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ABSTRACT A single-cell theory for the development of
selectivity and ocular dominance in visual cortex has been gen-
eralized to incorporate more realistic neural networks that ap-
proximate the actual anatomy of small regions of cortex. In
particular, we have analyzed a network consisting of excitato-
ry and inhibitor cells, both of which may receive information
from the lateral geniculate nucleus (LGN) and then interact
through cortico-cortical synapses in a mean-field approxima-
tion. Our investigation of the evolution of a cell in this mean-
field network indicates that many of the results on existence
and stability of fixed points that have been obtained previously
in the single-cell theory can be successfully generalized here.
We can, in addition, make explicit further statements concern-
ing the independent effects of excitatory and inhibitory neu-
rons on selectivity and ocular dominance. For example, shut-
ting off inhibitory cells lessens selectivity and alters ocular
dominance (masked synapses). These inhibitory cells may be
selective, but there is no theoretical necessity that they be so.
Further, the intercortical inhibitory synapses do not have to be
very responsive to visual experience. Most of the learning
process can occur among the excitatory LGN-cortical synap-
ses.

A single cell theory for the development of selectivity and
ocular dominance in visual cortex has been presented previ-
ously by Bienenstock, Cooper, and Munro (1). This has been
extended to a network applicable to layer 4 of visual cortex
(2). In this paper we present a mean field approximation that
captures in a fairly transparent manner the qualitative, and
many of the quantitative, results of the network theory.

Visual cortex has been extensively investigated (3, 4). We
summarize some of the dominating experimental facts very
briefly. Neurons in the primary visual cortex of normal adult
cats are sharply tuned for the orientation of an elongated slit
of light and most are activated by stimulation of either eye.
Both of these properties-orientation selectivity and bin-
ocularity-depend on the type of visual environment experi-
enced during a critical period of early postnatal development
extending from approximately 3 weeks to 3 months. For ex-
ample, deprivation of patterned input during this critical pe-
riod leads to loss of orientation selectivity, while monocular
deprivation (MD) results in a dramatic shift in the ocular
dominance of cortical neurons such that most will be respon-
sive exclusively to the open eye. The ocular dominance shift
after MD is the best known and most intensively studied
type of visual cortical plasticity. The consequences of binoc-
ular deprivation (BD) on visual cortex stand in striking con-
trast to those observed after MD. While 7 days ofMD during
the second postnatal month leave few neurons in striate cor-
tex responsive to stimulation of the deprived eye, most cells
remain responsive to visual stimulation through either eye
after a comparable period of BD. However, prolonged peri-
ods of BD lead to a loss of orientation selectivity, an effect

FIG. 1. Network with inputs from left and right eyes, with LGN-
cortical and cortico-cortical synapses.

not observed in the response to the open eye after compara-
ble periods of MD. The theory we discuss is concerned pri-
marily with the explanation of these and related facts.

Definitions and Notation

We focus attention on the input from the lateral geniculate
nucleus (LGN) and intercortical interactions. Inputs from
other regions of cortex are considered part of a background
excitation or inhibition contributing to the spontaneous ac-
tivity of the cell. In addition, the various time delays that
result in structure in the poststimulus time histogram are as-
sumed to be integrated over periods of the order of a second
for purposes of synaptic modification. This leads to a circuit
as shown in Fig. 1.
The output of the cells of the full network can be written

c = c*(Md + Lc), [1]

where c* is a sigmoidal response function,

C = (C1... C N)T, [2a]

c; is the output firing rate of the ith cortical cell, and

M = (MIS, Mfs), [2bP

Abbreviations: MD, monocular deprivation; BD, binocular depriva-
tion; LGN, lateral geniculate nucleus; GABA, y-aminobutyric acid.
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where Ml. and Mfr are the sth LGN "synapses" from the left
and right eye to the ith cortical cell.

m = (1/N) : mi
[2c]

are the time-averaged inputs from the left and right eye as
described in ref. 1,

L = (Lij) [2d]

is the matrix of cortico-cortical synapses, and Lij is the syn-
apse from the jth cell to the ith cell. (Notice that italicized
symbols always contain left and right eye components.)

In the monotonically increasing region above threshold
and below saturation, in a linear approximation,

c = Md + Lc. [3]

We consider a region of cortex for which the neural mapping
of the input from the visual field is constant (all of the cells,
in effect, look at a given region of the visual field). Under
these conditions, for an input, d, constant in time, the equi-
librium state of the network would be

[8]

and

Lo = (1/N) E Lij,
ii

so that

ci = (mi + (I L1j)(1 - Lo) -1m)d.

Ifwe assume that the lateral connection strengths are a func-
tion only of i-j (not dependent on the absolute position of a
cell in the network, therefore dependent only on the distance
of two cells from one another), Luj becomes a circular matrix
so that

E Lj :- Z Lij = Lo = constant
I

[9]

c = (1 - L)-Md.

Equilibrium as well as nonequilibrium information may be
critical to the evolution of the network as well as of primary
importance in information processing.f

Mean-Field Approximation

For a given LGN-cortical vector of synapses, mi (the ith
row of M), and for a given input from both eyes, d, Eq. 3 for
the firing rate of the ith cortical cell becomes

Cj = mid + I Lijcj [5]

where the first term is due to the input from LGN and the
second due to input from other cortical cells. We define c as
the spatially averaged firing rate of all of the cortical cells in
the region defined above:

c; = (mi + Lo(1 - Lo)-1'9)d. [10]

In the mean-field approximation we can therefore write

ci(a) (mi a)d (ml al) d' (m[ aI) dr, [11]

where the mean field

a = (al, ar) = -a(i, Mr) [12]

with

a = ILoI(1 + ILoI)-', [12a]

and we assume that Lo < 0 (the network is, on average, in-
hibitory).§

= (1/N)>E ci. [6]

The mean-field approximation is obtained by replacing cj in

the sum in Eq. 5 by its average value so that ci becomes

c; = mid + c Lij. [71

Here, in a manner similar to that in the theory of magnetism,

we have replaced the effect of individual cortical cells by
their average effect (as though all other cortical cells can be
replaced by an "effective" cell). It follows that

c = md + ULo = (1 - LO)-f d, [7a]

*If we expand (1 L-1, we obtain (1 Q-1 = 1 + L + L2 + ....
an expansion in mono-, di-, tri-, . . . synaptic events. How many
synaptic events one includes depends on the time interval of impor-
tance. For synaptic modification we assume that time intervals of
the order of a half second are appropriate. Thus c represents the
average over about 1/2 sec of the number of spikes that are the result
of an external presentation (5). The poststimulus time histogram
can be broken into much smaller time intervals, thus separating
mono-, di-, trisynaptic events and excitatory and inhibitory synap-
ses.

The Cortical Network

The behavior of visual cortical cells in animals reared in vari-
ous conditions suggests that some cells respond more rapidly
to environmental changes than others. In MD, for example,
some cells remain responsive to the closed eye in spite of the
very large shift of most cells to the open eye. Singer (6)
found, using intracellular recording, that geniculo-cortical
synapses on inhibitory interneurons are more resistant to
MD than are synapses on pyramidal cell dendrites. In dark
rearing some cells become nonresponsive to visual stimuli,
while most cells retain some responsiveness (3, 4). Recent
work suggests that the density of inhibitory GABAergic syn-
apses (GABA, -t-aminobutyric acid) in kitten striate cortex is
also unaffected by MD during the critical period (7, 8).
These results suggest that some LGN-cortical synapses

modify rapidly, while others modify relatively slowly, with
slow modification of some cortico-cortical synapses. Excit-
atory LGN-cortical synapses onto excitatory cells may be
those that modify primarily. (Since these synapses are
formed exclusively on dendritic spines, this raises the possi-

§The average magnitude of cortico-cortical inhibition, Lo, must be
smaller than 1. Otherwise c would be smaller than 0 (Eq. 7a). There
would be so much inhibition that on average no cells would fire.

d = (d', dr)T and dl' = (dyr) d.r))T

where

[4] and
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bility that the mechanisms underlying synaptic modification
exist primarily in axo-spinous synapses.) To embody these
facts we introduce two types of LGN-cortical synapses:
those (mi) that modify (according to the modification rule
discussed in ref. 1) and those (zk) that remain relatively con-
stant. In a simple limit we have

h = 0(cj, c=i)d

and [13]

Zk = 0

(In what follows c denotes the spatial average over cortical
cells, while c; denotes the time-averaged activity of the ith
cortical cell.) The function 4 is discussed in ref. 1. We as-
sume for simplicity, and consistent with the above physio-
logical interpretation, that these two types of synapses are
confined to two different classes of cells and that both left
and right eye have similar synapses (both mi or both Zk) on a
given cell. We therefore can write

and [17]

ck(a) = (Zk - a)d = (z' - a') d' + (Zr _- ar) dr,

where now al(r) contains terms from modifiable and nonmod-
ifiable synapses:

al(r) = a(i-iI(r) + 71(r)),
Nm

d(r) = N (r)
i=l

Nrtm

1I(r) = N-' Z zlk(r)
k=1

and a is defined in Eq. 12a. (N Nm + Nnm, where Nm is the
number of cells with modifiable synapses and Nnm is the
number of cells with nonmodifiable synapses.) Since it is as-
sumed that neither L nor z changes as the network evolves,
only I(r) is time dependent.

[18]

c= mid + 1 L-jcj

and [14]

Ck = Zkd + Z LcjC.

Further, in what follows, we assume for maximum simplicity
that there is no modification of cortico-cortical synapses,
although what experimental results there are suggest only
that modification of inhibitory cortico-cortical synapses is
slow (7, 8). The consequences of a theory including cortico-
cortical synapse modification for the full network were brief-
ly discussed in ref. 1 and will be discussed more fully in the
mean-field approximation elsewhere.

In a cortical network with modifiable and nonmodifiable
LGN-cortical synapses and nonmodifiable cortico-cortical
synapses, the synaptic evolution equations become

mj= 4(ci, cj)d,
Zk = 0,

Position and Stability of Fixed Points of LGN-Cortical
Synapses in the Mean-Field Network

We now generalize the arguments given in refs. 1 and 9 for
the position and stability of the fixed points of the stochastic
nonlinear synaptic modification equations. In the mean-field
network

mih(a) = O(cj(a), ci(a))d = 4[mi(a) - aod, [19]

where c (a) is defined by Eq. 17 and Cj(a) is an average of
the form

=C (a) = T f exp[(t' - t)T-1]c(a, t') dt'.
_x

[20]

The mean field, al(r) as given by Eq. 12, has a time-depen-
dent component iid(r). This varies as the average over all of
the network modifiable synapses and, in most environmental
situations, should change slowly compared to the change of
the modifiable synapses to a single cell:

yJIm(r)j << Ijh(r)l. [21]

and [15]

Ljj = 0.

This leads to a very complex set of coupled nonlinear sto-
chastic evolution equations that have been simulated and
partially analyzed elsewhere (2). The mean-field approxima-
tion permits dramatic simplification of these equations, lead-
ing to analytic results and a fairly transparent understanding
of their consequences in various conditions. In this approxi-
mation Eqs. 14 become

c; = mid + LoC

and [16]

We, therefore, define an adiabatic approximation in which
we assume that a is slowly varying and determine the trajec-
tory of mi for fixed a. (We imagine that mi reaches its fixed
point before a varies. The nonadiabatic situation is analyzed
in the Appendix. It is shown there that, in any case, the posi-
tion and stability of the fixed points are unaltered.) In the
adiabatic approximation we can write

(mi(a) - a) = O4mi(a) - ald. [22]

We see that there is a mapping

ml1mi(a) - a [23]

such that for every mi (a) there exists a corresponding
(mapped) point ml¶ that satisfies

[24]
Ck = Zkd + LoU,

so that we can now write
the original equation for the mean-field zero theory. There-
fore, if we start from the corresponding initial point

c (a) = (mi - a)d = (ml - a') d' + (mr_ ar).dr
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MI = Ofmi']d,

ml(t.) = mi (a, t.) a, [251
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the m trajectory viewed from the mi coordinate system is the
trajectory of m (a = 0). Thus, we can compute m,(a) from
the a = 0 trajectory, using

mi(a) = ml + a = mi(a = 0) + a. [26]

The transformation

mj'= mi + a [27]

gives a coordinate system whose origin is displaced from the
mean-field zero coordinates by a. The trajectory of a solu-
tion of the a = 0 theory measured from this coordinate sys-
tem gives a solution of the a #& 0 theory for the correspond-
ing point:

m''(a) = m'(a) + a = mi(O) + a = m,(a).

It follows that at corresponding points

ci(a) = ci(0)

Under MD conditions, the animal is reared with one eye
closed. For the sake of analysis assume that the right eye is
closed and that only noiselike signals arrive at cortex from
the right eye. Then the environment of the cortical cells is

d = (di, n)T. [301

Further, assume that the left eye synapses have reached
their selective fixed point, selective to pattern d1. Then (m!,
mr) = (m!*, xi) with IxiI << Imh* . For the preferred open eye
pattern (d', n) we have ci(a) = OM + (xi - ar) n, while for the
nonpreferred open eye patterns (di, n), j > 1, ci(a) = (xi -
ar) n. Following the argument of ref. 1, a time average over
the full pattern environment gives

= -K(xi - ar) with K a positive number. [31]

For a constant or slowly varying mean field this leads to an
asymptotic solution for the fixed point:

x = ar = a(x + zr). [32]

[29] We see that

xr(ar) = x-'(O) + ar =-r

so that the modification threshold, OM, is unaltered in this
mapping.¶ When this argument is applied to the fixed points,
we conclude that for every fixed point of mi(a = 0) there
exists a corresponding fixed point for mi(a) with the same

selectivity and stability properties. Therefore, just as for the
a = 0 theory, for arbitrary a only selective fixed points are

stable. Further, at corresponding fixed points we obtain the
same cell output.
From this we see that if the background inhibition is

changed (e.g., by long-term application of bicuculine or a
GABA agonist) and the LGN-c rtical synapses are allowed
to evolve to the new fixed points in the same visual environ-
ment, the outputs of the cortical cells will evolve to what
they were before the background inhibition was altered. (It is
presumed that a cortical cell does not jump from one stable
fixed point to another in this process.)
The above is limited as follows:
(i) The LGN-cortical synapses are restricted to be posi-

tive (excitatory). Therefore, if a is too small (insufficient
background inhibition), mi(a) will not be able to reach its
fixed points with only positive components.

(ii) The LGN-cortical synapses cannot increase beyond
some physiological and/or molecular limit. Therefore, if a is
too large, the cell will never fire, thus restricting the evolu-
tion of mi(a).

Evolution of the Mean-Field Network Under Various
Rearing Conditions

We are now in a position to calculate the evolution of corti-
cal cells under various rearing conditions. In what follows
we give as one example the evolution of cortical cells in the
mean-field network under MD conditions. The argument is
similar to that given in ref. 1. A more detailed analysis in-
cluding comparisons with experiment will be presented else-
where (E. E. Clothiaux, M. F. Bear, and L.NC., unpub-
lished).

VFor simplicity we often compute c, as an average over the environ-
ment {d' ... dK}. Thus, for example, for the monocular case, at a
selective fixed point (mi - a) d' = OM (preferred input), (mi - a)di
= 0 (j > 1, nonpreferred inputs), so that c, = (1/K) Yj (m, - a) di
= OM/K. With the definition OM = ( c )2 we obtain c = K so that
Om K2 independent of the mean field, a.

as expected from the above general argument. If we now
include the self-consistency condition that is a consequence
of the variation of the mean field and use

Nm

x = (1/N) >xi,
i=l

[34]

we obtain

x = Aa(1 - Xa) zr, [35]

where X = Nm/N is the ratio of the number of modifiable
cells to the total number of cells in the network. This yields

x* = a(1 - Xa)-1r. [36]

That is, the asymptotic state of the closed eye synapses is a
scaled function of the mean field due to nonmodifiable corti-
cal cells. The scale of this state is set not only by the propor-
tion of nonmodifiable cells but in addition by the averaged
intracortical synaptic strength L.
Thus, contrasted with the mean-field zero theory, the de-

prived eye LGN-cortical synapses do not go to zero. Rather
they approach the constant value dependent on the average
inhibition produced by the nonmodifiable cells in such a way
that the asymptotic output of the cortical cell is zero (it can-
not be driven by the deprived eye). However, lessening the
effect of inhibitory synapses (e.g., by application of bicucu-
line) reduces the magnitude of a so that one could once more
obtain a response from the deprived eye.

Discussion

Having defined a mean-field approximation that greatly sim-
plifies the equations for the response and evolution of corti-
cal cells, we have obtained a fundamental result: the stability
and position of the fixed points in this network are related to
the fixed points in the absence of mean field (al(r) = 0) by

mr(a) = mK(O) + a, [37]

where mr(a) is a fixed point of Eq. 22 in the mean field a,

and

[33]
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while m+(O) is a fixed point of this equation of zero mean
field.
Thus if mr(a) is restricted to the first quadrant (positive

values for all of its components due to the excitatory nature
of LGN-cortical synapses), as long as a is large enough and
nonspecific (there is sufficient inhibition for all pattern in-
puts), m1(a) can still reach all of the fixed points that would
have been reached by m,(O) (not restricted to the first quad-
rant). This means that if network inhibition is sufficient, the
selective stable fixed points can be reached even though
LGN-cortical synapses are excitatory. Once reached, the
fixed points, m?"(a), have the same stability characteristics
as the corresponding mr(O).
We find, consistent with previous theory and with experi-

ment, that most learning can occur in the LGN-cortical syn-
apses; inhibitory (cortico-cortical) synapses need not modi-
fy. Some nonmodifiable LGN-cortical synapses are re-
quired. It becomes interesting to ask whether these could be
associated with some anatomical feature (e.g., might these
be synapses into shafts rather than spines).
As in the zero mean-field theory, zero cell output is an

unstable fixed point. Thus in BD the cell output could be on
average above or below spontaneous activity (depending on
the level of inhibition). Some "nonvisual" cells would reap-
pear if excitation were enhanced or inhibition diminished.

In MD the closed eye response goes to

point is

mW = OW]d- a.

Using Eq. 18, we have

& = a m(a) = a(1 - a)-hm',

[Al]

[A2]

so that

m; = 0[m11d - a(1 - a)-fM'. [A31

At the fixed points m;4 = 0. When all of the cells of the net-
work have reached their respective fixed points m; = 0 for
each cell. Therefore, m'' = 0. It follows that when the net-
work has stabilized at a global fixed point

W[m ]d = 0 [A4]

for all inputs. This is the same condition as the & = 0 (adia-
batic) case. Thus the position and stability of the fixed points
are the same as those in the adiabatic theory. However,
since 0 < (1 - a) < 1, the absolute value of average move-
ment of the entire network towards the fixed points

c = (x - a)-d-0. [38] m = (1 - a) 44m]d

Therefore, LGN-cortical synapses do not go to 0. Rather

x-+ a. [39]

Thus if inhibition is suppressed one would expect some re-
sponse from the closed eye. This is in agreement with experi-
ment.

Various models for memory storage and retrieval have
been suggested. These differ in several ways. One of the
most important from the point of view of computational
complexity as well as for realization in silicon is the degree
of connectivity of each unit. What is suggested here is that
much that is significant in at least one layer of visual cortex
can be obtained in a primarily feed-forward network of very
simplified lateral connectivity. The original connectivity in
which each of the N neurons in this layer of cortex is con-
nected to every other [Np2 connectivity] can be replaced by a

mean-field network in which a neuron receives n LGN in-
puts and a single (mean-field) input [(n + 1) connectivity].

Appendix: Asymptotic Behavior of Mean-Field Equations
with Time-Dependent Mean Field

From Eqs. 19 and 23, the trajectory of the corresponding

is slower than in the adiabatic theory.

This work was supported by the Office of Naval Research and the
Army Research Office under Contracts N00014-86-K-0041 and
DAAG-29-84-K-0202.

1. Bienenstock, E. L., Cooper, L. N & Munro, P. W. (1982) J.
Neurosci. 2, 32-48.

2. Scofield, C. L. & Cooper, L. N (1985) Cont. Phys. 26, 125-
145.

3. Sherman, S. M. & Spear, P. D. (1982) Physiol. Rev. 62, 738-
855.

4. Fregnac, Y. & Imbert, M. (1984) Physiol. Rev. 64, 325-434.
5. Altmann, L., Luhmann, H. J., Singer, W. & Greuel, J. (1985)

Neuroscience Letters, Abstracts of the Ninth European Neu-
roscience Congress (Oxford), Suppl. 22, S353.

6. Singer, W. (1977) Exp. Brain Res. 30, 25-41.
7. Bear, M. F., Schmechel, D. M. & Ebner, F. F. (1985) J. Neu-

rosci. 5, 1262-1275.
8. Mower, G. D., White, W. F. & Rustad, R. (1986) Brain Res.

380, 253-260.
9. Cooper, L. N, Munro, P. W. & Scofield, C. L. (1985) in Syn-

aptic Modification, Neuron Selectivity and Nervous System
Organization, eds. Levy, W. B., Anderson, J. A. & Lehm-
kuhle, S. (Erlbaum Assoc., Hillsdale, NJ), pp. 175-192.

[A51

Neurobiology: Cooper and Scofield


