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Abstract
Background: Elucidating the sequence of molecular events underlying breast cancer formation is
of enormous value for understanding this disease and for design of an effective treatment. Gene
expression measurements have enabled the study of transcriptome-wide changes involved in
tumorigenesis. This usually occurs through identification of differentially expressed genes or
pathways.

Results: We propose a novel approach that is able to delineate new cancer-related cellular
processes and the nature of their involvement in tumorigenesis. First, we define modules as densely
interconnected and functionally enriched areas of a Protein Interaction Network. Second,
'differential expression' and 'differential co-expression' analyses are applied to the genes in these
network modules, allowing for identification of processes that are up- or down-regulated, as well
as processes disrupted (low co-expression) or invoked (high co-expression) in different tumor
stages. Finally, we propose a strategy to identify regulatory miRNAs potentially responsible for the
observed changes in module activities. We demonstrate the potential of this analysis on expression
data from a mouse model of mammary gland tumor, monitored over three stages of tumorigenesis.
Network modules enriched in adhesion and metabolic processes were found to be inactivated in
tumor cells through the combination of dysregulation and down-regulation, whereas the activation
of the integrin complex and immune system response modules is achieved through increased co-
regulation and up-regulation. Additionally, we confirmed a known miRNA involved in mammary
gland tumorigenesis, and present several new candidates for this function.

Conclusions: Understanding complex diseases requires studying them by integrative approaches
that combine data sources and different analysis methods. The integration of methods and data
sources proposed here yields a sensitive tool, able to pinpoint new processes with a role in cancer,
dissect modulation of their activity and detect the varying assignments of genes to functional
modules over the course of a disease.

Background
Breast cancer is a heterogeneous disease, both with respect
to cells of origin and the underlying course on the molec-

ular level [1]. Variable series of cellular events may lead to
the formation of malignancy, but to date the nature and
sequence of many of the processes that go awry during
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tumorigenesis remain elusive. The value of such knowl-
edge cannot be overestimated for understanding the dis-
ease and outlining the effective treatment.

With this aim in mind, we devised a novel bioinformatics
approach, taking advantage of the abundance of available
functional genomics data. Integration of heterogeneous
data allows extraction of knowledge that is not evident
when examining data of different types separately and
provides a holistic view on the functioning of the biolog-
ical system on multiple levels [2,3]. Our approach goes
beyond traditional microarray analysis, because it consid-
ers Protein Interaction Network modules as gene groups
in a joint differential expression-differential coexpression
analysis.

First, we use Protein Interaction Network (PIN) modules
to delineate biological processes as an alternative to 'text-
book pathways'. Several approaches for partitioning a bio-
molecular network of interactions into sensible and
coherent functional units have been proposed [4,5]. Here
we define modules as the densely interconnected regions
in the PIN, i.e., groups of proteins in the network that are
distinguishable from the neighborhood due to a much
higher density of interactions among them than with
other proteins in the network. Proteins heavily intercon-
nected by a network of mutual interactions are likely to be
involved in the same biological process [6-8]. Such topol-
ogy-based designation of modules is not constrained by
existing annotation of pathways, and allows finding novel
disease-specific modules. This network-guided approach
is especially useful in the study of cancer, since this disease
proceeds through step-wise accumulation of defects in
biological processes, whose nature is often not known [9].
In constantly evolving cancerous cells, signaling and met-
abolic pathways might be disrupted or modified to better
serve the cells' needs and particular genes might trade
their usual housekeeping function for a different one;
some natural control mechanisms might be turned off,
while others could be triggered. These events can be
reflected in changes of the level and cohesiveness of gene
expression profiles of affected processes. Therefore we
subjected the network modules to differential expression
and differential coexpression tests, in search of not only
the processes that alter their intensity, but also the ones
whose degree of coregulation differs between the disease
stages.

The identification of network elements whose altered
activity is associated with disease has been pursued in sev-
eral recent studies. Choi et al. (2005) constructed coex-
pression networks specific for cancer and normal tissue
and identified pairs of Gene Ontology categories most
often represented by the pairs of differentially coexpressed
genes [10]. A similar approach was adopted by Xu et al.

(2008), who integrated topological features of coexpres-
sion networks with differential coexpression analysis to
identify network modules activated in cancer [11]. Knowl-
edge of protein interaction network served to identify net-
work markers - subnetworks differentially expressed in
breast cancer [12], while Mani et al. took advantage of the
B-cells' interactome and expression data to identify inter-
actions disrupted in lymphoma [13]. None of those stud-
ies however explore the possibilities offered by combining
protein interaction network and gene expression data
together with joined differential expression and differen-
tial coexpression analyses.

We applied our approach to the expression data from the
study of mouse model of mammary gland tumor by Li et
al. [14], in which the tumor was induced by the expres-
sion of the fusion oncogene ETV6-NTRK3 in epithelial
cells. The ETV6-NTRK3 oncogene encodes a chimeric tyro-
sine kinase [15,16], whose expression leads to the forma-
tion of the human secretory breast carcinoma [17]. Tumor
development was monitored by measurement of gene
expression from healthy, through hyperplastic (showing
abnormal growth, but not yet invading surrounding tis-
sues) to more aggressive carcinoma stage. A particular
advantage of these data for our present study is that they
are cell specific. In contrast to many studies of gene
expression in solid tumors, in which gene expression
measurements reflect averages over different cell types, the
use of a molecular marker allowed Li et al. to separate the
oncoprotein-expressing epithelial cells from healthy cells
before RNA extractions.

We tested for the differential expression of the PIN-
derived network modules and for changes in the correla-
tion within the modules, associated with transition
between disease states. Additionally, we investigated a
possible role of microRNAs (miRNAs). Since miRNAs
form an integral part of cellular regulatory network, they
could contribute to the disruption of the vital cellular
processes [18]. There is growing evidence of an important
function of miRNAs in cancer-related processes, such as
differentiation, proliferation and apoptosis [19]. The
mechanisms of miRNAs functions fall mainly into two
classes - oncogenic miRNAs, upregulated in cancer, and
miRNAs with tumor suppressor activity, downregulated
in cancer [20,21]. In the present work, we identified miR-
NAs that target genes in modules with altered expression,
thus being potentially responsible for the observed
expression differences.

Results and Discussion
Modules in Protein Interaction Network
The mouse protein interaction network from IntNetDB
[22] contains 4,991 proteins connected by 17,489 interac-
tions. We partitioned this network into areas that are
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highly interconnected by interactions by applying the
Markov graph clustering algorithm (MCL [23]; Fig. 1). The
MCL algorithm has been shown to be robust towards net-
work inaccuracies [24]. MCL is based on flow simulation
in the graph and in an unweighted graph the clustering
results depend only on its topology. The size and number
of identified clusters depend on the value of the inflation
parameter. The clustering has been performed with differ-
ent settings of the inflation, from 1.3 to 1.8. To select the
partition with the most biologically-relevant meaning, the
clustering results were scored based on the correspond-
ence between the genes associations with Gene Ontology
(GO) attributes and their groupings into clusters. The
strength of this correspondence was quantified by calcu-
lating the total mutual information between clustering
and the GO attributes according to Steuer et al. [25]. The
clustering has high mutual information (MI) if the indi-
vidual clusters contain genes associated with similar GO
terms, and these sets of GO terms vary between clusters.
As seen in Additional file 1, two inflation values, 1.5 and
1.7, resulted in clusterings of the highest relative MI,
respectively 100.91 and 100.96. We selected the 1.5 infla-
tion value, as it allowed for retaining more genes than the
other one. With this setting, 133 clusters were produced
with sizes ranging from 10 to 159 proteins. Short descrip-
tion of the function has been assigned to the resulting
modules, based on the enrichment of the GO terms
(DAVID tool [26,27]; Additional file 2).

Differential expression of the network-defined modules
The aim of expression profiling across different disease
states is to identify transcripts whose levels differ between
these states. This is traditionally performed by applying a
test for differential (mean) expression on the gene-by-
gene basis. Subsequently, techniques like the Gene Ontol-
ogy terms enrichment allow for identification of the bio-
logical processes represented by differentially expressed
genes. However, processes in which changes in transcript
levels are widespread albeit subtle may be missed by tra-
ditional analysis, while they could still be detected if the
group of genes involved in such a process were considered
as a whole [28]. This observation led to development of
Gene Set Enrichment Analysis [28] and related
approaches like SAM-GS [29] and EASE [30], that switch
the focus of differential expression test from single genes
to groups of genes. Such gene groups may be defined
based on their function, localization of the product, pre-
viously observed association with the experimental condi-
tion, chromosomal localization or other premises.
Molecular Signatures Database (MSigDB [31]) and other
depositories for the gene sets have been created.

In the present study, the genes in the modules obtained
from the partition of the mouse IntNet network served as
gene sets and have been analyzed for differential expres-
sion between samples from three disease stages: healthy

(or wild type, WT), hyperplastic and tumor. The results are
summarized in Fig. 2. Most of the pairwise comparisons
between samples are associated with a decrease or
increase of activity of several (ranging from one to eight)
modules.

The transition from the healthy to the hyperplastic state is
accompanied by a lowering of the intensity of gene
expression in one module, associated with cell adhesion
and communication (module 35, see Additional File 1),
and the increase in intensity of eight modules, represent-
ing lysosome (24), protein transport (33), integrin com-
plex (40), adaptive immune response (50),
monooxygenase (60), oxidoreductase activity (73),
dynein complex (77) and collagen degradation (88). With
the progression from hyperplastic to tumor state, seven
modules decrease their expression. These are associated
with ATPase activity (22), apoptosis (32), integrin com-
plex (40), adaptive immune response (50), metabolic
processes (51), receptor activity (57) and rotamase (97).
In comparison with healthy cells, signaling and angiogen-
esis (47) and monooxygenase (60) are more active in
tumor tissues, while a module associated with heme bio-
synthesis (71) is downregulated. In both disease states
module 60 (monooxygenase activity) is expressed higher
than in healthy cells.

The observed expression changes agree well with what is
known about the progression of tumorigenesis. On the
way to full malignancy, tumor cells must overcome
defense mechanisms of the host organism. This is
achieved through a series of stepwise acquisitions of key
abilities, such as disrupting signaling pathways, inactivat-
ing control mechanisms like apoptosis and the immune
response, gaining access to unlimited proliferating factors
as well as acquiring mobility and the potential to colonize
new tissues [32]. Consistent with that model is our find-
ing that the modules that mark the differences between
disease states represent processes such as adhesion, apop-
tosis, cell migration, creation of new blood vessels,
immune response, growth factor receptors and signaling
pathways, validating our network module-oriented
approach. Lower intensity of cell adhesion in the diseased
tissues allows cancer cells to brake apart from attachment
to the extracellular matrix in their place of origin and
travel to another location with the blood or lymph stream
in the process of metastasis. Elevated expression in hyper-
plastic tissue of the collagen degradation processes and of
integrins, proteins that participate in sensing and modula-
tion of cell attachment [33], might also contribute to
increasing the mobility of carcinoma cells.

Like the integrin complex, the immune response module,
enriched in antigen processing and presentation func-
tions, is upregulated in hyperplastic cells relative to both
WT and tumor cells. Initial stages of tumor usually trigger
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Outline of the analysisFigure 1
Outline of the analysis. The mouse IntNetDB Protein Interaction Network (PIN) was decomposed into into highly inter-
connected subgraphs, or modules, with Markov graph clustering [23]. Gene expression values from three stages of mammary 
cancer (healthy, hyperplastic and tumor [14]) were mapped on the proteins in network modules. Next, the modules were 
tested for differential expression and differential coexpression between the disease stages. Plots A-F show schematic patterns 
of formation and vanishing of the coexpression in the module. (A-B) Modules coexpressed in healthy tissues lose their coordi-
nation in the diseased tissues. Such modules may represent processes that are disorganized in cancer. (C-D) Coexpression is 
not present in healthy tissue, but appears in the diseased ones. Such behavior may characterize processes that are invoked in 
cancer. (E-F) Correlation appears (or is lost) only in the hyperplastic tissue, indicating processes transiently active (or dis-
rupted) in early stage of disease. The red arrow indicates loss of the correlation, green arrow marks a gain of the correlation 
by the module. The PIN is drawn with Pajek software [59].
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response from the immune system that dispatches T-cells
and intensifies producing the antibodies [34]. In onco-
gene-caused tumors, as in this case, an oncoprotein
expressed by tumor cells could serve as an antigenic agent
[35,36]. Upregulation of the blood vessel development
module in cancer signifies the neovascularization process
that is necessary to provide the growing tumor tissue with
nutrients.

Differential coexpression
Even if the average expression level of a gene does not
change between the conditions, its relation to the expres-
sion levels of other transcripts could (see Fig. 1 plots A-F).
Genes might be coexpressed in one condition and not in
the others, changing their alliances according to the
dynamically arising demands of the organism that recruits
and dissolves teams of coregulated genes for currently
required tasks. We identified modules which lose or gain
correlation between the disease states using the coXpress R
package for differential coexpression analysis [37], modi-
fied to perform the analysis on pre-defined clusters. CoX-
press declares gene groups 'differentially coexpressed'

between two conditions if in one condition the statistic
summarizing pairwise correlations in the group is signifi-
cantly different from what is expected by chance (the null-
distribution is obtained by calculating similar statistics for
randomly selected gene groups of the same size), while it
is not different from random in the other condition.

Three patterns of coexpression change are shown in Fig. 1
(plots A-F). In the first type, a module whose members
have correlated expression profiles in the healthy tissue,
loses the correlation in the course of disease (Fig. 1 plots
A-B). This pattern likely represents processes that are dis-
ordered in the developing tumor. In the second type,
coexpression between genes in the module is not present
in the healthy tissue, but it appears in the diseased states
(Fig. 1 plots C-D). These patterns might signify processes
that are invoked in the developing tumor, either by the
defending host organism or triggered by the evolving and
adapting cancer. In the third scenario, modules are corre-
lated (or not) only in the hyperplastic state, indicating
processes that are specifically activated or deactivated in
hyperplastic cells (Fig. 1 plots E-F).

Differentially expressed modulesFigure 2
Differentially expressed modules. Modules from IntNetDB Protein Interaction Network network were used as gene sets 
in the Gene Set Enrichment Analysis (GSEA). The function of modules that are declared differentially expressed in any of the 
three pairwise comparisons between the healthy, hyperplastic and cancer samples is shown. Module numbers in parentheses 
(see Additional file 1 for description of modules).
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The patterns of differential coexpression identified in our
analysis represent all of the above scenarios (Table 1).
Two modules that are dysregulated in tumor samples are
enriched in cell adhesion (35) and growth factor-related
genes (93).

Immune response-related processes found to gain coex-
pression in the disease samples (modules 5 and 54) sug-
gest the induction of the communication between the
tumor cells and the immune system. Tumorigenesis and
the immune response are necessarily intertwined; the
immune system tries to eliminate the abnormal cells,
while tumor cells learn to evade the constant surveillance
of immune system and also to use it to its own benefit (for
example for releasing factors promoting cell proliferation
and angiogenesis, or for inducing the apoptosis of other
tumor-fighting immune cells [34]). Tumor cells might
thus express immune response-related genes that are
either involved in attraction of immune system cells,
genes activated through a cascade of events mediated by
the immune system-specific cells, or whose products act
on other tumor cells. Module 54 contains genes for several
cytokines, which are usually expressed at a wounded site
by T-cells and macrophages to evoke inflammatory
response. Production of cytokines has been also observed
in tumor cells [38-40]. The immune response induced by
cytokines provides the tumor cells with factors facilitating
proliferation and attack on surrounding tissues. Module 5
contains genes involved in the acute inflammatory
response and humoral immune response. Also coregu-
lated in diseased tissues are processes that modulate cell
attachment, motility and survival, thus influencing cell
invasiveness, represented by modules 131 (ephrin recep-
tor) and 40 (integrin complex) [41].

Processes specifically disrupted in hyperplastic tissues
seem to include several protein biosynthesis-related func-
tions (modules 13, 33, 37, 42, 70, and 83). Immune
response (module 102) is among processes coregulated in
hyperplastic tissues. This module contains several inter-
feron-activated genes, possibly pointing to the kind of
response that is evoked early in the disease stage.

Module 109, although not deemed to be differentially
coexpressed, is an interesting example of gradual decrease
in coregulation. It is coexpressed both in WT and hyper-
plastic tissues but the correlation in hyperplastic is much
lower than in WT (the average Pearson Correlation Coef-
ficient PCC = 0.79, p < 0.001 in WT vs. PPC = 0.4, p <
0.001 in hyperplastic), and diminishes even further in
tumor (PCC = 0.11, p = 0.05). This module is enriched in
genes from Wnt and hedgehog signaling pathways, whose
abnormal function has been associated with tumorigenic
action conveyed by the oncogene ETV6-NTRK3 in the
study by Li et al, from which the expression data origi-
nates.

For most of the differentially coexpressed modules, the
mean expression level is similar in healthy and diseased
cells. These groups would not be identified with only the
classic differential expression analysis. In a few cases how-
ever, the same modules are both differentially expressed
and differentially coexpressed. We further investigated the
interplay between these two forms of differential behavior
in gene expression during tumor progression.

Dynamics of differential expression and differential 
coexpression
For seven modules, the two forms of differential behavior
of mRNA, differential expression and differential coex-
pression, are intertwined with each other. This is illus-
trated in Fig. 3, in which the green and red graphics
represent coexpression status of the module in each dis-
ease stage, and the slope of the line between stages indi-
cates up- or downregulation of the mean expression of the
module genes. Modules 40 (integrin complex) and 50
(adaptive immune response) represent processes that are
activated in the course of tumor progression (Fig. 3A).
These two modules have a particularly interesting pattern
of expression, with the highest relative level in hyperplas-
tic cells. The higher expression level in hyperplastic tissue
relative to the healthy one is accompanied by a higher cor-
relation between the genes. Such pattern suggests that
processes represented by these modules are specifically
necessary in hyperplastic cells, and so the suitable genes
are upregulated and coregulated to serve their need. Sev-
enteen genes in the immune response module are anno-
tated as involved in "antigen processing and presentation"
(p-value = 8.1 × 10-31), indicating the module function in
recognizing the tumor cells as foreign and activation of
the adaptive immune response [34]. In the course of the
disease, the immune response may gradually weaken as
the tumor cells evolve to avoid or deactivate it in many
ways [42]. The integrin complex represented in module
40 signifies the effort of tumor cells to gain the motility
and invasiveness. Again, the intensity of these processes
may be highest in initial stages of tumorigenesis and
diminish later.

Genes in module 35, associated with cell adhesion, are
coexpressed in both healthy and hyperplastic samples,
while they are expressed at higher levels in healthy tissue
(Fig. 3B). With the transformation of cells into cancerous
ones, the expression remains on similar level, but the cor-
relation is lost. Such pattern suggests gradual deactivation
of the cell attachment mechanism, consistent with
increasing potential for metastasis in more aggressive
stages of the disease. In another example of gradual deac-
tivation, the biosynthetic processes in module 51 become
disordered in hyperplastic cells while the high expression
level is preserved, only to go down in the later stages of
tumor.
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The patterns exhibited by modules 22 (ATPase), 24 (lyso-
some) and 33 (protein transport), in which correlation is
transiently lost in hyperplastic tissues, are more challeng-
ing to interpret (Fig. 3C). One possible explanation for the
observed decrease in correlation, in spite of the high
expression levels, could be that the genes that formed a

functional module (similarly controlled at the transcrip-
tional level) in healthy and tumor states are reassigned to
different tasks in hyperplastic cells. In agreement with this
hypothesis, hierarchical clustering of the hyperplastic
gene expression data reveals that several genes for sugar
hydrolysis and other hydrolytic enzymes from module 24,

Table 1: Differentially coexpressed modules

module size cor_WT p_WT cor_h p_h cor_t p_t function

coexpressed coexpressed not coexpressed

35 27 0.33 0.02 0.13 0.02 0.02 0.33 cell adhesion
93 13 0.26 0.13 0.20 0.01 0.01 0.49 growth factor binding

coexpressed not coexpressed not coexpressed

51 19 0.35 0.01 0.01 0.47 0.02 0.44 metabolic processes

not coexpressed coexpressed coexpressed

5 92 0.05 0.37 0.04 0.05 0.01 0.09 acute immune response
40 25 0.00 0.8 0.07 0.05 0.10 0 integrin complex
54 18 0.06 0.68 0.08 0.11 0.05 0.14 immune response
131 11 0.18 0.32 0.09 0.14 0.10 0.08 ephrin receptor

not coexpressed not coexpressed coexpressed

14 40 0.07 0.51 0.01 0.36 0.05 0.03 respiratory chain
30 29 0.11 0.49 -0.03 0.98 0.05 0.06 signaling
65 16 0.16 0.9 0.05 0.42 0.11 0.11 nucleotide biosynthesis
69 15 0.02 0.76 -0.02 0.64 0.06 0.13 DNA repair
80 14 0.18 0.66 0.00 0.55 0.20 0.01 ER-Golgi transport
129 11 0.02 0.75 -0.06 0.72 0.09 0.13 hormone activity

coexpressed not coexpressed coexpressed

13 40 0.20 0.02 0.01 0.38 0.05 0.02 aminoacid metabolism
18 38 0.23 0.01 -0.01 0.6 0.10 0 energy metabolism
22 36 0.32 0.02 -0.03 0.91 0.09 0 ATPase
24 34 0.38 0.03 0.00 0.63 0.12 0 lysosome
33 28 0.50 0 0.01 0.34 0.03 0.11 protein transport
37 27 0.22 0.04 0.02 0.31 0.10 0.02 ribosome, DNA methylation
38 26 0.19 0.06 -0.02 0.74 0.11 0 chromatin
42 24 0.32 0 -0.01 0.54 0.06 0.03 tRNA synthetase
70 15 0.38 0.05 -0.06 0.95 0.07 0.1 protein degradation
83 14 0.42 0.04 -0.07 0.82 0.06 0.14 translation termination

not coexpressed coexpressed not coexpressed

74 15 0.11 0.72 0.18 0.07 0.02 0.59 Cu transporter
90 13 -0.06 0.96 0.15 0.08 -0.01 0.73 GABA receptor
102 12 -0.08 0.98 0.16 0.11 0.02 0.46 immune response
110 11 0.08 0.96 0.20 0.03 -0.06 1 coagulation

Network modules whose coexpression differs between disease stages. Average value for Pearson's Correlation Coefficient in the module, and 
corresponding p-value in healthy (5 samples), hyperplastic (4 samples) and cancer samples (15) are shown (cor_WT, p_WT, cor_h, p_h, cor_t, and 
p_t, respectively). Significant coexpression was declared based on the p-value (threshold of p-value < 0.15: coexpressed; p-value > 0.3: not 
coexpressed).
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in hyperplastic samples belong to clusters enriched in
stress response genes, immune response or cell differenti-
ation. Participation in multiple response programs,
depending on the stimulus, is characteristic for stress-
response genes, which are not usually specialized for par-
ticular kind of stress [43].

The above data reveals the dynamics of activation or deac-
tivation of cellular processes. The activity of integrin com-
plex and the immune system response is tuned up
through upregulation and coregulation. On the other
hand, the adhesion and biosynthetic processes are deacti-
vated by a combination of downregulation and dysregula-
tion. Clearly, integration of such a complementary
combination of tools as differential expression and differ-
ential coexpression analyses offers new insight into the

mechanism by which the activity of biological processes is
modulated. We were able to identify pathways which are
being turned off by downregulation and dysregulation,
and others that are being induced via upregulation and
coregulation. It also delivered another important insight:
increasing the intensity of expression of the pathway
genes, although commonly interpreted as an indication of
involvement of this pathway in the examined condition,
if accompanied by a decrease in correlations, might
merely signify a change in functional assignment of con-
stituent genes. And vice versa, downregulation of a proc-
ess that increases correlation might indicate trading the
intensity and promiscuous activity for a higher commit-
ment of the genes in module.

Furthermore, the modules identified in our analysis were
also found significant in other cancer datasets. The analy-
sis of data from two additional studies - one comparing
mammary control gland with mammary tumor [44], and
one comparing the immune-susceptive tumor cells with
immune-resistant tumor cells - confirmed that many of
the modules we identified in the Li et al. data are also
involved in other cancer models (see Additional files 2
and 3).

miRNAs
A variety of regulatory mechanisms might stand behind
the observed expression changes in the network modules
during tumorigenesis. One possibility is that the expres-
sion levels in the module are controlled by the same small
regulatory RNA (e.g. miRNA) whose activity changes
between conditions. The altered expression of a miRNA
gene, due to mutation or epigenetic event, might in turn
result in the disordered expression of the modules
enriched in its targets [20,18]. Involvement of miRNA
molecules in pathway dysregulation in cancer is increas-
ingly recognized [45,46]. To verify whether miRNAs
might be indeed responsible for the observed differences
in expression, we tested for overrepresentation of their
potential targets among the genes in the modules. The
miRNAs were then scored for the specificity of their asso-
ciation with sets of modules differentially expressed in a
particular comparison, or with differentially coexpressed
modules (see Methods).

A single miRNA with statistically significant association
with the differentially expressed modules was found: hsa-
miR-200b. It is predicted to target modules upregulated in
tumor (p-value < 0.001). This miRNA has been linked
previously to several types of cancer [47-50]. In particular,
it has been reported to be down-regulated in drug-resist-
ant breast cancer [51] and to regulate epithelial-mesen-
chymal transition [48]. Epithelial-mesenchymal
transition is a crucial event in the malignancy process,
allowing the tumor cells that undergo this transformation

Patterns of the interplay between differential expression and coexpressionFigure 3
Patterns of the interplay between differential expres-
sion and coexpression. Patterns of the changes in expres-
sion level and coexpression of the modules. The graphics 
show the coexpression state of the module (red - genes in 
the module not coexpressed; green - coexpressed) in three 
conditions (from left to right: healthy, hyperplastic and 
tumor). The slopes of the lines indicate relative increase or 
decrease of the mean expression level of the genes in the 
module between the samples. (A) Activation of the modules 
via upregulation and increased coregulation (in cancer sample 
expression of immune response module remains on the simi-
lar level, and it is neither declared coexpressed nor not 
coexpressed); (B) Deactivation of the modules through 
downregulation and dysregulation; (C) Modules become 
transiently disordered in hyperplastic tissue. Numbers in the 
parentheses indicate the module IDs.

integrin complex (40)

adaptive immune 
response (50)

metabolic processes (51)
cell adhesion (35)

lysosome (24)
protein transport (33)

ATPase (22)

A

B

C
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to become invasive and motile [52]. Thus, both the mode
of action and the function of has-miR-200b agree strongly
with our prediction.

In a set of differentially coexpressed modules, five miR-
NAs have been predicted to be significantly associated
(Table 2), suggesting their involvement in breast cancer.
Four of these miRNAs represent minor forms of the
mature sequence and have not been studied widely. To
our knowledge, no function has been reported for any of
these miRNAs, our study delivering the first hypothesis for
their role in breast cancer.

Conclusions
Integration of gene expression and protein-interaction
data has been recently receiving a lot of well-deserved
attention. Traditional forms of microarray analysis result
in long lists of significant differentially expressed genes or
arbitrarily specified pathways and do not consider differ-
ential co-expression dynamics; rather they only focus on
mean expression levels. Here we propose, as an approach
complementary to traditional analysis, using gene set
enrichment and differential coexpression analyses for net-
work-defined modules. The benefit of our network ori-
ented approach is that it results in a list of subnetworks
associated with mammary tumorigenesis, which are for-
mally defined, based on a combination of network con-
nectivity and GO information, and are not constrained by
existing annotations of pathways. Differential co-expres-
sion analysis offers a complementary value to differential
mean expression analysis by providing another insight
into the dysregulation of biological processes. Combina-
tion of these methods results in a sensitive tool, able to
pinpoint the processes that change their intensity and to
detect varying assignments of genes to functional mod-
ules, as the interplay between the developing tumor and
the host organism creates new challenges and tasks for
both. We would envision growing demand for this kind of
analyses in future, when constantly improving experimen-
tal techniques will produce high-throughput data moni-
toring the tumorigenesis at higher resolution.

Methods
Data
The mouse Protein Interaction Network (PIN) was
obtained from the IntNetDB v1.0, the integrated protein-
protein interaction network database [22]. The network
contains 4,991 proteins connected by 17,489 links,
obtained from experimental data or predicted with
sequence-based methods.

The mouse mammary gland expression data from Li et al.
[14] was used. The samples include 5 healthy (wild type)
tissue samples, 4 hyperplastic tissue samples and 15
tumor samples on the Affymetrix GeneChip® Mouse

Genome 430 2.0 Array platform. Only oncogene-trans-
formed cells were used to generate tumor and hyperplastic
samples for microarrays.

Two additional datasets were obtained from Gene Expres-
sion Omnibus [44]: mammary tumor versus mammary
control gland dataset (GSE14753) and immune-resistant
and immune-susceptible tumor cell lines (GSE2774).

Mapping expression data to proteins in the PIN
For the mapping of Entrez gene identifiers in the PIN to
microarray probe identifiers, the annotation of Affymetrix
430 2.0 array originally supplied by Affymetrix was used.
Out of 4,991 Entrez IDs from PIN, 4,406 mapped to one
or more Affy probes. Whenever a single Entrez ID mapped
to several Affy probes, the average of the expression sig-
nals from these probes was used. Thus, the expression
dataset used in subsequent analyses consisted of 4,406
original (for probes uniquely corresponding to a protein
in the PIN) or averaged (for several Affymetrix probes
with the same Entrez ID) expression profiles.

Modules in the PIN
The IntNetDB mouse protein interaction network was
partitioned into densely connected subnetworks, or mod-
ules, using Markov Clustering algorithm (MCL, [23]).
Clustering was performed for an array of values of the
inflation parameter, which controls the granularity of the
clustering. To assess the biological relevance of the
obtained groupings, we calculated the total mutual infor-
mation between the clustering result and the GO terms
assigned to the proteins within the clusters, MI(C,A),
according to Steuer et al. [25], as in [53]. Mutual Informa-
tion was calculated using the formula

where entropies H were obtained from the contingency
table that contained the counts of GO terms for genes in
clusters. Because these calculations might not be reliable
for small clusters, only clusters with at least 10 members
were taken under account, hence the different total
number of genes and associated GO terms in the cluster-
ing results (Additional file 4). We included all GO terms
associated with any gene in the clusters, after removing
rare terms (associated with less than 10 genes in the clus-
tering), and keeping only one from each group of redun-
dant GO terms (that differ in characterization of no more
than 5 genes).

Since the partitions to compare have different total num-
bers of clusters and distributions of cluster sizes, the MI
values are not directly comparable. Therefore, for each
clustering, we calculated a Z-score that measures the MI
relative to clusterings of similar parameters, but with ran-

MI C A H C H A H C A( , ) ( ) ( ) ( , )= + −
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dom assignment of genes to clusters. The scores were cal-
culated according to Steuer et al. [25].

where MI(C,A)real denotes mutual information between
clustering and annotations in the real data; MI(C,A)random
- mutual information in the randomized data; and σrabdom
is the standard deviation of the MI(C,A) in the rand-
omized data. Random data was obtained by reshuffling
assignments of genes to clusters while preserving cluster
sizes. Z-scores were calculated for the clustering results
with inflation parameters ranging from 1.3 to 1.8. Cluster-
ings at inflation set to 1.5 and 1.7 yielded highest Z-scores
of similar values (100.91 and 100.96, respectively; Addi-
tional Table 1). Clustering at 1.5 inflation value was
selected for subsequent analyses because it contained
more genes within the clusters with at least 10 members.

The mapping of GO terms to Entrez gene IDs was
obtained from Mouse Genome Informatics website
[54,55]. Calculations were performed in R [56].

Gene Set Enrichment Analysis
GSEA software [28] was applied with IntNetDB network
modules as predefined gene sets. To assess the significance
of the results, sample labels have been permuted 1000
times. Gene sets with FDR-corrected p-value lower than
0.05 were deemed differentially expressed.

Differential coexpression analysis
Network modules were subjected to the differential coex-
pression analysis with the coXpress tool [37] in R. In stand-
ard application of coXpress, the expression data from one
condition is clustered to reveal the groups of coexpressed
genes that are tested for the coexpression in another con-

dition. For our purpose, instead of clusters from expres-
sion data, pre-defined gene sets (i.e., the network
modules) were used for coexpression tests. Only modules
in which at least ten members have corresponding expres-
sion probe(s) were analyzed.

Significance of the average correlation in the gene group is
assessed in coXpress by assigning it a p-value as a measure
of how unusual that value is among average correlations
in 1000 randomly selected gene groups of the same size.
In contrast to the correlation values, which tend to shift to
higher values in the datasets with fewer samples, and thus
are not directly comparable when the number of samples
differs widely between the conditions, p-values may be
directly compared and serve as the coexpression criterion.
We adopted thresholds of p-value < 0.15 to declare a
module coexpressed and of p-value > 0.3 to declare a
module not coexpressed. While the choice of threshold is
subjective, we opted for these values because they pro-
vided good balance between specificity and sensitivity, as
judged by the biological importance of the identified
modules.

Prediction of miRNA targets in modules
The predictions of miRNA targets were obtained from
miRBase Targets, a web resource developed by the Enright
Lab at the Wellcome Trust Sanger Institute, containing
computationally predicted targets for microRNAs across
many species [57]. The BioMart tool was used to map Ent-
rez gene names for microRNA targets to Ensembl gene
symbols [58]. Statistical significance for cluster-specific
microRNA target enrichment was calculated with hyperge-
ometric test (R function phyper) using all genes from miR-
Base that are also present in our dataset as background.

miRNAs association with modules
Associations between miRNAs and sets of modules that
have been found to be differentially expressed between
conditions were quantified by calculating a score S for
each miRNA.

where

pc - p-values for overrepresentation of miRNAj in C differ-
entially expressed (up- or down-regulated in a compari-
son) or differentially coexpressed modules

pi - p-values for overrepresentation of miRNAj in all n
modules

Z
MI C A real mean MI C A random

random
= −( , ) ( ( , ) )

s

S

pc
c

C

pi
i

n
= =

∑

=
∑

log( )

log( )

1

1

Table 2: miRNAs associated with differentially coexpressed 
modules

module p-value miRNA

54 0.002 mmu-miR-183*
131 0.039 hsa-miR-642
42 0.032 mmu-miR-101a*
74 0.012 mmu-miR-433*
102 0.022 mmu-miR-325*

For each set of differentially expressed or differentially coexpressed 
modules, a score S was calculated, measuring how specific is the 
association between miRNA and its targets within modules in a given 
set, relative to targets of this miRNA in other modules. P-values for S 
score are based on 1000 permutations of the miRNA - target 
predictions relationships, i.e., the miRNA names were reshuffled in 
the table of target predictions. See the Methods section for the details 
of calculations.
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High S score indicates high specificity of the miRNA for
the set of modules.

The significance of the S score has been assessed by its
comparison to the distribution of the similarly obtained S
scores from random data. P-values for S-score were calcu-
lated as a proportion of the randomly obtained S scores
that are higher than the real one. Random data was cre-
ated by reshuffling miRNA labels in the table of values for
miRNA overrepresentations in modules 1,000 times.
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