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Abstract
Recent developments in MR data acquisition technology are starting to yield images that show
anatomical features of the hippocampal formation at an unprecedented level of detail, providing the
basis for hippocampal subfield measurement. Because of the role of the hippocampus in human
memory and its implication in a variety of disorders and conditions, the ability to reliably and
efficiently quantify its subfields through in vivo neuroimaging is of great interest to both basic
neuroscience and clinical research. In this paper, we propose a fully-automated method for
segmenting the hippocampal subfields in ultra-high resolution MRI data. Using a Bayesian approach,
we build a computational model of how images around the hippocampal area are generated, and use
this model to obtain automated segmentations. We validate the proposed technique by comparing
our segmentation results with corresponding manual delineations in ultra-high resolution MRI scans
of five individuals.

1 Introduction
Models of brain structures generated from magnetic resonance imaging (MRI) data have grown
in complexity in recent years, evolving from simple models with few classes such as gray
matter, white matter and cerebrospinal fluid (CSF) [1,2,3], into more complex ones
representing a multitude of neuroanatomical structures [4,5,6]. Still, while many brain
structures such as the thalamus, the amygdala, or the hippocampus consist of multiple distinct,
interacting subregions, they are mostly treated as a single entity because of the limited image
resolution of typical structural MRI scans. Recently, however, substantial developments in MR
data acquisition technology have made it possible to acquire images with remarkably higher
resolution and signal-to-noise ratio than was previously attainable [7]. Such scans show many
cortical and subcortical structures in unprecedented detail, and offer new opportunities for
explicitly quantifying individual subregions, rather than their agglomerate, directly from in
vivo MRI data.

Analyzing large imaging studies of ultra-high resolution MRI scans requires computational
techniques to automatically extract information from the images. This is technically difficult
because, although the images show greater anatomical detail than traditional MRI scans, many
boundaries between substructures of interest remain hard to discern. In manual delineations,
the extent of specific subregions is often inferred from the extent of other, more clearly defined
structures by relying on prior neuroanatomical knowledge, rather than on local intensity
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information alone. The success of automated methods therefore depends critically on
computational models that provide prior information about the relative location, shape, and
appearance of the structures of interest.

In this paper, we present an automated segmentation technique for the subfields of the
hippocampus in ultra-high resolution MRI data based on state-of-the-art computational models.
Although the methodology is applicable to other brain structures as well, we identified the
hippocampus as our driving application because it is a necessary component in a variety of
memory functions, as well as the locus of structural change in aging, Alzheimer's disease (AD),
schizophrenia, and other conditions. Distinct hippocampal subregions have been shown to be
implicated in different memory subsystems [8,9] and be differentially affected in aging and
AD [10]. Therefore, the ability to measure, through in vivo neuroimaging, subtle changes in
these subregions promises to have widespread application in both basic neuroscience and
clinical research.

2 Model-Based Hippocampal Subfield Segmentation
We use a Bayesian modeling approach, in which we first build an explicit computational model
of how an MRI image around the hippocampal area is generated, and subsequently use this
model to obtain fully automated segmentations. The model incorporates a prior distribution
that makes predictions about where neuroanatomical labels typically occur throughout the
image, and is based on the generalization of probabilistic atlases [2,3,4,5,11] developed in
[12]. The model also includes a likelihood distribution that predicts how a label image, where
each voxel is assigned a unique neuroanatomical label, translates into an MRI image, where
each voxel has an intensity.

2.1 Prior: Mesh-Based Probabilistic Atlas
Let L = {li,i = 1,...,} be a label image with a total of I voxels, with li∈ {1,...,K} denoting the one
of K possible labels assigned to voxel i. Our prior models this image as being generated by the
following process:

A (irregular) tetrahedrical mesh covering the image domain of interest is defined by the
reference position of its N mesh nodes , and by a set of label
probabilities α = {αn, n = 1,...,N}. Node n is associated with a probability vector

, satisfying  and , that governs how frequently each label
occurs around that node.

The mesh is deformed from its reference position by sampling from a Markov random
field (MRF) model regulating the position of the mesh nodes:

(1)

where  is a penalty for deforming tetrahedron t from its shape in the reference
position xr, and Uxr (x) is an overall deformation penalty obtained by summing the
contributions of all T tetrahedra in the mesh. We use the penalty proposed in [13], which
goes to infinity if the Jacobian determinant of any tetrahedron's deformation approaches
zero, and therefore insures that the mesh topology is preserved.

In the deformed mesh with position x, the probability of observing label k in a pixel i with
location xi is modeled by
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(2)

where φn(·) denotes an interpolation basis function attached to mesh node n that has a unity
value at the position of the mesh node, a zero value at the outward faces of the tetrahedra
connected to the node and beyond, and a linear variation across the volume of each
tetrahedron. Assuming conditional independence of the labels between voxels given the
mesh node locations, we obtain the probability of seeing label image

.

It has previously been demonstrated that the mesh's connectivity, reference position xr, and
label probabilities α can be learned from a set of manually labeled example images [12]. The
learning involves selecting the model that maximizes the probability of observing the example
label images, or, equivalently, that minimizes the number of bits needed to encode them. An
example of the prior, derived from 4 manually labeled hippocampi, is shown in figure 2. Note
that the image domain is non-uniformly sampled, with areas containing little information
covered by larger tetrahedra.

2.2 Likelihood: Imaging Model
For the likelihood distribution, we employ a simple, often-used model according to which a
Gaussian distribution with mean μk and variance  is associated with each label k. Given label
image L, an intensity image Y = {yi, i = 1,...,I} is generated by drawing the intensity in each
voxel independently from the Gaussian distribution associated with its label:

where the parameters  are assumed to be governed by a uniform prior:
p(θ) ∝ 1.

2.3 Model Parameter Estimation

In a Bayesian setting, assessing the Maximum A Posteriori (MAP) parameter values 
involves maximizing

which is equivalent to minimizing

(3)
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We use an EM-style majorization technique [14,15], where we calculate a statistical
classification that associates each voxel with each of the neuroanatomical labels

and subsequently use this classification to construct an upper bound to eq. (3) that touches it
at the current parameters estimates [16]:

(4)

Optimizing this upper bound w.r.t. the Gaussian distribution parameters θ, while keeping x
fixed, yields the closed-form expressions

With these estimates of θ, the classification and the corresponding upper bound are updated,
and the estimation of θ is repeated, until convergence. We then re-calculate the upper bound,
and optimize it w.r.t. the mesh node positions x, keeping θ fixed. Optimizing x is a registration
process that deforms the atlas mesh towards the current classification, similar to the schemes
proposed in [5,17]. The gradient of eq. (4) with respect to x is given in analytical form through
the interpolation model of eq. (2) and the deformation model of eq. (1). We perform this
registration by gradient descent. Subsequently, we repeat the optimization of θ and x, each in
turn, until convergence.

2.4 Image Segmentation

Once we have an estimate of the model parameters , we can use it to obtain an
approximation to the MAP anatomical labeling. Approximating

, we have

which is obtained by assigning each voxel to the label with the highest posterior probability,
i.e., .

3 Experiments
We performed experiments on ultra-high resolution MRI data collected as part of an ongoing
imaging study assessing the effects of normal aging and AD on brain structure. Using a
prototype custom-built 32-channel head coil with a 3.0T Siemens Trio MRI system [7], we
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acquired images via an optimized high-resolution MPRAGE sequence that enables 380 μm in-
plane resolution (TR/TI/TE = 2530/1100/5.39 ms, FOV=448, FA = 7°, 208 slices acquired
coronally, thickness = 0.8mm, acquisition time = 7.34 min). To increase the signal-to-noise
ratio, 5 acquisitions were collected and motion-corrected to obtain a single resampled (to 380
μm isotropic) high contrast volume that covers the entire medial temporal lobe.

Using a protocol developed specifically for this purpose, the subfields of the right hippocampus
were manually delineated in images of 5 subjects (2 younger and 3 older cognitively normal
individuals). These delineations included the fimbria, presubiculum, subiculum, CA1, CA2/3,
and CA4/DG fields, as well as choroid plexus, hippocampal fissure, and lateral ventricle, as
shown in figure 1. Voxels outside of these structures were automatically labeled as gray matter,
white matter, or CSF using an EM-based tissue classifier [2].

We restricted our automated analysis to a region of interest (ROI) around the right hippocampus
only. To this end, we defined a cuboid ROI of size 100×60×160 voxels in an image of a younger
normal individual not included in the study (template image). This ROI was automatically
aligned to each image under study using an affine Mutual Information based registration
technique [18,19], by first aligning the whole template image covering the entire brain,
followed by a registration of the ROI only. Atlas meshes were then computed and applied in
the area covered by this ROI in each image.

We used a 3-level multi-resolution optimization strategy, in which the image under study and
the atlas mesh were subject to a gradually decreasing amount of spatial smoothing. In order to
simplify the optimization process, we restricted the number of labels throughout the multi-
resolution scheme to four, merging the gray matter with the presubiculum, subiculum, and CA
fields, the white matter with the fimbria, the lateral ventricle with choroid plexus, and CSF
with the hippocampal fissure. This restriction was then removed to obtain the final
segmentation. The whole segmentation process was fully automated and took about 1.5 hours
per subject on a 2.33GHz Intel Core2 processor.

We evaluated our automated segmentation results using a leave-one-out cross-validation
strategy: we built an atlas mesh from the delineations in 4 subjects, and used this to segment
the image of the remaining subject. We repeated this process for each of the 5 subjects, and
compared the automated segmentation results with the corresponding manual delineations.
Towards the tail of the hippocampus, the manual delineations no longer discerned between the
different subfields, but rather lumped everything together as simply “hippocampus” (see figure
1). Since the starting point of this “catch-all” label was arbitrary chosen in each subject, with
its volume ranging from 5 to 17% of the total hippocampal volume in different subjects, voxels
that were labeled as such in either the automated or manual segmentation were not included
in the comparisons.

For each of seven structures of interest (fimbria, CA1, CA2/3, CA4/DG, presubiculum,
subiculum, and hippocampal fissure), we calculated the Dice overlap coefficient, defined as
the volume of overlap between the automated and manual segmentation divided by their mean
volume. Since we are ultimately interested in detecting changes in hippocampal subfields
between different patient populations, we also evaluated how well differences in subfield
volumes between subjects, as detected by the manual delineations, were reflected in the
automated segmentations. To this end, we performed a linear regression on the absolute
volumes detected by both methods, calculating Pearson's correlation coefficient for each
structure.
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4 Results
Figure 1 compares the manual and automated segmentation results qualitatively on a set of
cross-sectional slices. The upper half of figure 3 shows the average Dice overlap measure for
each of the structures of interest, along with the minimum and maximum across the 5 subjects.
All of the larger structures, ranging in average size from 6,100 voxels for CA1 to 14,300 voxels
for CA2/3, have an average Dice coefficient of around 0.7 or higher. Smaller structures such
as the fimbria (on average 1,700 voxels) and the hippocampal fissure (on average 1,400 voxels)
are more challenging and have a lower Dice coefficient of around 0.58 and 0.45, respectively.

The lower half of figure 3 shows, for each structure, the volume differences between the
automated and manual segmentations relative to their mean volumes. Regarding Pearson's
correlation coefficient, the automatically calculated volumes of CA4/DG and CA2/3 are
strongly correlated with the manual ones, with a correlation coefficient of approximately 0.98
(p ≤ 0.004) and 0.93 (p ≤ 0.024), respectively. CA1 and subiculum correlate to some degree
(correlation coefficient of 0.73 and 0.71, p-values not significant), whereas presubiculum and
fimbria do not seem to correlate at all (correlation coefficient of 0.02 and −0.18, p-values not
significant). Interestingly, despite the hippocampal fissure's low Dice overlap measure, its
automated measurements correlate better with the manual ones than do some structures with
much higher Dice coefficients (correlation coefficient 0.85, p ≤ 0.068). The low Dice
coefficient is apparently caused by a systematic underestimation of the hippocampal fissure
volume by the automated method.

5 Discussion
In this paper, we demonstrated a model-based approach to automated hippocampal subfield
segmentation in ultra-high resolution MRI and presented preliminary results on a small number
of subjects. Future work will include a more thorough validation, using more subjects with
repeat scans and manual delineations by different raters, so that the accuracy and repeatability
of our method can be placed in context. Furthermore, in order to analyze invaluable existing
imaging studies that were acquired at more standard image resolutions, we also plan to develop
a modified likelihood for standard resolution images that includes an explicit model of the
partial volume effect [20].
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Fig. 1.
From left to right: ultra-high resolution MRI data, manual delineations, and corresponding
automated segmentations
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Fig. 2.
Mesh-based probabilistic atlas, derived from manual delineations in 4 subjects, warped onto
the 5th subject shown in figure 1. Bright and dark intensities correspond to high and low prior
probability for subiculum, respectively.
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Fig. 3.
Dice overlap measures (top) and relative volume differences (bottom) between automated and
manual segmentations. The colors are as in figure 1.
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