximum 
power to detect a deviation from HWE increased from 
4.67  !  10 –7  to 0.93 (suppl. table 5, 6). For allele frequen-
cy ratio of 0.6 and allele frequencies  1 0.8 in population 
2, the population substructure effect is so large that
the power is close to 1 to detect a deviation from HWE 
(suppl. table 6). The HWD coefficients and the maxi-
mum power of rejecting HWE for other genetic models 
in both parental and unaffected sibling genotype data in 
the presence of population substructure are shown in 
supplemental tables 5 and 6.

  Discussion 

 The family-based association study design is popular, 
since it allows for control of population admixture/sub-
structure by using the non-transmitted parental alleles as 
control alleles. For family-based studies, genotype data 
from unrelated individuals are usually unavailable to 
evaluate deviations from HWE. Therefore it is common 
practice to carry out genotype quality control by testing 
for deviations from HWE using the parental or unaffect-
ed sibling genotype data. When trio data are used in as-
sociation studies, parents which are included in the anal-
ysis are not phenotyped and can be either unaffected or 
affected for the trait understudy. Even when parents of 
affected probands are truly unaffected they have a higher 
probability than the general population of being suscep-
tibility loci carriers. For fixed trait prevalence this prob-
ability increases with increasing genotypic RR. For fam-
ily-based studies unaffected siblings are especially useful 
when parental data are missing. For case-control studies 
unaffected siblings are not commonly used as controls 
due to the reduction in power compared to when unre-
lated controls are analyzed. An exception is in the study 
of dizygote twins, where the unaffected co-twin is em-
ployed as a control. The advantage of this design is that 
the cases and controls are matched on environmental fac-

tors, since co-twins share many environmental and intra-
uterine exposures.

  For most current genome-wide association studies, a 
large sample and a small  �  value are used (i.e.  ̂  1  !  10 –7 )
to have adequate power to detect associations and guard 
against false positive results due to multiple testing. How-
ever even for studies with thousands of study subjects for 
low genotypic RR ( ̂  1.2) these studies are often under-
powered for genome-wide significance levels. In this 
study we used a small  �  value i.e. 1  !  10 –7  and a large 
sample size i.e. 5,000 trios. This sample size was selected 
for sufficient power to detect an association for a large 
variety of genotypic RRs and allele frequencies.

  Although testing for deviations from HWE in geno-
type data from controls or unaffected family members is 
often used as quality control to detect markers with ge-
notyping error, deviation from HWE can be also be 
caused by other factors. In this study it is demonstrated 
that family ascertainment can also cause deviations from 
HWE in the genotype data of parents and unaffected sib-
lings at the disease/trait susceptibility locus. Two mea-
sures are calculated: the HWD coefficient   and the power 
to reject the null hypothesis of HWE. It is shown that de-
tection of deviation from HWE due to a true association 
is negligible for a sample of 5,000 trios at  �  level of 1  !  
10 –7 . The power will vary depending on sample size and 
 �  levels for a specific HWD coefficient and allele frequen-
cy. The genotypic RR also plays an important role in the 
strength of deviation from HWE, with higher genotypic 
RRs causing larger deviations of the HWD coefficient 
from 0. For the parental genotype data for 5,000 trios, 
under a multiplicative model for an allele frequency of 
0.45 and a genotypic RR of 1.5, the power is 8.3  !  10 –6  
for an  �  level of 1  !  10 –7  and increases to 0.175 for an  �  
level of 0.05. Likewise it can be seen that the sample size 
has an effect on power for the same example using an  �  
level of 1  !  10 –7 ; the power is 5.6  !  10 –7  for 1,000 trios 
and increases to 5.15  !  10 –5  for 10,000 trios.

  The phenomenon of deviations from HWE at the 
functional locus does not only occur because of ascer-
tainment through families. When individuals are exclud-
ed from the control group due to having the phenotype 
understudy, deviations from HWE are also observed in 
the control genotype data at the disease/trait susceptibil-
ity locus. In this situation the HWD coefficient is nega-
tive for all genetic models except the dominant model for 
which the HWD coefficient is positive. Although the 
largest deviation from HWD is observed for the multipli-
cative model the magnitude of deviation is only margin-
ally greater than 0. For a fixed genotypic RR the HWD 
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disequilibrium coefficient increases with increasing dis-
ease prevalence. If the controls are collected from the 
general population without any exclusion criteria and the 
laws of HWE are not violated, no deviation from HWE 
will be observed in the genotype data.

  The HWD coefficient reflects the difference between 
observed homozygote frequency and the corresponding 
expected frequency under HWE. Negative values indi-
cate an excess of heterozygous genotypes and a deficien-
cy of homozygous genotypes while positive HWD coef-
ficients indicate the opposite. Negative HWD coefficients 
are indicative of gentoyping error under a random error 
model and when homozygous genotypes are incorrectly 
called as heterozygous genotypes  [17] . Under all genetic 
models considered, HWD coefficients are negative for 
the parental genotype data ( fig. 1 a, b). For the additive 
and dominant model, HWD coefficients are also negative 
in the unaffected sibling genotype data ( fig. 2 a, b). There-
fore, it is important not to make the assumption that neg-
ative HWD coefficients indicate genotyping errors when 
observed in parental and unaffected sibling genotype 
data.

  The deviation from HWE caused by a true association 
can be further compounded by genotyping error and 
population substructure. The influence of genotyping er-
ror on the HWD coefficients is dependent on the error 
model. Genotyping error can create either an excess of 
homozygote or heterozygote genotypes depending on the 
underlying genotyping error model  [17] . Genotyping er-
ror usually does not have a large effect on HWD coeffi-
cients unless the genotyping error rate is high. Genotyp-
ing error at the disease/trait susceptibility locus in the 
parental and unaffected sibling genotype data can either 
attenuate or amplify the deviation of HWD coefficient 
from 0; in turn this will affect the power to detect a de-
viation from HWE. The absolute power will be depen-
dent on genetic model, genotypic RR, type of genotyping 
error, frequency of genotyping error, allele frequency, 
sample size and  �  value. Population substructure always 
creates an excess of homozygotes when the subpopula-
tions have different allele frequencies. When the allele 
frequency difference is large in the two populations the 
deviation from HWE can be dominated by population 
substructure and the HWD coefficients shift from nega-
tive to positive or become more positive.

  All calculations are based upon pedigrees with one af-
fected proband. If calculations were carried out for kin-
dreds with multiple offspring, the genotype probabilities 
for the 9 parental mating types would be modified. With 
increasing number of affected offspring the probability 

would increase that the parents are susceptibility allele 
carriers, since the probability that affected offspring are 
phenocopies is reduced with increasing number of affect-
ed offspring. For the unaffected siblings calculations are 
carried out conditional on their parents having one af-
fected offspring. Based upon the probability of each pos-
sible mating type, the probability for all three possible 
genotypes is then calculated conditional on the offspring 
being unaffected.

  The similarity between probands and unaffected sib-
lings is due to low penetrance of susceptibility loci since 
unaffected siblings and probands can share a large pro-
portion of high risk genotypes. When the penetrances 
were raised to high values, the patterns of HWD in unaf-
fected siblings showed dramatic differences from pro-
bands (data not shown) since the probability that the un-
affected sibling is a susceptibility allele carrier is greatly 
diminished.

  For both the deviation from HWE and the power of 
rejecting the null hypothesis of HWE the results are 
shown for population allele frequencies which range from 
0.05 to 0.95. Although it is unlikely that a disease suscep-
tibility locus will have high allele frequencies (e.g.  6 0.5) 
it is not unlikely to observe such high allele frequencies 
for variants which are involved in human variation.

  Unless genotype data for probands, parents or unaf-
fected siblings are genotyped in different batches it is ex-
pected that the type of genotyping error and error rates 
should be consistent. Therefore, potentially different pat-
terns of deviations from HWE in proband data compared 
to patterns observed in parental or unaffected sibling 
genotype data could be an indication that the deviation 
is due to an association and not genotyping errors. It can 
be observed that for the recessive and multiplicative mod-
el the pattern of deviation from HWE is different in the 
parental genotype data compared to proband genotype 
data. For the proband genotype data there is no deviation 
from HWE for the multiplicative model, and the devia-
tion from HWE is positive for the recessive model, while 
for the parental genotype data the deviation from HWE 
is negative for both the multiplicative and recessive mod-
el. However, even though for the parental genotype data 
the HWD coefficients are negative the divergence from 0 
is not large, especially under the recessive model.  For un-
affected sibling genotype data the strength of deviation 
from HWE is less than for the proband genotype data for 
the same genetic model and there is no difference in the 
direction, with the exception of the multiplicative model 
where  D  = 0 for the proband genotype data. In most cir-
cumstances differences in the deviation in HWE in the 



 Li/Leal Hum Hered 2009;67:104–115114

genotype data between the proband and either parental 
or unaffected sibling genotype data are difficult to distin-
guish from random variability.

  In family-based studies, erroneous genotypes could 
bias linkage or association study. Mendelian inconsisten-
cy is usually used to detect errors in family-based studies. 
Errors which include wrong pedigree structure and sam-
ple mix-ups will usually cause a large portion of markers 
to display Mendelian inconsistency and therefore are eas-
ily detected. However, genotyping errors which often de-
pendent on genotyping methods are more difficult to de-
tect, since genotyping errors are often compatible with 
Mendelian inheritance. Undetected genotype errors can 
increase type I and II errors. Detection of genotyping er-
ror via deviation from HWE is often carried out in unre-
lated controls from case-control association study  [16, 
17] . However deviation from HWE is not necessarily 
caused by genotyping errors and may be due to chance, 
population admixture/stratification, inbreeding, selec-
tion or copy number variants  [18–22] . In this article it is 
demonstrated that in genotype data obtained from par-
ents and unaffected siblings of probands the deviation 
from HWE at the trait locus could be due to probands’ 
ascertainment. However the deviations are not large and 
at a genome-wide association study  �  value the power of 
detecting deviations from HWE at the functional locus is 
low. Deviations from HWE in either parental or unaf-
fected sibling genotyping data can be used to flag mark-
ers for potential genotyping error. For these markers, 
cluster quality score should be examined for potential 
problems. Information on duplicate samples and Mende-
lian inconsistencies may give further evidence of geno-
typing error. Genotypes can also be confirmed by obtain-
ing genotyping results from another platform. Addition-
ally, markers with high rates of missing genotype data 
(e.g.  1 0.05) may also be indicative of problems with ge-
notyping error.
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  Appendix 

 The following procedure calculates genotype frequencies at a 
SNP marker given genotype frequencies at the functional locus in 
a specific sample and the LD between them.

  Let  p  1  and  q  1  = 1 –  p  1  denote the frequencies of allele  A  1  and  A  2  
at the functional locus and  p  2  and  q  2  = 1 –  p  2  denote the frequen-

cies of allele  M  1  and  M  2  at a SNP marker locus which is in LD with 
the functional locus. Let  h  11 ,  h  12 ,  h  21  and  h  22  denote the four hap-
lotypes at the two markers. Define LD between the two loci as

   �  =  P  h  11  –  p  1  p  2 

  where it is assumed that  �  1  and  M  1  at the two loci are positively 
associated. Then the frequencies of the four haplotypes are 

    P  h  11  =  p  1  p  2  +  � 
   P  h  12  =  p  1  q  2  –  � 
   P  h  21  =  q  1  p  2  –  � 
   P  h  22  =  q  1  q  2  +  � 

  Assuming the population is under HWE, the joint distribution of 
the frequency of the 9 two-locus genotypes  G  ij  M  kl  is   

,
2 2 ,

2

ik jl

ij kl ik jl il jk
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h h

G M h h h h

h h

P P i j k l
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 where  i ,  j   �  {1,2},  i   ̂    j  and  k ,  l   �  {1,2},  k   ̂    l . The marginal dis-
tribution of genotype  G  ij  at the functional locus is given by  P  G ij   = 
 �  k  ,  l   P  G ij  M kl   . Then given genotype frequencies  P   s  11 ,  P   s  12  and    P   s  22  at the 
functional locus in a specific sample, the genotype frequencies at 
the marker locus are  
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  Another commonly used measure of LD for association studies is 
 r  2  which is defined as  

2
2

1 1 2 2

.r
p q p q

�

  If an  r  2  value instead of a  �  value is given, the above calculation 
can be proceeded by replacing  �  with r �p1q1p2q2.   
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