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Abstract
Latent growth modeling has been a topic of intense interest during the past two decades. Most
theoretical and applied work has employed first-order growth models, in which a single manifest
variable serves as indicator of trait level at each time of measurement. In the current paper, we
concentrate on issues regarding second-order growth models, which have multiple indicators at each
time of measurement. With multiple indicators, tests of factorial invariance of parameters across
times of measurement can be tested. We conduct such tests using two sets of data, which differ in
the extent to which factorial invariance holds, and evaluate longitudinal confirmatory factor, latent
growth curve, and latent difference score models. We demonstrate that, if factorial invariance fails
to hold, choice of indicator used to identify the latent variable can have substantial influences on the
characterization of patterns of growth, strong enough to alter conclusions about growth. We also
discuss matters related to the scaling of growth factors and conclude with recommendations for
practice and for future research.

The use of Latent Growth Models (LGMs) is a typical approach in longitudinal studies for
investigating change across time in a latent construct that is measured by a set of manifest
variables. Often, each manifest variable is constructed as the sum or average of a set of items
collected at a particular point in time to create a single composite or index variable for that
time of measurement, and the resulting manifest variables are used in the specification of a
first-order latent growth model. In this method, the model is fit directly to the vector of means
and the matrix of covariances among the newly created manifest scores or to the matrix of raw
scores on manifest variables, which consist of one score per person at each measurement
occasion. Such an approach, however, does not capitalize on the benefits inherent in modeling
the relations between the multiple indicators comprising the manifest variable and the manifest
composite variable itself (Sayer & Cumsille, 2001). In addition to ignoring important
information about the psychometric properties of the indicators, this procedure incorporates
specific variance and measurement errors of the indicators into the manifest composite score
and assumes that the same latent construct is measured at all times.

A more appropriate way to model change when multiple indicators are available at each time
of measurement is a second-order growth model. In this approach, the observed variables are
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used as indicators of a construct or latent variable (i.e., first-order factor) at each measurement
occasion. Then, a growth model is used to structure the covariation among these first-order
latent factors. Thus, change is modeled through the repeated latent factors, rather than through
the manifest variables.

Latent Growth Curve Models
First-order Latent Growth Curve Model

Suppose the presence of a set of manifest indicators X, W, …, and Y, and the sum of these
manifest indicators is a manifest variable V, which is computed as the sum of variables X
through Y, or V = X + W + … + Y. A first-order latent growth curve model, or 1LGC model,
could then be specified as:

(1)

where V represents the score on the manifest variable for person n at time t, f0n and fsn are the
intercept and slope latent variable scores, respectively, for person n, β represents the set of
basis coefficients that determine the shape of the curve, and e represents residual term for
person n on the manifest variable at time t unexplained by the intercept and slope latent
variables.

Because the model is simple to specify, virtually all applications of growth curve modeling in
the field of psychology have utilized the 1LGC model. The ease and directness of fitting the
model are important strengths of this approach. However, a most important shortcoming of the
1LGC model is the inability to test whether the same latent variable is assessed at each time
of measurement. Because only a single indicator is available at each time of measurement,
standard approaches to investigating factorial invariance cannot be pursued, so researchers
must assume, and cannot test, that the manifest variable reflects variation on an invariant latent
dimension at each time of measurement.

Second-order Latent Growth Curve Model
A 2nd-order Latent Growth Curve (2LGC) model is an approach to modeling change at the
latent level over time. This modeling procedure was proposed by McArdle (1988) as a “curve
of factors (CUFF) model” as well as by Tisak and Meredith (1990) as a “latent variable
longitudinal curve model,” and is related to the invariant factors models of McDonald
(1985). This approach has also been used by Duncan and Duncan (Duncan et al., 1999) and
by McArdle and colleagues (McArdle & Woodcock, 1997; McArdle et al., 2002).

The 2LGC model is a multivariate extension of the first-order LGM. One major advantage of
this approach is the opportunity for the researcher to investigate the factorial invariance of
model parameters across times of measurement. If factorial invariance constraints hold, then
the investigator has greater confidence that the same latent dimension is assessed or measured
at each time of measurement. Having demonstrated factorial invariance one can then model
the growth in the factors through an intercept and a slope. For example, for a system of three
variables, X, Y, and W, this model can be written as

(2)
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where X, W, and Y, represent manifest variables for person n at a time t, τ represents the
intercept, λ represents the factor loading, or linear slope relating the factor f to the indicator,
e represents the unique factor score, f0n and fs are the intercept and slope of the factor f for
person n, respectively, β represents the set of basis coefficients that determine the shape of the
curve, and z(t) represents a disturbance term for the factor f at time t. Figure 1 is a path diagram
of this model. This figure represents the three variables, X, Y, and W measured over t occasions.
For each occasion, the three variables comprise a latent factor ft. The growth in such factors is
then modeled through a second-order level and slope (f0 and fs).

Although second-order growth modeling has been available for almost twenty years, it has not
been used to any great extent. Therefore, the advantages of such models over the first-order
latent growth models have remained unfamiliar to many researchers. Some recent papers have
illustrated the 2LGC approach and discussed a number of related methodological issues (e.g.,
Hancock, Kuo, & Lawrence, 2001; Oort, 2001; Sayer & Cumsille, 2001; Stoel, van den
Wittenboer, & Hox, 2004), but much remains to be done to understand all aspects of the fitting
and the interpretation of these models.

The 2LGC model has important advantages over the first-order model. First, it allows
separating observed score variance into reliable construct variance, reliable specific variance,
and random occasion-specific, or error, variance. In a first-order model, the unique variance
associated with each indicator is confounded with time-specific variance (i.e., variance
dependent on time), but in the second-order model the error score can be interpreted as unique
variance or measurement uniqueness in the factor-analytic sense (i.e., a mixture of non-random
specific item variance that is not attributable to the common factor and random measurement
error; Sayer & Cumsille, 2001). Because measurement error is removed from the construct
over time, the regression coefficients representing relations among the growth parameters and
other covariates should be disattenuated and the standard errors smaller, which allows for more
precise estimates of the relation between change and its correlates. In sum, a 2LGC model has
the advantage of creating a theoretically error-free construct for growth modeling rather than
using error-laden manifest variables or composites. Second, because the measurement structure
of the indicators is modeled directly, the second-order model can provide information about
the characteristics of the individual manifest variables. Third, by comparing the goodness of
fit of nested models, a second-order model allows for testing different kinds of factorial
invariance of the composites over time. This last aspect is one of the most important advantages
of a second-order latent growth model approach when investigating change in observed
indicators that compose an underlying latent construct. We examine it in more detail in
following sections.

Latent Difference Score Models
First-order Latent Difference Score Model

A newer model for longitudinal data, proposed first by McArdle (2001; McArdle & Hamagami,
2001), is a first-order latent difference score (1LDS) model. The 1LDS model begins with the
conception of the observed score Y for person n at time t, or Y(t)n, as a combination of, or sum
of, true status at time n plus error at time n, or Y(t)n = y(t)n + e(t)n. Then, the difference in true
status between two adjacent times of measurement can be written as Δy(t)n = y(t)n – y(t−1)n.
Once the difference score is defined in this fashion, then the difference scores can be modeled
as:

(3)
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where Δy represents the change in true status on variable y at time t, α is a parameter that
expresses the influence of the factor slope fs on the changes, β is a coefficient representing the
effect of true status on variable y at the previous state on the change, and zΔ(t)n is the residual
of the latent changes.

Second-order Latent Difference Score Model
The 2nd-order Latent Difference Score (2LDS) model is a newer – and less widely used –
approach to model change in latent factors over time than the 2LGC model. This extension
was proposed by McArdle (2001; McArdle & Hamagami, 2001) and has been used by Ferrer
and McArdle in several investigations (2003, 2004; Ferrer et al., 2006).

As it was the case with the 2LGC, the 2LDS model is a multivariate extension of the 1LDS. It
also presents advantages over the 1LDS, especially related to factorial invariance, and with
regard to the possibility of examining dynamic evidence of a common factor underlying the
changes in the manifest variables. Similar to the 2LGC model, for a system of three variables,
X, Y, and W, the 2LDS model can be written as

(4)

where Δf represents change in factor f at time t, α is a parameter that expresses the influence
of the factor slope fs on change, β is a coefficient representing the effect of the factor at the
previous state on the change, and zΔ(t)n is the residual of latent change. Thus, the trajectory of
the latent factor f at any given time t can be written as a function of its initial state plus all the
changes accumulated up to time t, as

(5)

Figure 2 is a path diagram of the 2LDS model. As was the case for the 2LGC model, this figure
represents three variables, X, Y, and W measured over t occasions. For each occasion, the three
variables comprise a latent factor f. Further, for each repeated assessment, a new latent variable
Δt is created that represents a latent change between the two occasions. The growth in the
factors over time can now be modeled through these latent changes. The specification and
identification constraints for this model are explained below.

Measurement Invariance When Investigating Change in Multiple Manifest
Indicators Of a Latent Construct Across Time

Longitudinal measurement invariance, or measurement invariance across time, refers to the
situation in which the numerical values across measurement occasions are obtained on the same
measurement scale (Drasgow, 1987; Meredith, 1993). Measurement invariance ensures an
equal definition of a latent construct over time; that is, each indicator with the same surface
characteristics (i.e., identical scaling and wording) must relate to the underlying construct in
the same fashion over time (Hancock et al., 2001; Sayer & Cumsille, 2001).

The concept of factorial invariance (Meredith, 1964, 1993) is often used to investigate
measurement invariance in reference to the common factor model (Stoel et al., 2004). Building
on prior work by Horn, McArdle, and Mason (1983) and Meredith (1993), Widaman and Reise
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(1997) distinguished between nonmetric (configural) and metric factorial invariance, with
metric factorial invariance composed of three hierarchical levels: weak, strong, and strict
factorial invariance. Configural invariance means that the same indicators of the latent
construct are specified at each occasion, regardless of the numerical values of the parameter
estimates. Weak factorial invariance requires the factor loading of each indicator to be invariant
(i.e., to take the same numerical value) over time. Strong factorial invariance adds to weak
factorial invariance the requirement that the measurement intercept for each indicator is
invariant across time. Strict factorial invariance requires, in addition to the factor loading and
intercept, that the unique variance for each manifest variable be equal over time. Some
researchers (e.g., Sayer & Cumsille, 2001) have argued that strict factorial invariance is
unlikely to hold due to the fact that heterogeneous variance across time is often observed when
modeling change and because the random error component of uniqueness may vary in
magnitude with the level of the manifest variable. In addition to the preceding distinctions, the
terms “weak factorial invariance,” “strong factorial invariance,” and “strict factorial
invariance” are used in reference to models in which all relevant parameters exhibit invariance.
But, if the qualifier “partial” is used, this indicates that some of the relevant parameters of the
model are not invariant. Thus, strong factorial invariance implies that all factor loadings and
intercepts are invariant, whereas partial strong factorial invariance would refer to a model in
which at least one of the factor loadings or intercepts failed to exhibit metric invariance.

In growth modeling, it is important to ensure that change happens at the level of the construct
or latent variable rather than at the level of the observed variables used to measure such a
construct. If only a single composite is used as the indicator of the construct at each time of
measurement, as occurs when first-order models are specified, a researcher must assume that
the manifest variables satisfy the requirements of measurement invariance because invariance
constraints cannot be tested or evaluated. Because virtually all published studies employing
any kind of growth modeling have used first-order models, this is potentially important, given
the inability to verify measurement invariance of the indicators. When the same multiple
indicators are used to measure change over time, researchers often assume that indicators
display measurement invariance, but this assumption is seldom tested in practice. Modeling
multiple indicators in a longitudinal setting requires a test of factorial invariance to ensure that
the same latent variable is assessed at each time of measurement, and this can only be achieved
by means of a second-order model.

Furthermore, several important problems arise if factorial invariance of manifest variables fails
to hold. First, if factor loadings and intercepts vary freely, there is no guarantee that the same
latent construct is being measured over time. Thus, any changes across time might represent
shifts in the nature of the construct over time rather than quantitative growth in the construct.
Second, under partial factorial invariance, selection of a different reference indicator for the
scaling of the latent variable may change substantially model fit and growth model parameter
estimates. This scaling choice, however, does not occur under full strong or strict factorial
invariance, if other model assumptions are satisfied (Stoel et al., 2004). Full measurement
invariance may, therefore, be a necessary condition for a valid interpretation of change in latent
constructs with multiple indicators for models that scale the latent variable structure using
reference indicators.

Issues related to factorial invariance, on the one hand, and to latent growth modeling, on the
other, have been widely studied but few attempts have been made to integrate both. In this
paper, we illustrate both by dealing with the implications of factorial invariance for
specification of latent growth models and for interpretation of results obtained in modeling
change over time. We use longitudinal confirmatory factor analysis models and 2LGC and
2LDS models to investigate change across time in a set of manifest indicators that compose an
underlying latent construct when the assumption of factorial invariance is met and when it is
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violated. We use two samples to evaluate parameter estimates and model fit under different
conditions of invariance and to investigate the consequences of violating invariance
assumptions on the modeling of change across time.

Method
Participants

Two data sets are used for the analyses in this study. The first data set is from the “Motivation
in High School Project” (MHS), a study initiated by E. Ferrer and aimed at examining
determinants of motivation among high school students. In this project, adolescent students
were contacted as they entered high school and followed through their first semester. The
sample comprised 261 volunteer participants (149 males and 112 females) ranging from 14 to
17 years of age (M = 14.4, SD = .57). The participants described themselves as White (68.8%),
African-American (18.8%), Asian (1.3%), Hispanic (2.7%), Native American (0.4%), or Other
(0.7%). At four occasions (during the first week in class and at succeeding six-week intervals)
students completed a questionnaire during physical education classes. The questionnaire
covered a wide array of measures to assess the students’ self-perceptions and motivation in
their classes. Of the 261 participants, 144 completed all the measures at four occasions.
Students with complete data reported slightly higher levels of motivation at the first and fourth
occasions than students with incomplete data did. No other differences were detectable.

The second data set is described by Sayer and Cumsille (2001) to illustrate second-order growth
modeling. These data were originally from the Adolescent Alcohol Prevention Trial (AAPT),
a longitudinal investigation of children enrolled in school-based prevention programs (see
Hansen & Graham, 1991). The AAPT study was designed to assess the relative impact of four
different school-based alcohol-prevention curricula for young adolescents in Southern
California. The data set included four panels of data, each one corresponding to a sample of
children followed for several years. Following Sayer and Cumsille (2001), we used a subsample
drawn from panel 1, which followed children from fifth through 10th grades (except for eighth
grade). This sample included 610 children who were measured for the first time in 1986–1987
and then assessed annually for six years (except for the fourth year of the study). The
distribution of boys and girls was approximately equal at each time of measurement. The ethnic
distribution of the sample in fifth grade was approximately 51% White, 28% Latino, 9% Asian,
and 4% African American, and it remained relatively unchanged over time.

Measures
The variables from the first (MHS) data set represent perceived competence in the physical
domain. Perceived physical competence was measured using the athletic competence subscale
of the Self-Perception Profile for Adolescents (Harter, 1988). This scale contains five items
and measures the adolescent’s perceived ability in physical activities. One sample item is:
“Some teenagers do very well at all kinds of physical education activities BUT Other teenagers
don’t feel that they are very good when it comes to physical education”. This scale uses a
structured alternative response format with scores ranging from 1 (low) to 4 (high). Perceived
competence in this study was computed by averaging the scores of four of the five original
items. One of the five items was deleted to reduce the overall number of items in the
questionnaire and ease the burden of responding. This decision was implemented after pilot
data and previous work by the authors with this scale, ensuring that the deletion of one item
did not distort the properties of the original scale. The alpha reliabilities for this variable were
computed as .83, .83, .86, and .86, for the four occasions, respectively.

The children included in the second (AAPT) sample were administered a survey containing
questions on alcohol beliefs at Grades 5, 6, 7, 9 and 10. Positive alcohol expectancy was
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assessed with three items tapping the social consequences of drinking alcohol. They include
“Does drinking alcohol make it easier to be part of a group?” (GROUP), “Does drinking alcohol
make parties more fun?” (PARTIES), and “Does drinking make it easier to have a good time
with friends?” (GOODTIME). Adolescents had to indicate the extent of their agreement with
each item using a 4-point Likert Format, with anchors at 1 (strongly disagree) and 4 (strongly
agree). Sayer and Willett (1998) had previously summed these items within grades using
principal-components analysis to form a composite score. Thus, positive alcohol expectancy
is represented as a linear composite of the three expectancy items at each occasion of
measurement.

Tables 1a and 1b list the means, standard deviations, and correlations for the composite scores
from the two samples. Apparent from these tables is the larger variability as well as correlations
among the scores in the MHS sample. In addition, whereas for the MHS sample there are
approximately equal increments in the scores across all the occasions, this is not true for the
AAPT sample. Here, the unequal increment from the third to fourth occasion may be due to
the unequal intervals in the data collection (grades 5, 6, 7, 9, and 10) and to the transition from
elementary to junior high and then to high school.

Analytic Models
We considered two sets of structural models for the changes over time and applied them to the
MHS and AAPT samples data (see Table 2). The first set of models included longitudinal
confirmatory factor analysis models that specified a relation between each indicator and its
underlying construct, with the constructs allowed to freely covary among themselves. Our aim
in these analyses was to examine the factor structure at each measurement occasion. The second
set of models included second-order latent growth models and the aim was to structure the
covariation among the constructs through second-order growth factors (i.e., level and slope).

In the first set of analyses, we began with a minimally restricted longitudinal confirmatory
factor analysis model (CFA1) in which the first item was used as reference indicator at each
time of measurement (i.e., its factor loading was fixed to unity) and continued with a similar
model in which we added covariances between unique factors of the same item at adjacent
points (CFA2a). In the next three models, we altered the item used to set the metric of the factor
by fixing its factor loading to unity (CFA2b, CFA2c, CFA2d, when using the second, third, and
fourth item, respectively). Because the AAPT data set had only three items, only three CFA
models in this series (CFA2a, CFA2b, CFA2c) were possible. The next model (CFA3) was a
test of weak factorial invariance and constrained the factor loadings to be invariant across time.
The next model (CFA4) was a test of strong factorial invariance and added constraints on the
intercepts by fixing them to be invariant over time. The last two models tested strict factorial
invariance by setting the unique variances to be invariant over time (CFA5) and then
additionally by constraining to invariance the first-order covariances between unique variances
of similar items (CFA6).

In the second set of analyses, we followed a similar logic. We started with a second-order latent
growth curve model (2LGC2a) based on CFA2a (i.e., structuring the covariances among the
factors through a level and slope). To identify this model and scale the latent variables, we set
the factor loading and intercept of a manifest variable to unity and zero, respectively. As was
the case for the CFA models, in the next three models (2LGC2b, 2LGC2c, and 2LGC2d) we
changed the reference indicator to scale the latent factor; again, the AAPT data had only three
of these four models because only three manifest indicators were available. The final four
models in the series (2LGC3, 2LGC4, 2LGC5, and 2LGC6) were specified to test factorial
invariance following the same steps as before. To be consistent with Sayer and Cumsille’s
analyses (2001) with the AAPT data, we specified two slope latent variables in addition to the
level latent variable. The first slope latent variable was a linear slope across the entire range
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of grades that was centered at grade 7; the second slope latent variable was the change in the
linear slope that occurred after grade 7. Therefore, the first slope latent variable had fixed
coefficients of −2, −1, 0, 2, and 3 for grades 5, 6, 7, 9, and 10, respectively, and the second
slope latent variable had fixed coefficients of 0, 0, 0, 2, and 3 for the preceding grades,
respectively. We also fitted a third set of 2nd-order LDS models with specification and order
similar than those of the 2LGC models.

As discussed above, we expected the same estimates and overall model fit to emerge when
changing the reference indicator to scale the latent variable structure in the longitudinal CFA
models regardless of any measurement invariance assumption. In the 2nd-order growth models,
however, we hypothesized that the choice of reference indicator could lead to differences in
both model fit and parameter estimates when measurement invariance was not met. To illustrate
this issue we use one data set with construct stable measurement properties over time (MHS)
and another sample for which measurement invariance is violated (AAPT).

Results
All analyses were conducted using the Mplus program (Muthén & Muthén, 2005). In testing
each of the hypothesized models, goodness of fit was evaluated using the χ2 statistic, the root
mean square error of approximation (RMSEA; Browne & Cudeck, 1993), the comparative fit
index (CFI; Bentler, 1990), the Tucker-Lewis index (TLI; Tucker & Lewis, 1973), and the
Bayesian Information Criterion (BIC; Schwarz, 1978).

2nd-order Latent Growth Curve Models
Information about fit from all tested models is reported in Tables 3a and 3b for the MHS and
AAPT samples, respectively. For the MHS sample, the first model (CFA1), yielded a good fit
to these data. In the second model (CFA2a), freeing the lag-1 covariances among unique factors
(i.e., 12 parameters) led to a significant improvement in fit (Δχ2/Δdf = 67/12, p < .001). The
model fit of the next three models (CFA2b, CFA2c, and CFA2d) remained exactly the same,
indicating that changing the reference indicator to scale the latent variable had no effect on
model fit. The sixth model (CFA3) restricted the factor loadings to be invariant over time; and
this led to a model that was more restricted by nine degrees of freedom, but these restrictions
did not worsen the fit significantly (Δχ2/Δdf = 13/9, p > .05). The seventh model (CFA4)
restricted the intercepts to invariance over time also leading to an additional nine restrictions;
once again, model fit was not altered significantly (Δχ2/Δdf = 11/9, p > .05). The results from
these two models indicate that weak and strong factorial invariance are both met in these data.
Models CFA5 and CFA6 imposed additional constraints consistent with strict factorial
invariance, and the results indicated decreases in fit according to a chi-square test (Δχ2/Δdf =
57/12, p < .001 and Δχ2/Δdf = 26/8, p < .001), but improvements in fit according to the BIC.
These two models show that strict factorial invariance is a restrictive hypothesis that is possibly
tenable in this sample.

The results from the 2LGC models reveal a similar pattern. The first model (2LGC2a) fit the
data well. The next three models (2LGC2b, 2LGC2c, and 2LGC2d) changed the reference
indicator to scale the latent variable. Contrasting with results with the preceding CFA models,
these four 2LGC models – which differed only in choice of which item was the lead indicator
(with loading fixed at unity) – did not have identical fit to the data, although the variations
across models were quite small and therefore did not have any substantive consequences for
model fit. The results obtained in the fifth and sixth models (2LGC3 and 2LGC4) indicated that
both factor loadings and intercepts are invariant over time (Δχ2/Δdf = 10/9, p > .05 and Δχ2/
Δdf = 12/9, p > .05, respectively), thus satisfying both weak and strong factorial invariance.
As was the case with the CFA models, the last two 2LGC models (2LGC5 and 2LGC6) imposed
additional constraints on the unique variances and first-order unique covariances. Each of these
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models resulted in a substantial decrease in fit according to a chi-square test (Δχ2/Δdf = 57/12,
p < .001 and Δχ2/Δdf = 25/8, p < .001, respectively), but also improvements in fit according
to the BIC. Although not shown in Table 3a we fitted a series of models based on strong factorial
invariance (2LGC4) but changing the reference indicator. These models yielded identical fit
indices.

Table 3b reports the fit of all the models fit to the AAPT sample. For this sample, factorial
invariance fails to hold at any level. That is, a model imposing restrictions over time in either
the factor loadings, intercepts, or unique variances and covariances (CFA3–6) results in a
significant worsening of fit (Δχ2/Δdf = 70/8, 58/8, 216/12, and 47/9, p < .001 for all models).
For the second set of analysis, the important information refers to the changes in fit as a function
of the reference indicator used to scale the latent variables. Models 2LGC2a and 2LGC2c
yielded the exact same fit but model 2LGC2b yielded a better fit, with the same number of
parameter estimates and degrees of freedom. As was the case for the CFA models, factorial
invariance does not hold at any level for the 2LGC models (Δχ2/Δdf = 71/8, 46/8, 217/12, and
46/8, p < .001 for all models, for loadings, intercepts, unique variances, and unique covariances,
respectively).

To illustrate the consequences of failing to meet invariance assumptions on the parameter
estimates of second-order latent growth curve models, we examined such estimates in
2LGC2a and 2LGC2b models for both samples. As explained before, the only difference
between the two models was the indicator used as reference to scale the latent variable. The
results from these comparisons are displayed in Table 4. For the MHS sample, for which
factorial invariance holds, the values of the estimates are approximately equal for the level
(µ0 = 2.835 and 2.836, for 2LGC2a and 2LGC2b, respectively), slope (µs = .069 and .095),
variance of the level (σ2

0 = .413 and .419), variance of the slope (σ2
s = .005 and .004), and

level-slope covariance (σ0s = −.012 and −.009). The only difference across models is that the
standard error for the slope in model 2LGC2b is larger and the slope estimate is therefore not
significant. For the AAPT sample, for which invariance cannot be assumed, the pattern of
results is very different depending on the reference indicator used to scale the latent variable.
The estimates from these models are: for the level (µ0 = 1.343 and 2.378, for 2LGC2a and
2LGC2b, respectively), linear slope (µs = .003, p > .05 and .525, p < .01), increment slope
(µI = .085, p < .01, and −.206, p > .05), variance of the level (σ2

0 = .110 and .297), variance
of the linear slope (σ2

s = .037 and .083), and variance of the increment (σ2
I = .083 and .211).

Whereas for the MHS sample the estimates from these two models lead to approximately equal
trajectories, this is not true for the AAPT sample. Such trajectories are displayed in Figure 3a
and 3b (for the MHS and AAPT samples, respectively). For the AAPT sample, model
2LGC2a leads to trajectories with almost no change, whereas model 2LGC2b generates highly
increasing trajectories. These results illustrate that parameter estimates in 2LGC models are
sensitive, at times extremely sensitive, to the choice of reference indicator when measurement
invariance cannot be assumed.

To further illustrate the issue of invariance, we compared the results from a 2LGC model (i.e.,
2LGC2a) with those from a first-order LGC model using composites as manifest variables.
These results are reported in Table 5. For the MHS sample, the estimates are very similar, with
only a small difference in the estimate of the level. This estimate appears to be slightly larger
for the 2LGC model than for the first-order LGC model. The expected values from these two
models are displayed in Figure4a and lead to parallel trajectories with a very small separation.
For the AAPT sample, however, the results between the 1LGC and 2LGC models present some
differences. For example, the level for the 1LGC is smaller than that for the 2LGC, indicating
differences in the intercept at the third measurement occasion. Such differences are also true
for the slope, which is a substantially larger value for the 1LGC than for the 2LGC (for the
latter value the slope is not different from zero), and for the increment, which is larger for the
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1LGC than for the 2LGC. The estimates from these two models lead to rather different
trajectories (see Figure4b). The trajectory from the first model shows increases during both
segments, before and after the third assessment, although with a faster rate for the latter
segment. The trajectory from the second model, in contrast, is flat across the first three
measurement occasions with a subsequent small linear increase.

2nd-order Latent Difference Score Models
In the last set of analyses, we fitted a set of 2nd-order LDS models with similar specification
(including the increment slope) and order than those used with the 2LGC models. The results
from these analyses are displayed in Table 6. For the MHS data (displayed in the first section
of Table 6), the results resemble the findings from the 2LGC models. First, changing the
indicator used to scale the latent variable (Models 2LDS2a-2LDS2d) did not make a substantial
difference in model fit. Second, imposing restrictions of factorial invariance (2LDS3-2LDS6)
indicated unequivocal strong invariance and a less clear strict invariance. This latter hypothesis
was tenable using some fit criteria (BIC) but was less reasonable with other criteria (χ2/df).

For the AAPT sample (displayed in the second section of Table 6), the results from the 2LDS
models also resemble those from the 2LGC models. Selecting a particular indicator as the
marker to scale the latent variable (Models 2LDS2a-2LDS2c) resulted in large differences in
model fit (Δχ2 ranging from 3 to 54). Similarly, each increasingly restrictive hypothesis of
invariance led to a clear worsening in fit, indicating that factorial invariance does not hold for
these data.

To illustrate possible differences between 1st-order and 2nd-order LDS models, we compared
the results from a 2LDS model (i.e., 2LGC2a) with those from a first-order LDS model using
composites as manifest variables. These results are reported in Table 7. As it was the case for
the LGC models, all the estimates for the MHS sample are very similar. For the AAPT sample,
however, the results show important differences between both models in almost all parameter
estimates. Figure 5a and 5b display the expected trajectories generated from these models for
both samples. In these figures, the thick line represents the average trajectory whereas the thin
lines represented individual trajectories. For the MHS data, the trajectories generated from the
1LDS and 2LDS models are very similar. For the AAPT data, the trajectories from the 1LDS
model are steeper and with more variability than those from the 2LDS model.

Scaling of Latent Variables
One additional concern in growth modeling is the interpretation of results after an optimal
model has been obtained. In much applied work with growth models, researchers emphasize
only whether parameter estimates are statistically significant and, if significant, the sign of the
parameter estimate, without offering detailed interpretations of the magnitudes of the parameter
estimates. Under such an approach, statistical significance leads to presumed theoretical
significance, even if the magnitude of a key parameter estimate is miniscule. The problem is
compounded by the use of raw score metrics of various sorts for manifest variables and the
tendency to identify the latent variables with a factor loading fixed to unity. This leads to
manifest and latent variables that can have unusual metrics, impeding detailed evaluation
except by the methodological expert.

One step in the direction of easing the interpretive burden for the investigator is to scale the
latent variables in a metric that enables an easier and more direct interpretation. Consider Model
2LGC4, the second-order latent growth model with strong factorial invariance constraints. One
standard way to identify this model is to fix the factor loading of the first manifest variable to
unity and the intercept for this indicator to zero at each time of measurement (cf. Hancock et
al., 2001). Strong factorial invariance requires that all remaining factor loadings and intercepts
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are invariant across times of measurement. Under this method of identification, the latent
variables at each time of measurement are scaled relative to the first indicator. Furthermore,
under a linear growth specification, the basis coefficients for the slope latent variable are often
fixed at values of 0, 1, 2, …, (t − 1) for equally-spaced times of measurement 1, 2, 3, …, t,
respectively, regardless of the magnitude of the time gap between measurement occasions (e.g.,
one week, one month, one year). There is nothing inherently wrong with this specification.
Indeed, one important advantage of this approach is that routine use of the method can help
ensure that substantive researchers who are not expert in structural equation modeling will
specify models correctly. However, if the manifest variables have rather unusual metrics (e.g.,
very large or very small variances), the resulting latent variables may have metrics that impede
interpretation.

One alternative approach to model specification is to establish a precisely standardized metric,
or an approximately standardized metric, for the latent variables with reference to a given time
of measurement. One common standardized metric is a metric in which a variable has a mean
of zero and a standard deviation of unity. We imposed such a metric directly in the longitudinal
confirmatory factor model for the MHS data for Model CFA4 by fixing the variance of the
latent variable at unity at the first occasion of measurement, fixing the mean of the latent
variable at zero at this time point, estimating all factor loadings and intercepts, and constraining
factor loadings and intercepts to invariance across the remaining times of measurement. Under
this specification, the latent variable has a mean of 0 and SD of unity at Time 1, and varying
means and SDs at the remaining times of measurement, but scaled relative to the “mean 0, SD
1” at Time 1. When we specified the model in this fashion, the estimated factor loading for the
first item was .706 (SE = .044). We then used this value to fix the factor loading for the first
item in a 2LGM re-specification.

This approach to fixing the scale of the latent variables ensured that the variance of the first-
order latent variable at Time 1 was approximately unity. By fixing the mean of the second-
order Intercept latent variable at zero, the first-order latent variable at Time 1 was in an
approximate z-score metric, having mean of zero and SD of about 1.0. Under this re-
specification, the mean of the Slope was 0.091 (SE = .017), which is the estimated change from
one time of measurement to the next. From the first to fourth times of measurement, this would
translate into a mean change of 3 × 0.09 or 0.27 units. Because the first-order latent variable
at Time 1 had a mean of zero and SD of unity, this represents a change of just over one-quarter
of a SD-unit, or a change of 0.27 units in a Cohen’s d metric. Because measurement occasions
1 and 4 differed by 6 months, mean growth of this magnitude would then translate into an
annual growth rate of 0.54 units in Cohen’s d metric, or a change of over one-half SD units, a
nontrivial, moderate level of change.

Discussion
In this study we examined the issue of factorial invariance in growth models as related to model
fit and estimates of growth parameters. We used 1st- and 2nd- order latent growth curve models
as well as 1st- and 2nd- order latent difference score models to investigate change across time
in a set of manifest indicators that compose an underlying latent construct when the assumption
of factorial invariance is met and when it is violated. In general, the results suggest that several
important problems arise if factorial invariance does not hold.

One finding from our analysis concerns the parameter estimates. Our results indicate that when
the hypothesis of factorial invariance over time is tenable in the data, the estimates from a
1st-order latent model and a 2nd- order latent model lead to roughly equal expected trajectories.
When such an assumption is not reasonable, however, the estimates can lead to very different
estimated trajectories. These results apply to both latent growth curve models and latent
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difference score models. Given the inability to formally test measurement invariance of the
indicators when a 1st-order latent growth model is fitted to the data, measuring the same latent
construct over time cannot be guaranteed.

Furthermore, we illustrated that 2nd-order growth models, a strategy available for almost two
decades (McArdle, 1988) but rarely used in contemporary research, provide a useful tool for
investigating different forms of factorial invariance. The results obtained when fitting 2nd-order
growth models to the two data sets used in this study show that, when measurement invariance
cannot be assumed, the selection of a different reference indicator for the scaling of the latent
variable can substantially change both model fit and parameter estimates. Under conditions of
strong or strict factorial invariance, on the other hand, this scaling choice does not affect either
aspect of the model. This finding supports previous work in the area (Stoel et al., 2004) and
has implications for the interpretation of change in latent constructs measured by a set of
manifest variables.

Some alternatives have been proposed to deal with lack of factorial invariance. One such
alternative consists on identifying the covariance and mean structure of the model setting
constraints on the latent variable structure instead of constraining the measurement (i.e. the
factor loadings and intercepts) part of the model (Chan, 1988; Dolan & Molenaar, 1994; Horn
& McArdle, 1992; Stoel et al., 2004). We recognized, however, that this strategy may make
for a difficult interpretation of some parameters if a latent growth structure is imposed on the
first-order factors. Although not addressed in our analyses, this is an important area of research
for future studies.

With regard to rescaling issues, we illustrated that rescaling can be used to make a much more
clear interpretation about the magnitude of growth trajectories without altering any of the
psychometric or statistical features of the raw scores. After our rescaling, we found that change
could be expressed directly in a Cohen’s d metric, which facilitates interpretation of the
numerical value and the practical magnitude of mean change. Given the results obtained in our
study, we encourage researchers to rescaling latent variables into a metric that allows them to
make the most informative interpretations of their data.

The primary aim of our study was to examine issues of factorial invariance in the context of
state-of-the-art latent growth models. Because of this objective, we did not focus on issues of
comparing alternative models of growth. For this, extensions to the models examined here –
together with different models altogether – certainly can be considered. Some logical
extensions include models that consider external predictors, when such covariates exist in the
data, or nonlinear forms of the latent difference score models (Ferrer et al., 2006). But,
regardless of the model used, formally testing factorial invariance assumptions is important
when using multiple manifest variables for examining change in a construct over time.
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Figure 1.
Path diagram of a second-order latent growth model. Manifest variables are represented by
squares. Latent variables are represented by circles. The triangle represents a constant to
estimate the means and intercepts. Although not depicted in this figure, the intercepts of the
manifest variables are estimated. Also not depicted in this figure are the covariances among
same manifest variables at adjacent time points. Factor loadings and unique variances are
represented as invariant over time.
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Figure 2.
Path diagram of a second-order latent difference score model. Manifest variables are
represented by squares. Latent variables are represented by circles. The triangle represents a
constant to estimate the means and intercepts. Although not depicted in this figure, the
intercepts of the manifest variables are estimated. Also not depicted in this figure are the
covariances among same manifest variables at adjacent time points. Factor loadings and unique
variances are represented as invariant over time.

Ferrer et al. Page 16

Methodology (Gott). Author manuscript; available in PMC 2009 December 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Expected trajectories for 2LGC models as a function of scale indicator for both samples.
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Figure 4.
Expected trajectories for 1st and 2nd-order LGC models for both samples.
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Figure 5.
Expected trajectories for 1st and 2nd-order LDS models for both samples.
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Table 2

Description of Analytic Models

Model Description

CFA1 Initial confirmatory factor analysis

CFA2a Adding unique factor covariances among adjacent times

CFA2b CFA2 (reference indicator = item2)

CFA2c CFA2 (reference indicator = item3)

CFA2d CFA2 (reference indicator = item4)

CFA3 Weak factorial invariance (λ=)

CFA4 Strong factorial invariance (λ= + τ=)

CFA5 Strict factorial invariance (λ= + τ= + Θ=)

CFA6 Strict factorial invariance (λ= + τ= + Θ=, and covariances of unique factors)

2LGC2a 2nd-order growth model (based on CFA2)

2LGC2b 2LGC1 (reference indicator = item2)

2LGC2c 2LGC1 (reference indicator = item3)

2LGC2d 2LGC1 (reference indicator = item4)

2LGC3 2LGC1 with weak factorial invariance (λ=)

2LGC4 Strong factorial invariance (λ= + τ=)

2LGC5 Strict factorial invariance (λ= + τ= + Θ=)

2LGC6 Strict factorial invariance (λ= + τ= + Θ=, and covariances of unique factors)
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Table 4

Parameter Estimates for Models 2LGC2a and 2LGC2b fitted to MHS and AAPT Data

MHS Sample AAPT Sample

Model 2LGC2a 2LGC2b 2LGC2a 2LGC2b

Fixed effects

µ0 Level 2.835 (.054) 2.836 (.233) 1.343 (.029) 2.378 (.226)

µs Slope .069 (.018) .095 (.123)ns .003 (.023)ns .525 (.179)

µI Increment .085 (.033) −.206 (.268)ns

Random Effects

σ0
2 Level .413 (.063) .419 (.065) .110 (.018) .297 (.039)

σS
2 Slope .005 (.005) .004 (.005) .037 (.008) .083 (.014)

σI
2 Increment .083 (.016) .211 (.032)

σ0S Level-Slope −.012 (.015) −.009 (.016) .044 (.010) .130 (.020)

σ0I Level-Increment −.067 (.015) −.178 (.032)

σSI Slope-Increment −.050 (.011) −.113 (.020)

Note. Values in parentheses indicate standard errors. All values are maximum likelihood estimates from Mplus. For the MHS sample, the basis
coefficients were fixed to βt = [0, 1, 2, 3]. For the AAPT sample, the coefficients for the slope were fixed to βt = [−2, −1, 0, 2, 3] and for the increment
to βt = [0, 0, 0, 2, 3]. “ns” indicates a parameter whose 95% confidence interval includes zero.
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Table 5

Parameter Estimates for Models 1LGM and 2LGC2a fitted to MHS and AAPT Data

MHS Sample AAPT Sample

Model 1LGC 2LGC2a 1LGC 2LGC2a

Fixed effects

µ0 Level 2.771 (.046) 2.835 (.054) 1.299 (.022) 1.343 (.029)

µs Slope .061 (.012) .069 (.018) .048 (.014) .003 (.023)ns

µI Increment .108 (.022) .085 (.033)

Random Effects

σ0
2 Level .460 (.048) .413 (.063) .137 (.018) .110 (.018)

σS
2 Slope .011 (.003) .005 (.005) .022 (.008) .037 (.008)

σI
2 Increment .073 (.018) .083 (.016)

σ0S Level-Slope −.024 (.009) −.012 (.015) .051 (.010) .044 (.010)

σ0I Level-Increment −.062 (.016) −.067 (.015)

σSI Slope-Increment −.028 (.011) −.050 (.011)

Note. Values in parentheses indicate standard errors. All values are maximum likelihood estimates from Mplus. For the MHS sample, the basis
coefficients were fixed to βt = [0, 1, 2, 3]. For the AAPT sample, the coefficients for the slope were fixed to βt = [−2, −1, 0, 2, 3] and for the increment
to βt = [0, 0, 0, 2, 3]. “ns” indicates a parameter whose 95% confidence interval includes zero.
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Table 7

Parameter Estimates for Models 1LDS and 2LDS2 fitted to MHS and AAPT Data

MHS Sample AAPT Sample

Model 1LDS 2LDS1(2a) 1LDS 2LDS1(2a)

Means

µ0 Level 2.755 (.050) 2.825 (.052) 1.201 (.018) 1.356 (.036)

µs Slope 2.049 (.725) 1.976 (.447) .347 (.186)ns .762 (.165)

µI Increment .068 (.022) .068 (.015)

By Auto-proportion −.699 (.255) −.657 (.153) −.232 (.156)ns −.571 (.127)

Variances/Covariances

σ0
2 Level .584 (.128) .531 (.063) .075 (.022) .135 (.036)

σS
2 Slope .164 (.132)ns .151 (.081)ns .003 (.011)ns .015 (.012)ns

σI
2 Increment .006 (.004)ns .003 (.003)ns

σ0S Level-Slope .270 (.116) .259 (.077) −.013 (.009)ns −.002 (.010)ns

σ0I Level-Increment .013 (.005) .009 (.004)ns

σSI Slope-Increment .001 (.006)ns −.001 (.003)ns

Note. Values in parentheses indicate standard errors. All values are maximum likelihood estimates from Mplus. For the MHS sample, the basis
coefficients were fixed to βt = [0, 1, 2, 3]. For the AAPT sample, the coefficients for the slope were fixed to βt = [−2, −1, 0, 2, 3] and for the increment
to βt = [0, 0, 0, 2, 3]. “ns” indicates a parameter whose 95% confidence interval includes zero.
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