Skip to main content
. Author manuscript; available in PMC: 2009 Dec 29.
Published in final edited form as: Neural Comput. 2009 Jul;21(7):1797–1862. doi: 10.1162/neco.2009.06-08-799

Table 2.

Summary of Continuous-Time Probability Models for the Transition Probability Density Function p(τ) (Where τ Is a Nonnegative or Positive Random Variable That Denotes the Holding Time), Cumulative Distribution Function F(τ), and Survival Function 1 − F(τ).

pdf p(τ) cdf F(τ) l– F(τ) Domain
Exponential r exp(−rτ) 1 − exp(−) exp(−) τ ∈ [0, ∞), r > 0
Weibull ()α−1 exp[−()α] 1 − exp[−()α] exp[−()α] τ ∈ [0, ∞), r > 0, α > 0
Gamma
τs1exp(τ/θ)Γ(s)θs
γ(s,τ/θ)Γ(s)
1γ(s,τ/θ)Γ(s)
τ ∈ [0, ∞), s > 0, θ > 0
Log normal
1τ2πσ2exp((lnτμ)22σ2)
12+12erf[lnτμ2σ]
1212erf[lnτμ2σ]
τ ∈ (0, ∞), μ > 0, σ > 0
Inverse gaussian
s2πτ3exp(s(τμ)22μ2τ)
Φ(sτ(tμ1))+exp(2sτ)Φ(sτ(tμ+1))
τ ∈ (0, ∞), μ > 0, s > 0

Note: erf(z)=2π0zexp(t2)dt denotes the error function, Φ(z;μ,σ)=zexp((tμ)22σ2)dt denotes the gaussian cumulative distribution function, and these two functions relate to each other by Φ(z)=12[1+erf(z2)].